
118

Probabilistic Verification of Fairness Properties via
Concentration

OSBERT BASTANI, University of Pennsylvania, USA
XIN ZHANG,MIT, USA
ARMANDO SOLAR-LEZAMA,MIT, USA

As machine learning systems are increasingly used to make real world legal and financial decisions, it is of
paramount importance that we develop algorithms to verify that these systems do not discriminate against
minorities. We design a scalable algorithm for verifying fairness specifications. Our algorithm obtains strong
correctness guarantees based on adaptive concentration inequalities; such inequalities enable our algorithm
to adaptively take samples until it has enough data to make a decision. We implement our algorithm in a tool
called VeriFair, and show that it scales to large machine learning models, including a deep recurrent neural
network that is more than five orders of magnitude larger than the largest previously-verified neural network.
While our technique only gives probabilistic guarantees due to the use of random samples, we show that we
can choose the probability of error to be extremely small.

CCS Concepts: • Theory of computation→ Program verification.

Additional Key Words and Phrases: probabilistic verification, machine learning, fairness

ACM Reference Format:
Osbert Bastani, Xin Zhang, and Armando Solar-Lezama. 2019. Probabilistic Verification of Fairness Properties
via Concentration. Proc. ACM Program. Lang. 3, OOPSLA, Article 118 (October 2019), 33 pages. https://doi.org/
10.1145/3360544

1 INTRODUCTION
Machine learning is increasingly being used to inform sensitive decisions, including legal decisions
such as whether to offer bail to a defendant [Lakkaraju et al. 2017], and financial decisions such
as whether to give a loan to an applicant [Hardt et al. 2016]. In these settings, for both ethical
and legal reasons, it is of paramount importance that decisions are made fairly and without
discrimination [Barocas and Selbst 2016; Zarsky 2014]. Indeed, one of themotivations for introducing
machine learning in these settings is the expectation that machines would not be subject to the
same implicit biases that may affect human decision makers. However, designing machine learning
models that satisfy fairness criterion has proven to be quite challenging, since these models have a
tendency to internalize biases present in the data. Even if sensitive features such as race and gender
are withheld from the model, it often internally reconstructs sensitive features.
Our goal is to verify whether a given fairness specification holds for a given machine learning

model, focusing on specifications that have been proposed in the machine learning literature. In
particular, our goal is not to devise new specifications. There has been previous work on trying to
verify probabilistic specifications [Gehr et al. 2016; Sampson et al. 2014; Sankaranarayanan et al.
2013], including work specifically targeting fairness [Albarghouthi et al. 2017]. Approaches based

Authors’ addresses: Osbert Bastani, University of Pennsylvania, USA, obastani@seas.upenn.edu; Xin Zhang, MIT, USA,
xzhang@csail.mit.edu; Armando Solar-Lezama, MIT, USA, asolar@csail.mit.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2019 Copyright held by the owner/author(s).
2475-1421/2019/10-ART118
https://doi.org/10.1145/3360544

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

https://doi.org/10.1145/3360544
https://doi.org/10.1145/3360544
https://doi.org/10.1145/3360544

118:2 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

on symbolic integration [Gehr et al. 2016] and numerical integration [Albarghouthi et al. 2017] have
been proposed. However, these approaches can be extremely slow—indeed, previous work using
numerical integration to verify fairness properties only scales to neural networks with a single
hidden layer containing just three hidden units [Albarghouthi et al. 2017], whereas state-of-the-art
neural networks can have dozens of layers and millions of hidden units. There has also been prior
work aiming to verify probabilistic specifications using approximate techniques such as belief
propagation and sampling [Sampson et al. 2014]. While these techniques are much more scalable,
they typically cannot give soundness guarantees; thus, they can be useful for bug-finding, but are
not suitable for verifying fairness properties, where the ability to guarantee the fairness of a given
model is very important.
Our approach is to do probabilistic verification by leveraging sampling, using concentration

inequalities to provide strong soundness guarantees. 1 In particular, we provide guarantees of the
form:

Pr[Ŷ = Y] ≥ 1 − ∆, (1)

where Ŷ is the response provided by our algorithm (i.e., whether the specification holds for the
given model), andY is the true answer. To enable such guarantees, we rely on adaptive concentration
inequalities [Zhao et al. 2016], which are concentration inequalities where our verification algorithm
can improve its estimate Ŷ of Y until Eq. 1 holds.
We prove that our verification algorithm is both sound and precise in this high-probability

sense. While in principle the probabilistic guarantee expressed by the formula is weaker than a
traditional soundness guarantee, we show that our approach allows us to efficiently prove the above
property with ∆ very close to zero. For example, in our evaluation on a deep neural network, we
take ∆ = 10−10, meaning there is only a 10−10 probability that a program that our algorithm verifies
to be fair is actually unfair. In contrast, the probability of winning the October 2018 Powerball was
about 3 times higher (roughly 3 × 10−9) [Picchi 2019]. To the best of our knowledge, our work is
the first to use adaptive concentration inequalities to design a probabilistically sound and precise
verification algorithm.

Furthermore, while our algorithm is incomplete and can fail to terminate on certain problem
instances, we show that nontermination can only occur under an unlikely condition. Intuitively,
nontermination can happen in cases where a specification “just barely holds”—i.e., for a random
variable X , we want to show that E[X] ≥ 0, but E[X] = 0. Then, the error in our estimate of E[X]
will never be small enough to determine whether E[X] ≥ 0 holds. Except in these cases, we prove
that our algorithm terminates in finite time with probability 1.
We implement our algorithm in a tool called VeriFair, which can be used to verify fairness

properties of programs. 2 In particular, we compare VeriFair to the state-of-the-art fairness
verification tool FairSqare [Albarghouthi et al. 2017]; our tool outperforms theirs on each of the
12 largest problem instances in their benchmark. Furthermore, the FairSqare benchmarks are
implemented in Python; compiling their problem instances to native code can yield more than a
200× increase in the performance of VeriFair (in contrast, the running time of their tool is not
increased this way, since they use symbolic techniques). Finally, we evaluate VeriFair on a much
larger benchmark: we study a deep neural network used to classify human-drawn sketches of
various objects [Google 2018; Ha and Eck 2017]. Our benchmark consists of neural networks with
about 16 million parameters, which is more than 5 orders of magnitude larger than the largest
neural network in the FairSqare benchmark, which has 37 parameters. On this benchmark,
1We discuss limitations of our approach in Section 7. Furthermore, while our approach is not a priori specific to fairness,
there are several challenges to applying it more broadly, which we also discuss in Section 7.
2VeriFair is available at https://github.com/obastani/verifair.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

https://github.com/obastani/verifair

Probabilistic Verification of Fairness Properties via Concentration 118:3

def offer_job(col_rank, years_exp) def population_model():
if col_rank <= 5: is_male ~ bernoulli(0.5)

return true col_rank ~ normal(25, 10)
elif years_exp > 5: if is_male:

return true years_exp ~ normal(15, 5)
else: else:

return false years_exp ~ normal(10, 5)
return col_rank, years_exp

Fig. 1. Left: A classifier f
job

: R2 → {true, false} for deciding whether to offer a job to a candidate (adapted

from [Albarghouthi et al. 2017]). This classifier takes as input two features—the candidate’s college ranking

(col_rank), and the candidate’s years of work experience (years_exp). Right: A population model P
job

over

the features is_male, col_rank, and years_exp of job candidates. Note that a candidate’s years of work

experience is affected by their gender.

VeriFair terminates in just 697 seconds (with probability of error ∆ = 10−10). This result shows
that VeriFair can scale to large image classification tasks, for which fairness is often an important
property—for example, login systems based on face recognition have been shown to make more
mistakes detecting minority users than detecting majority users [Simon 2009]. In summary, our
contributions are
• We propose an algorithm for verifying fairness properties of machine learning models based
on adaptive concentration inequalities (Section 4).
• We prove that our algorithm is sound and precise in a high-probability sense, and guarantee
termination except in certain pathelogical cases—most importantly, fairness does not “just
barely” hold (Section 5).
• We implement our algorithm in a tool called VeriFair. We show that VeriFair substantially
outperforms the state-of-the-art fairness verifier FairSqare, and can furthermore scale to
problem instances more than 106× larger than FairSqare (Section 6).

2 MOTIVATING EXAMPLE
Consider the simple classifier fjob shown on the left-hand side of Figure 1 (adapted from [Al-
barghouthi et al. 2017]). This classifier predicts whether a given candidate should be offered a
job based on two features: the ranking of the college they attended and their number of years of
work experience. For both legal and ethical reasons, we may want to ensure that fjob does not
discriminate against minorities. There are a number of ways to formalize nondiscrimination. In
this section, we show how our techniques can be applied to checking a fairness specification called
demographic parity [Calders et al. 2009]; we discuss additional fairness specifications of interest in
Section 3.2. Demographic parity is based on legal guideline for avoiding hiring discrimination is
the “80% rule” [Biddle 2006]. This rule says that the rate at which minority candidates are offered
jobs should be at least 80% of the rate at which majority candidates are offered jobs:

Yjob ≡

(
µfemale

µmale
≥ 0.8

)
,

where

µmale = Pr[offer = 1 | gender = male]
µfemale = Pr[offer = 1 | gender = female].

Then, fjob satisfies demographic parity if Yjob = true.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:4 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

Note that the demographic parity specification assumes given a distribution P of features for
job candidates, which we call a population model [Albarghouthi et al. 2017], since µmale and µfemale
are conditional expectations over this distribution. In general, a population model is specified as
a probabilistic program that takes no inputs, and returns the features (i.e., college ranking and
years of work experience) for a randomly sampled member of that population. For example, on
the right-hand side of Figure 1, we show a population model Pjob over job candidates. We refer
to Pjob | gender = male as the majority subpopulation, and Pjob | gender = female as the minority
subpopulation. In this example, male candidates have more years of experience on average than
female candidates, but they have the same college ranking on average. We discuss how population
models can be obtained in Section 7.
Given classifier fjob, demographic parity specification Yjob with population model Pjob, and a

desired confidence level ∆ ∈ R+, the goal of our verification algorithm is to check whether Yjob
holds. In particular, our algorithm estimates the fairness of f by iteratively sampling random values

Va,1, ...,Va,n ∼ Pjob | gender = a

for each a ∈ {male, female}, and then using these samples to estimate µmale and µfemale:

µ̂a =
1
n

n∑
i=1

f (Va,i).

Then, our algorithm uses µ̂male and µ̂female to estimate Yjob:

Ŷjob ≡

(
µ̂female

µ̂male
≥ 0.8

)
.

Note that Ŷjob is easy to compute; the difficulty is bounding the probability of error, namely,
γ = Pr[Ŷjob , Yjob] ∈ R+. In particular, our estimates µ̂male and µ̂female may have errors; thus, Ŷjob
may differ from the true value Yjob. It is well known that γ → 0 as the number of samples n goes to
infinity; thus, while we can never guarantee that fairness holds, we can do so with arbitrarily high
confidence. In particular, for any ∆ ∈ R+, our algorithm returns Ŷjob satisfying

Pr[Ŷjob = Yjob] ≥ 1 − ∆. (2)

The key challenge is establishing finite sample bounds on γ , and furthermore, doing so in an
adaptive way so it can collect as much data as needed to ensure that Eq. 2 holds (i.e., γ ≤ ∆). In
particular, there are two key techniques our algorithm uses to establish Eq. 2. First, our algorithm
uses an adaptive concentration inequality (from [Zhao et al. 2016]) to establish lemmas on the error
of the estimates µ̂male and µ̂female, e.g.,

Pr[|µ̂a − µa | ≤ ε] ≥ 1 − δa (3)

for a ∈ {male, female}. Standard concentration inequalities can only establish bounds of the form
Eq. 3 for a fixed number of samples n. However, our algorithm cannot a priori know how many
samples it needs to establish Eq. 2; instead, it adaptively takes new samples until it determines that
Eq. 2 holds. To enable this approach, we use adaptive concentration inequalities, which we describe
in Section 4.2.

Second, it uses the lemmas in Eq. 3 to derive a bound

Pr[Ŷjob = Yjob] ≥ 1 − γ .

We describe how our algorithm does so in Section 4.3.
Finally, our algorithm terminates once γ ≤ ∆, at which point we guarantee that the estimate Ŷjob

satisfies Eq. 2, i.e., our algorithm accurately outputs whether fairness holds with high probability. In

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:5

T ::= µZ | ...

| c | ...

| T +T

| −T

| T ·T

| T−1

S ::= T ≥ 0
| S ∧ S

| S ∨ S

| ¬S .

JµZ K = µZ

JcK = c

JX + X ′K = JX K + JX ′K

J−X K = −JX K

JX · X ′K = JX K · JX ′K

JX−1K = JX K−1

JX ≥ 0K = I[JX K ≥ 0]
JY ∧ Y ′K = JY K ∧ JY ′K

JY ∨ Y ′K = JY K ∨ JY ′K

J¬Y K = ¬JY K.

Fig. 2. Left: Specification syntax. Here, S and T are nonterminal symbols (with S being the start symbol), and

the remaining symbols are terminals. The terminal symbols µZ , ... represent the respective means of given

Bernoulli random variables Z , In our setting, Z , ... typically encode the distribution of some statistic (e.g.,

rate of positive decisions) of f for some subpopulation. The terminal symbols c, ... ∈ R represent real-valued

constants. Right: Specification semantics. Here, X ∈ L (T) and Y ∈ L (S) (where L (A) is the context-free
language generated by A). The indicator function I[C] returns true if C holds and false otherwise.

particular, our algorithm is sound and precise in a probabilistic sense. Furthermore, our algorithm
terminates with probability 1 unless the problem instance is pathelogical in one of two ways: (i)
µmale = 0 (so Yjob contains a division by zero), or (ii) fairness “just barely” holds, i.e., µfemale

µmale
= 0.8.

In our evaluation, we show that even for ∆ = 10−10, our algorithm terminates quickly on a deep
neural network benchmark—i.e., we can feasibly require that our algorithm make a mistake with
probability at most 10−10.

3 PROBLEM FORMULATION
We formalize the fairness properties that our algorithm can verify; our formulation is based on
previous work [Albarghouthi et al. 2017].

3.1 Verification Algorithm Inputs
Classification program. Our goal is to verify fairness properties for a deterministic program

f : V → {0, 1} that maps given members of a populationV (e.g., job applicants) to a single binary
output r ∈ R = {0, 1} (e.g., whether to offer the applicant a job). For example, f may be a machine
learning classifier such as a neural network. Note that f may use parameters learned from training
data; in this case, our verification algorithm operates on the output of the training algorithm. Our
verification algorithm only requires blackbox access to f , i.e., for any chosen input v ∈ V , it can
execute f on v to obtain the corresponding output r = f (v).

Population model. We assume we are given a probability distribution PV over V , which
we refer to as the population model, encoded as a probabilistic program that takes no inputs
and construct a random member V ∼ PV of the population. Furthermore, we assume that our
algorithm can sample conditional distributions PV | C , for some logical predicate C overV (i.e.,
C : V → {true, false}). For example, assumingV is discrete, our algorithm can do so using rejection
sampling—we randomly sample V ∼ PV until C (V) = true, and return this V . The predicate C is
dependent on the fairness property that we are trying to prove; in our evaluation, we show that for

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:6 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

the fairness properties that we study, the necessary predicates have sufficiently large support that
rejection sampling is reasonably efficient.

Specification language. The syntax and semantics of the specifications that we aim to verify
are shown in Figure 2. The start symbol of the grammar is S . In this grammar, the symbol µZ (where
Z is a Bernoulli random variable) represents the expected value of Z , and c ∈ R is a numerical
constant. The remainder of this grammar enables us to construct arithmetic expressions of the
expectated values µZ and the constants c . Intuitively, this specification language enables us to
encode arithmetic relationships between various conditional expectations that should hold. The
advantage of introducing a specification language is that we can flexibly verify a wide range of
fairness specifications in the same framework. As we show in Section 3.2, a number of fairness
specifications that have been proposed in the literature can be expressed in our specification
language.

3.2 Fairness Specifications
Next, we describe how three fairness specifications from the machine learning literature can be
formalized in our specification language; the best fairness specification to use is often context
specific.We discuss additional specifications that can be represented in our language in Section 7.We
first establish some notation. For any probability distribution PZ over a spaceZ with corresponding
random variable Z ∼ PZ , we let µZ = EZ∼PZ [Z] denote the expectation of Z . Recall that for a
Bernoulli random variable Z ∼ PZ , we have µZ = PrZ∼PZ [Z = 1].

Demographic parity. Intuitively, our first property says that minority members should be
classified as f (V) = 1 at approximately the same rate as majority candidates [Calders et al. 2009].

Definition 3.1. Let

Vmaj ∼ PV | A = maj
Vmin ∼ PV | A = min

be conditional random variables for members of the majority and minority subpopulations, respectively.
Let Rmaj = f (Vmaj) and Rmin = f (Vmin) be the Bernoulli random variables denoting whether the
classifier f offers a favorable outcome to a member of the majority and minority subpopulation,
respectively. Given c ∈ [0, 1], the demographic parity property is

Yparity ≡

(
µRmin

µRmaj

≥ 1 − c
)
.

In our example of hiring, the majority subpopulation is Pjob | gender = male, the minority
subpopulation is Pjob | gender = female, and the classifier fjob : R2 → {0, 1} determines whether a
candidate with the given years of experience and college rank is offered a job. Then, demographic
parity says that for every male candidate offered a job, at least 1 − c female candidates should be
offered a job.

Equal opportunity. Intuitively, our second property says that qualified members of the minority
subpopulation should be classified as f (V) = 1 at roughly the same rate as qualified members of
the majority subpopulation [Hardt et al. 2016].

Definition 3.2. Let q ∈ Q = {qual, unqual} indicate whether the candidate is qualified, and let

Vmaj ∼ PV | A = maj, Q = qual

Vmin ∼ PV | A = min, Q = qual

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:7

be conditional random variables overV representing qualified members of the majority and minority
subpopulations, respectively. Let Rmaj = f (Vmaj) and Rmin = f (Vmin) denote whether candidates Vmaj
and Vmin are offered jobs according to f , respectively. Then, the equal opportunity property is

Yequal ≡

(
µRmin

µRmaj

≥ 1 − c
)

for a given constant c ∈ [0, 1].

Continuing our example, this property says that for every job offered to a qualified male candidate,
at least 1 − c qualified female candidates should be offered a job as well.

Path-specific causal fairness. Intuitively, our third property says that the outcome (e.g., job
offer) should not depend directly on a sensitive variable (e.g., gender), but may depend indirectly
on the sensitive covariate through other mediator covariates deemed directly relevant to predicting
job performance (e.g., college degree) [Nabi and Shpitser 2018]. For simplicity, we assume that the
mediator covariateM = {0, 1} is binary, that we are given a distribution PM overM, and that the
classifier f : V ×M → {0, 1} is extended to be a function ofM.

Definition 3.3. Let

Vmaj ∼ PV | A = maj
Mmaj ∼ PM | A = maj, V = Vmaj

Rmaj = f (Vmaj,Mmaj)

be how a member of the majority subpopulation is classified by f , and let

Vmin ∼ PV | A = min
Mmin ∼ PM | A = maj, V = Vmin

Rmin = f (Vmin,Mmin)

be how a member of the minority subpopulation is classified by f , except that their mediator covariate
M is drawn as if they were a member of the majority subpopulation. Given c ∈ [0, 1], the path-specific
causal fairness property is

Ycausal ≡ (µRmin − µRmaj ≥ −c).

The key insight in this specification is how we sample the mediator variableMmin for a member
Vmin of the minority population. In particular, we sampleMmin conditioned on the characteristics
Vmin, except that we change the sensitive attribute to A = maj instead of A = min. Intuitively,Mmin
is the value of the mediator variable if Vmin were instead a member of the majority population,
but everything else about them stays the same. In our example, suppose that we have a mediator
covariate college (either yes or no) and a non-mediator covariate years_exp. Then, the path-specific
causal fairness property says that a female candidate should be given a job offer with similar
probability as a male candidate—except she went to college as if she were a male candidate (but
everything else about her—i.e., her years of job experience—stays the same). Thus, this specification
measures the effect of gender on job offer, but ignoring the effect of gender on whether they went
to college.

4 VERIFICATION ALGORITHM
We now describe our verification algorithm.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:8 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

Algorithm 1 Algorithm for verifying the given specification Y ∈ L (S). The quantity ε (δZ ,n) is
defined in Eq. 10. The rules for checking Γ ⊢ Y : (I ,γ), for I ∈ {true, false}, are shown in Figure 3.

procedure Verify(PZ,Y ,∆)
s ← 0
n ← 0
while true do

Z ∼ PZ
s ← s + Z
n ← n + 1
δZ ← ∆/JY Kδ
εZ ← ε (δZ ,n)
Γ ←

{
µZ : (s/n, εZ ,δZ)

}
if Γ ⊢ Y : (true,γ) and γ ≤ ∆ then

return true
else if Γ ⊢ Y : (false,γ) and γ ≤ ∆ then

return false

4.1 High-Level Algorithm
The intuition behind our algorithm is that for a Bernoulli random variable Z with distribution PZ ,
we can use a fixed number of random samples Z1, ...,Zn ∼ PZ to estimate µZ :

µ̂Z =
1
n

n∑
i=1

Zi . (4)

Note that no matter how many samples we take, there may always be some error ε between our
estimate µ̂Z and the true expected value µZ . Our algorithm uses adaptive concentration inequalities
to prove high-probability bounds on this error. Then, it uses these bounds to establish high-
probability bounds on the output of our algorithm—i.e., whether the fairness specification holds.
We describe each of these components in more detail in the remainder of this section.

Adaptive concentration inequalities. We can use concentration inequalities to establish high-
probability bounds on the error |µ̂Z − µZ | of our estimate µ̂Z of µZ of the form

PrZ1, ...,Zn∼PZ [|µ̂Z − µZ | ≤ ε] ≥ 1 − δ . (5)

Note that the probability is taken over the (independent) random samples Z1, ...,Zn ∼ PZ used in
the estimate µ̂Z ; when there is no ambiguity, we omit this notation.
Our algorithm uses adaptive concentration inequalities to establish bounds of the form Eq. 5.

In particular, they enable the algorithm to continue to take samples to improve its estimate µ̂Z .
Once our algorithm terminates, the adaptive concentration inequality guarantees that a bound of
the form Eq. 5 holds (for a given δ ∈ R+; then, ε is a function of δ specified by the inequality). We
describe the adaptive concentration inequalities we use in Section 4.2.

Concentration for expressions. Next, consider an expression X ∈ L (T). We can use substitute
µ̂Z for µZ in X to obtain an estimate E for JX K. Then, given that Eq. 5 holds, we show how to derive
high-probability bounds of the form

Pr[|E − JX K| ≤ ε] ≥ 1 − δ . (6)

We use the notation X : (E, ε,δ) to denote that Eq. 6 holds; we call this relationship a lemma.
Similarly, for Y ∈ L (S), we can substitute µ̂Z for µZ in Y to obtain an estimate I for JY K, and derive

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:9

high-probability bounds of the form

Pr[I = JY K] ≥ 1 − γ . (7)

Unlike Eq. 6, we can establish that I exactly equals JY K with high probability; this difference arises
because JY K ∈ {true, false} are discrete values, whereas JX K ∈ R are continuous values. We describe
inference rules used to derive these lemmas X : (E, ε,δ) and Y : (I ,γ) in Section 4.3.

Verification algorithm. Given a classifier f : V → {0, 1}, a population model PV , a specifi-
cation Y ∈ L (S), and a confidence level ∆ ∈ R+, our goal is determine whether Y is true with
probability at least 1 − ∆. For simplicity, we assume that Y only has a single subexpression of the
form µZ (where Z is a Bernoulli random variable with distribution PZ); it is straightforward to
generalize to the case whereY contains multiple such subexpressions. At a high level, our algorithm
iteratively computes more and more accurate estimates µ̂Z of µZ until µ̂Z is sufficiently accurate
such that it can be used to compute an estimate I of JY K satisfying Eq. 7. In particular, on the nth
iteration, our algorithm performs these steps:
(1) Draw a random sample Zn ∼ PZ , and update its estimate µ̂Z of µZ according to Eq. 4.
(2) Establish a lemma µZ : (µ̂Z , εZ ,δZ) using the adaptive concentration inequality (for a chosen

value of δZ).
(3) Use the inferences rules to derive a lemma Y : (I ,γ) from the lemma in the previous step.
(4) Terminate if γ ≤ ∆; otherwise, continue.

The full algorithm is shown in Algorithm 1. In the body of the algorithm, s is a running sum of the
n samples Z1, ...,Zn ∼ PZ taken so far, so µ̂Z = s

n . The variables δZ and εZ come from our adaptive
concentration inequality, described in Section 4.2. Furthermore, δZ is chosen to be sufficiently small
such that we can compute an estimate I of JY K with the desired confidence level ∆, as we describe
in Section 4.4.

4.2 Adaptive Concentration Inequalities
Concentration inequalities can be used to establish bounds of the form Eq. 5. For example, Ho-
effding’s inequality says Eq. 5 holds for δ = 2e−2nε2 (equivalently, ε =

√
1
2n log 2

δ) [Hoeffding
1963]:

PrZ1, ...,Zn∼PZ [|µ̂Z − µZ | ≤ ε] ≥ 1 − 2e−2nε
2
. (8)

Then, for any ε,δ ∈ R+, we can establish Eq. 5 by taking n sufficiently large—in particular, because
2e−2nε2 → 0 as n → ∞, so for sufficiently large n, we have δ ≤ 2e−2nε2 .
A priori, we cannot know how large n must be, since we do not know how small ε must be for

us to be able to prove or disprove the fairness specification. For example, for a specification of form
Y ≡ (µZ ≥ d), if µZ is very close to d , then we need ε to be very small to ensure that our estimate
µ̂Z is close to µZ . For example, consider the two conditions

C0 : µ̂Z − d − ε ≥ 0 (9)
C1 : µ̂Z − d + ε < 0

If C0 holds, then together with the fact that |µ̂Z − µZ | ≤ ε , we can conclude that

µZ ≥ µ̂Z − ε ≥ d,

Similarly, if C1 holds, then we can conlude that

µZ ≤ µ̂Z + ε < d,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:10 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

However, a prior, we do not know µ̂Z , so we cannot directly use these conditions to determine
how small to take ε . Instead, our algorithm iteratively samples more and more points so ε becomes
smaller and smaller (for fixed δ) until one of the two conditions C0 and C1 in Eq. 9 holds.

To implement this strategy, we have to account for multiple hypothesis testing. In particular, we
need to establish a series of bounds for the estimates µ̂ (0)Z , µ̂

(1)
Z , ... of µZ on successive iterations of

our algorithm. For simplicitly, suppose that we apply Eq. 8 to two estimates µ̂ (0)Z and µ̂ (1)Z of µZ :

Pr[|µ̂ (0)Z − µZ | ≤ ε] ≥ 1 − δ

Pr[|µ̂ (1)Z − µZ | ≤ ε] ≥ 1 − δ ,

where δ = 2e−2nε2 . The problem is that while we have established that each of the two events
|µ̂ (0)Z − µZ | ≤ ε and |µ̂ (1)Z − µZ | ≤ ε occur with high probability 1 − δ , we need for both of these
events to hold with high probability. One way we can do so is to take a union bound, in which case
we get

Pr[|µ̂ (0)Z − µZ | ≤ ε ∧ |µ̂ (1)Z − µZ | ≤ ε] ≥ 1 − 2δ .
Rather than building off of Hoeffding’s inequality, our algorithm uses adaptive concentration
inequalities, which naturally account for multiple hypothesis testing. In particular, they enable
our algorithm to continue to take samples to improve its estimate µ̂Z . Upon termination, our
algorithm has obtained J samples Zi ∼ PZ . Note that J is a random variable, since it depends on
the previously taken samples Zi , which our algorithm uses to decide when to terminate. Then,
an adaptive concentration inequality guarantees that a bound of the form Eq. 5 holds, where J
is substituted for n and ε is specified by the bound. In particular, we use the following adaptive
concentration inequality based on [Zhao et al. 2016].

Theorem 4.1. Given a Bernoulli random variable Z with distribution PZ , let {Zi ∼ PZ }i ∈N be i.i.d.
samples of Z , let

µ̂ (n)Z =
1
n

n∑
i=1

Zi ,

let J be a random variable on N ∪ {∞} such that Pr[J < ∞] = 1, and let

ε (δ ,n) =

√
3
5 · log(log11/10 n + 1) +

5
9 · log(24/δ)

n
. (10)

Then, given any δ ∈ R+, we have

Pr[|µ̂ (J)Z − µZ | ≤ ε (δ , J)] ≥ 1 − δ .

We give a proof in Appendix A.1.

4.3 Concentration for Specifications
Now, we describe how our algorithm derives estimates E for JX K (where X ∈ L (T)) and estimates I
for JY K (whereY ∈ L (S)), as well as high-probability bounds on these estimates.We use the notation
X : (E, ε,δ) to denote that E ∈ R is an estimate for JX K with corresponding high-probability bound

Pr[|E − JX K| ≤ ε] ≥ 1 − δ , (11)

where ε,δ ∈ R+. We call Eq. 11 a lemma. Similarly, we use the notation Y : (I ,γ) to denote that
I ∈ {true, false} is an estimate of JY K with corresponding high-probability bound

Pr[I = JY K] ≥ 1 − γ , (12)

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:11

µZ : (E, ε,δ) ∈ Γ
Γ ⊢ µZ : (E, ε,δ)

(random variable)
c ∈ R

Γ ⊢ (c, 0, 0)
(constant)

Γ ⊢ X : (E, ε,δ), Γ ⊢ X ′ : (E ′, ε ′,δ ′)
Γ ⊢ X + X ′ : (E + E ′, ε + ε ′,δ + δ ′)

(sum)

Γ ⊢ X : (E, ε,δ)
Γ ⊢ −X : (−E, ε,δ)

(negative)
Γ ⊢ X : (E, ε,δ), |E | > ε

Γ ⊢ X−1 : (E−1, ε
|E | ·(|E |−ε) ,δ)

(inverse)

Γ ⊢ X : (E, ε,δ), Γ ⊢ X ′ : (E ′, ε ′,δ ′)
Γ ⊢ X · X ′ : (E · E ′, |E | · ε ′ + |E ′ | · ε + ε · ε ′,δ + δ ′)

(product)

Γ ⊢ X : (E, ε,δ), E − ε ≥ 0
Γ ⊢ X ≥ 0 : (true,δ)

(inequality true)
Γ ⊢ X : (E, ε,δ), E + ε < 0

Γ ⊢ X ≥ 0 : (false,δ)
(inequality false)

Γ ⊢ Y : (I ,γ), Γ ⊢ Y ′ : (I ′,γ ′)
Γ ⊢ Y ∧ Y ′ : (I ∧ I ′,γ + γ ′)

(and)
Γ ⊢ Y : (I ,γ), Γ ⊢ Y ′ : (I ′,γ ′)
Γ ⊢ Y ∨ Y ′ : (I ∨ I ′,γ + γ ′)

(or)
Γ ⊢ Y : (I ,γ)

Γ ⊢ ¬Y : (¬I ,γ)
(not)

Fig. 3. Inference rules used to derive lemmas X : (E, ε,δ) and Y : (I ,γ) for specifications X ∈ L (T) and
Y ∈ L (S).

where γ ∈ R+. Then, let Γ = {µZ : (µ̂Z , ε,δ)} be an environment of lemmas for the subexpressions
µZ . In Figure 3, we show the inference rules that our algorithm uses to derive lemmas for expressions
X ∈ L (T) and Y ∈ L (S) given Γ. The rules for expectations µZ and constants c are straightforward.
Next, consider the rule for sums—its premise is

Pr[|E − JX K| ≤ ε] ≥ 1 − δ
Pr[|E ′ − JX ′K| ≤ ε ′] ≥ 1 − δ ′.

By a union bound, the events |E − JX K| ≤ ε and |E ′ − JX ′K| ≤ ε ′ hold with probability at least
1 − (δ + δ ′), so

|(E + E ′) − (JX K + JX ′K) | ≤ |E − JX K| + |E ′ − JX ′K|
≤ ε + ε ′.

Thus, we have lemma X +X ′ : (E + E ′, ε + ε ′,δ + δ ′), which is exactly the conclusion of the rule for
sums. The rules for products, inverses, and if-then-else statements hold using similar arguments;
the only subtlety is that for inverses, a constraint |E | > ε in the premise of the rule is needed to
ensure that that JX K , 0 with probability at least 1 − δ . The rules for conjunctions, disjunctions,
and negations also follow using similar arguments. There are two rules for inequalities X ≥ 0—one
for the case where the inequality evaluates to true, and one for the case where it evaluates to false.
Note that at most one rule may apply (but it may be the case that neither rule applies). We describe
the rule for the former case; the rule for the latter case is similar.

Note that the inequality evaluates to true as long as JX K ≥ 0. Thus, suppose that E is an estimate
of X satisfying the premise of the rule, i.e.,

Pr[|E − JX K| ≤ ε] ≥ 1 − δ
E − ε ≥ 0.

Rearranging the inequality E − JX K ≤ ε gives

JX K ≥ E − ε ≥ 0.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:12 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

JµZ Kδ = 1
JcKδ = 0

JX + X ′Kδ = JX Kδ + JX ′Kδ
J−X Kδ = JX Kδ

JX · X ′Kδ = JX Kδ + JX ′Kδ

JX−1Kδ = JX Kδ
JX ≥ 0Kδ = JX Kδ

JX ∧ X ′Kδ = JX Kδ + JX ′Kδ
JX ∨ X ′Kδ = JX Kδ + JX ′Kδ

J¬X Kδ = JX Kδ

Fig. 4. Inference rules used to compute δZ , in particular, δZ = ∆/JY Kδ , where Y ∈ L (S) is the specification
to be verified and δ ∈ R+ is the desired confidence.

Thus, JX ≥ 0K = true with probability at least 1 − δ (since the original inequality holds with
probability at least 1 − δ). In other words, we can conclude that X ≥ 0 : (true,δ), which is exactly
the conclusion of the rule for the inequality evaluating to true. In summary, we have:

Theorem 4.2. The inference rules in Figure 3 are sound.

We give a proof in Appendix A.2. As an example, we describe how to apply the inference rules
to infer whether the demographic parity specification Yparity holds. Recall that this specification is
a function of the Bernoulli random variables Rmaj and Rmin. Suppose that

µRmaj : (Emaj, εmaj,δmaj)

µRmin : (Emin, εmin,δmin),

and that |Emaj | > εmaj. Let

Eparity = Emin · E
−1
maj − (1 − c)

εparity = |Emaj |
−1 · εmin +

εmaj · (|Emin | + εmin)

|Emaj |(|Emaj | − εmaj)

Now, if Eparity − εparity ≥ 0, then Yparity : (true,δmaj + δmin), and if Eparity + εparity < 0, then
Yparity : (false,δmaj + δmin).

4.4 Choosing δZ

To ensure that Algorithm 1 terminates, we have to ensure that for any given problem instance, we
eventually either prove or disprove the given specification Y .3 More precisely, as n → ∞ (where n
is the number of samples taken so far), we must derive Γ ⊢ Y : (I ,γ) for some γ ≤ ∆ (where ∆ is the
given confidence level) and I ∈ {true, false}, with probability 1. In particular, the value γ depends
on the environment Γ = {µZ : (s/n, εZ ,δZ)}. In Γ, our algorithm can choose the value δZ ∈ R+
(which determines εZ = ε (δZ ,n) via Eq. 10). Thus, to ensure termination, we have to choose δZ so
that we eventually derive Y : (I ,γ) such that γ ≤ ∆.
In fact, γ is a simple function of δZ—each inference rule in Figure 3 adds the values of δ (or γ)

for each subexpression of the current expression, so γ equals the sum of the values of δ for each
leaf in the syntax tree of Y . Since we have assumed there is a single Bernoulli random variable Z ,
each leaf in the syntax tree has either δ = δZ (for leaves labeled µZ) or δ = 0 (for leaves labeled
c ∈ R). Thus, γ has the form γ =m · δZ for somem ∈ N. The rules in Figure 4 compute this value
m = JY Kδ—the base cases are JµZ Kδ = 1 and JcKδ = 0, and the remaining rules add together the
values ofm for each subexpression of the current expression.

As a consequence, for any ∆ ∈ R+, we can derive Y : (I ,γ) with γ ≤ ∆ from Γ by choosing
δZ = ∆/m.
3We require a technical condition on the problem instance; see Section 5.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:13

Theorem 4.3. Let (PZ,Y) be a well-defined problem instance, and let ∆ ∈ R+ be arbitrary. Let
δZ = ∆/JY Kδ , and let

Γ (n) = {µZ : (E (n), ε (δZ ,n),δZ)}

be the lemma established on the nth iteration of Algorithm 1 (i.e., using n random samples Z ∼ PZ).
Then, for any δ0 ∈ R+, there exists n0 ∈ N such that for all n ≥ n0, we have

Γ (n) ⊢ Y : (I ,γ)

where γ ≤ ∆ with probability at least 1 − δ0.

We give a proof in Appendix A.3. Note that the probability is taken over the n random samples
Z ∼ PZ used to construct E (n) . Also, note that the success of the inference is in a high-probability,
asymptotic sense—this approach is necessary since adversarial sequences of random samples
Z ∼ PZ may cause nontermination, but the probability of such adversarial samples becomes
arbitrarily small as n → ∞. Finally, we have focused on the case where there is a single Bernoulli
random variable µZ . In the general case, we use the same δZ = ∆/JY Kδ for each Bernoulli random
variable Z ; Theorem 4.3 follows with exactly the same reasoning.

Continuing our example, we describe how δRmaj and δRmin are computed for Yparity. In particular,
the inference rules in Figure 4 give JYparityKδ = 2, so it suffices to choose

δRmaj = δRmin =
∆

2
.

Recall from Section 4.3 that we actually have γ = δRmaj + δRmin , so this choice indeed suffices to
ensure that γ ≤ ∆.

5 THEORETICAL GUARANTEES
We prove that Algorithm 1 terminates with probability 1 as long as the given problem instance
satisfies a technical condition. Futhermore, we prove that Algorithm 1 is sound and precise in a
probabilistic sense.

5.1 Termination
Algorithm 1 terminates as long as it the given problem instance satisfies the following condition:

Definition 5.1. Given a problem instance consisting of an expressionW ∈ L (T) ∪ L (S) together
with a distribution PZ for each µZ occuring inW , we say the problem instance is well-defined if its
subexpressions are well-defined. IfW ≡ (X ≥ 0) orW ≡ X−1, we furthermore require that JX K , 0.

If Y contains a subexpression X−1 such that JX K = 0, then JX−1K is infinite. As a consequence,
Algorithm 1 fails to terminate since it cannot estimate of JX−1K to any finite confidence level. Next,
the constraint on subexpressions of the form X ≥ 0 is due to the nature of our problem formulation.
In particular, consider an expression X ≥ 0, where JX K = 0. In our setting, we cannot compute
JµZ K exactly since we are treating the Bernoulli random variables Z , ... as blackboxes. Therefore,
we also cannot compute JX K exactly (assuming it contains subexpressions of the form µZ). Thus,
we can never determine with certainty whether JX K ≥ 0.

Theorem 5.2. Given a well-defined problem instance, Algorithm 1 terminates with probability 1,
i.e.,

lim
n→∞

Pr[Algorithm 1 terminates] = 1,

where n is the number of samples taken so far.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:14 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

The proof of this thoerem is somewhat subtle. In particular, our algorithm only terminates if
we can prove that µ̂ (n)Z → µZ as n → ∞, where µ̂ (n)Z is the estimate of µZ established on the nth
iteration. However, we cannot use our adaptive concentration inequality in Theorem 4.1 to prove
this guarantee, since our adaptive concentration inequality assumes that our algorithm terminates
with probability 1. Thus, we have to directly prove that our estimates converge, and then use this
fact to prove that our algorithm terminates. We give a full proof in Appendix A.4.
The restriction to well-defined properties is not major—for typical problem instances, having

JX K = 0 hold exactly is very unlikely. Furthermore, this restriction to well-defined problem instances
is implicitly assumed by current state-of-the-art systems, including FairSqare [Albarghouthi et al.
2017]. In particular, it is a necessary restriction for any system that does not exactly evaluate the
expectations µZ . For example, FairSqare relies on a technique similar to numerical integration,
and can only obtain estimates µZ ∈ [E − ε,E + ε]; therefore, it will fail to terminate given an
ill-defined problem instance.

5.2 Probabilistic Soundness and Precision
Let Y ∈ L (S) be a specification, and consider a verification algorithm tasked with computing JY K.
Typically, the algorithm is sound if it only returns true when JY K = true, and it is precise if it only
returns false when JY K = false. However, because our algorithm uses random samples to evaluate
JY K, it cannot guarantee soundness or precision—e.g., adversarial sequences of samples can cause
the algorithm to fail. Instead, we need probabilistic notions of soundness and precision.

Definition 5.3. Let ∆ ∈ R+. We say a verification algorithm is ∆-sound if it returns true only if

Pr[JY K = true] ≥ 1 − ∆,

where the probability is taken over the random samples drawn by the algorithm. Furthermore, if the
algorithm takes ∆ as a parameter, and is ∆-sound for any given ∆ ∈ R+, then we say that the algorithm
is probabilistically sound.

Definition 5.4. Let ∆ ∈ R+. We say a verification algorithm is ∆-precise if it returns false only if

Pr[JY K = false] ≥ 1 − ∆

where the probability is taken over the random samples drawn by the algorithm. Furthermore, if
the algorithm takes ∆ as a parameter, and is ∆-precise for any given ∆ ∈ R+, then we say that the
algorithm is probabilistically precise.

Theorem 5.5. Algorithm 1 is probabilistically sound and probabilistically precise.

We give a proof in Appendix A.5. For ill-defined problem instances, Algorithm 1 may fail to
terminate, but nontermination is allowed by probabilistic soundness and precision.

6 EVALUATION
We have implemented our algorithm a tool called VeriFair, which we evaluate on two bench-
marks. First, we compare to FairSqare on their benchmark, where the goal is to verify whether
demographic parity holds [Albarghouthi et al. 2017]. In particular, we show that VeriFair scales
substantially better than FairSqare on every large problem instance in their benchmark (with
∆ = 10−10).
However, the FairSqare benchmark fails to truly demonstrate the scalability of VeriFair. In

particular, it exclusively contains tiny classifiers—e.g., the largest neural network in their benchmark
has a single hidden layer with just two hidden units. This tiny example already causes FairSqare
to time out. Indeed, the scalability of FairSqare depends on the complexity the internal structure

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:15

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nn

in
g

Ti
m

e R
at

io

Problem Instance

0

2,000

4,000

6,000

8,000

10,000

0 10 20 30 40

Cu
m

ul
at

iv
e R

un
ni

ng
 T

im
e

 (s
)

Number of Problem Instances

(a) (b)

Fig. 5. (a) Results for the largest problem instances from the FairSquare benchmark. The y-axis is the ratio
of the VeriFair running time to the FairSquare running time (so lower is better). The problem instances

are along the x-axis; we have sorted them from highest to lowest. The red, dashed line at y = 1 denotes
the FairSquare running time; for all instances below this line, VeriFair outperforms FairSquare. (b) The

cumulative running time of VeriFair (black, solid) and FairSquare (red, dashed). In particular, we sorted all

39 problem instances from smallest to largest (in terms of lines of code), and plot the cumulative running

time from running the first i benchmarks. The x-axis is i , and the y-axis is the running time.

of the classifier and population model, whereas the scalability of VeriFair only depends on the
time it takes to execute these models.
Thus, for our second benchmark, we use a state-of-the-art deep recurrent neural network

(RNN) designed to classify sketches [Google 2018], together with a state-of-the-art deep generative
model for randomly sampling sketches similar to those produced by humans [Ha and Eck 2017].
Together, these two deep neural networks have more than 16 million parameters, which is 5 orders
of magnitude larger than the largest neural network in the FairSqare benchmark. We show
that VeriFair scales to this benchmark, and furthermore study how its scalability depends on
various hyperparameters. In fact, FairSqare cannot even be applied to this benchmark, since
FairSqare can only be applied to straight line programs but the RNN computation involves a
possibly unbounded loop operation.

6.1 FairSquare Benchmark
We begin by comparing our tool, VeriFair, to FairSqare, a state-of-the-art fairness verification
tool. The results on this benchmark were run on a machine with a 2.2GHz Intel Xeon CPU with 20
cores and 128 GB of memory.

Benchmark. The FairSqare benchmark contains 39 problem instances. Each problem instance
consists of a classifier f : V → {0, 1}, whereV = Rd with d ∈ [1, 6], together with a population
model encoding a distribution PV overV . The classifiers include decision trees with up to 44 nodes,
SVMs, and neural networks with up to 2 hidden units. The population models include one where
the features are assumed to be independent and two Bayes net models. The goal is to check whether
demographic parity holds, taking c = 0.15 in Definition 3.1. We run VeriFair using ∆ = 10−10 (i.e.,
the probability of an incorrect response is at most 10−10).
In theory, FairSqare provides stronger guarantees than VeriFair, since FairSqare never

responds incorrectly. Intuitively, the guarantees provided by FairSqare are analogous to using
VeriFair with ∆ = 0. However, as we discuss below, because we have taken the parameters to be
so small, they have essentially no effect on the outputs of VeriFair. Also, the population models
in the FairSqare benchmark often involve conditional probabilities. There are many ways to
sample such a probability distribution. We use the simplest technique, i.e., rejection sampling; we

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:16 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

Table 1. Results from comparing VeriFair to FairSquare [Albarghouthi et al. 2017]. For each problem instance

(i.e., a classifier and population model), we show the total number of lines of code (LOC), the response of each

tool, the running time of each tool (in seconds, timed out after 900 seconds), the ratio of the running time of

VeriFair to that of FairSquare (lower is better), and for the rejection sampling strategy used by VeriFair,

the number of accepted samples, total samples, and the acceptance rate. In the ratio of running times, we

conservatively assume FairSquare takes 900 seconds to run if it times out; this ratio sometimes equals 0 due

to rounding error.

Classifier
Pop.
Model

LOC Is Fair? Running Time (s) Samples
VeriFair FairSqare VeriFair FairSqare Ratio Accepted Total Accept Rate

DT4 Ind. 17 1 1 21.2 2.1 9.9 91710 443975 20.7%
DT14 Ind. 34 1 1 120.4 4.1 29.3 365503 1768404 20.7%
DT16 Ind. 38 1 1 17.3 5.6 3.1 49095 236822 20.7%
DTα16 Ind. 42 1 1 3.1 6.4 0.5 7221 35377 20.4%
DT44 Ind. 95 1 1 33.3 19.5 1.7 68078 329859 20.6%
SVM3 Ind. 15 1 1 9.4 2.4 3.9 34304 166274 20.6%
SVM4 Ind. 17 1 1 9.6 3.5 2.7 33158 159964 20.7%
SVMα

4 Ind. 19 1 1 1.7 3.0 0.6 5437 26013 20.9%
SVM5 Ind. 19 1 1 10.7 6.4 1.7 36315 175729 20.7%
SVM6 Ind. 21 1 1 7.8 5.4 1.4 28140 136722 20.6%
NN2,1 Ind. 22 1 1 2.3 3.9 0.6 9364 45289 20.7%
NN2,2 Ind. 25 1 1 2.9 6.1 0.5 11407 55102 20.7%
NN3,2 Ind. 27 1 1 6.4 435.6 0.0 20856 100855 20.7%
DT4 B.N. 1 27 0 0 1.6 3.5 0.5 6208 29689 20.9%
DT14 B.N. 1 48 1 1 156.0 21.8 7.1 442872 2147170 20.6%
DT16 B.N. 1 51 0 0 2.4 15.3 0.2 5698 27422 20.8%
DTα16 B.N. 1 55 1 1 24.4 27.7 0.9 64691 313671 20.6%
DT44 B.N. 1 111 0 0 17.5 353.2 0.0 33750 163661 20.6%
SVM3 B.N. 1 25 0 0 3.0 4.0 0.7 10347 49845 20.8%
SVM4 B.N. 1 30 0 0 4.6 5.8 0.8 15009 72556 20.7%
SVMα

4 B.N. 1 32 1 1 5.2 10.4 0.5 16846 81355 20.7%
SVM5 B.N. 1 35 0 0 3.5 11.1 0.3 12116 58197 20.8%
SVM6 B.N. 1 40 0 0 3.0 19.0 0.2 9193 44575 20.6%
NN2,1 B.N. 1 36 1 1 2.9 57.0 0.1 10345 50183 20.6%
NN2,2 B.N. 1 39 1 1 4.8 32.7 0.1 14449 69779 20.7%
NN3,2 B.N. 1 40 1 T.O. 88.3 T.O. 0.1 308228 1489839 20.7%
DT4 B.N. 2 33 0 0 1.4 5.8 0.2 4790 23232 20.6%
DT14 B.N. 2 54 1 T.O. 190.1 T.O. 0.2 524166 2535812 20.7%
DT16 B.N. 2 57 0 0 3.1 35.4 0.1 7002 34194 20.5%
DTα16 B.N. 2 61 1 1 24.0 60.0 0.4 61027 295445 20.7%
DT44 B.N. 2 117 0 T.O. 22.1 T.O. 0.0 40841 197689 20.7%
SVM3 B.N. 2 31 0 0 4.3 8.7 0.5 14392 69596 20.7%
SVM4 B.N. 2 36 0 0 3.8 24.2 0.2 11113 53831 20.6%
SVMα

4 B.N. 2 38 1 1 5.9 22.1 0.3 18664 89394 20.9%
SVM5 B.N. 2 41 0 0 3.8 496.7 0.0 12147 58115 20.9%
SVM6 B.N. 2 42 0 0 3.9 87.8 0.0 11765 56820 20.7%
NN2,1 B.N. 2 38 1 1 2.9 52.2 0.1 9717 47162 20.6%
NN2,2 B.N. 2 41 1 1 4.1 126.4 0.0 12729 61965 20.5%
NN3,2 B.N. 2 42 1 T.O. 110.9 T.O. 0.1 387860 1880146 20.6%

discuss the performance implications below. Finally, the problem instances in the FairSqare
benchmark are implemented as Python programs. While we report results using the original Python
implementations, below we discuss how compiling the benchmarks can substantially speed up
execution.

Results. For both tools, we set a timeout of 900 seconds. We give a detailed results in Table 1.
For each problem instance, we show the running times of VeriFair and FairSqare, as well as the
ratio

running time of VeriFair
running time of FairSqare

,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:17

where we conservatively assume that FairSqare runs in 900 seconds for problem instances in
which it times out. We also show the number of lines of code and some statistics about the rejection
sampling approach we use to sample the population models.

VeriFair outperforms FairSqare on 30 of the 39 problem instances. More importantly,VeriFair
scales much better to large problem instances—whereas FairSqare times out on 4 problem
instances, VeriFair terminates on all 39 in within 200 seconds. In particular, while FairSqare
relies on numerical integration that may scale exponentially in the problem size, VeriFair relies
on sampling, which linearly in the time required to execute the population model and classifier.

In Figure 5 (a), we show results for 12 of the largest problem instances. In particular, we include
the largest two each of decision tree, SVM, and neural network classifiers, using each of the two
Bayes net population models. As can be seen, VeriFair runs faster than FairSqare on all of the
problem instances, and more than twice as fast in all but one.

Similarly, in Figure 5 (b), we plot the cumulative running time of each tool across all 39 problem
instances. For this plot, we sort the problem instances from smallest to largest based on number of
lines of code. Then, the plot shows the cumulative running time of the first i problem instances, as
a function of i . As before, we conservatively assume that FairSqare terminates in 900 seconds
when it times out. As can be seen, VeriFair scales significantly better than FairSqare—VeriFair
becomes faster than FairSqare after the first 9 problem instances, and substantially widens that
lead as the problem instances become larger.

Compiled problem instances. The running time of VeriFair depends linearly on the time
taken by a single execution of the population model and classifier. Because the benchmarks are
implemented in Python, the running time can be made substantially faster if they are compiled to
native code. To demonstrate this speed up, we manually implement two of the problem instances
in C++:
• The decision tree with 14 nodes with the independent population model; in this problem
instance, VeriFair is slowest relative to FairSqare (29.3× slower). VeriFair runs the
compiled version of this model in just 0.40 seconds, which is a 301× speed up, and more than
10× faster than FairSqare.
• The decision tree with 14 nodes with Bayes net 2 as the popluation model; in this problem
instance, VeriFair is slowest overall (190.1 seconds). VeriFair runs the compiled version of
this model in just 0.58 seconds, which is a 327× speed up.

Note that compiling problem instances would not affect FairSqare, since it translates them to
SMT formula.

Comparison of guarantees. We ran the VeriFair ten times on the benchmark; the responses
were correct on all iterations. Indeed, because we have set ∆ = 10−10, it is extremely unlikely that
the response of VeriFair is incorrect.

Rejection sampling. When the population model contains conditional probabilities, VeriFair
uses rejection sampling to sample the model. The acceptance rate is always between 20-21%. This
consistency is likely due to the fact that the models in the FairSqare benchmark are always
modeling the same population. Thus, rejection sampling is an effective strategy for the FairSqare
benchmark. Furthermore, we discuss possible alternatives to rejection sampling in Section 7.

Path-specific causal fairness. We check whether path-specific causal fairness Ycausal holds
for three FairSqare problem instances—the largest classifier of each kind using the Bayes net
2 population model. We use the number of years of education as the mediator covariate. We use
∆ = 10−10. VeriFair concludes that all of the problem instances are fair. The running time for the

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:18 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

1000

10000

100000

1000000

0.35 0.40 0.45

Ru
nn

in
g

Ti
m

e
(s

)

Parameter c

0

200

400

600

800

1.E-10 1.E-08 1.E-06 1.E-04 1.E-02 1.E+00

R
un

ni
ng

 T
im

e
(s

)

Parameter ∆

(a) (b)

Fig. 6. We plot the running time of VeriFair on theQuick Draw benchmark as a function of (a) the parameter

c , and (b) the parameter ∆. The running times in (b) are averaged over 10 runs; the running times in (a) are

reported for a single run since they were too expensive to run multiple times. In each figure, a green marker

denotes a response of “fair” and a red marker denotes a response of “unfair”. In (a), the curve diverges because

VeriFair times out when c = 0.41.

decision tree DT44 with 44 nodes is 2.47 seconds, for the SVM SVM6 with d = 6 features terminates
is 8.89 seconds, and for the neural network NN3,2 with d = 3 features and 2 neurons is 0.35 seconds.

6.2 Quick Draw Benchmark
Our next benchmark consists of a deep recurrent neural network (RNN) classifier and a deep
sequence-to-sequence variational autoencoder (VAE) population model [Ha and Eck 2017]. Recall
that VeriFair scales linearly with the running time of the classifier and population model; therefore,
VeriFair should scale to these very complex models as long as executing the model can be executed
in a reasonable amount of time. In this benchmark, we use VeriFair to verify the equal opportunity
property described in Definition 3.2. Finally, we study how the running time of VeriFair on this
benchmark depends on various problem parameters. The results on this benchmark were run on a
machine with an Intel Core i7-6700K 4GHz quad core CPU, an Nvidia GeForce GTX 745 with 4GB
of GPU memory (used to run the deep neural networks), and 16GB of memory. Note that we cannot
run FairSqare on this benchmark, since it can only handle straight-line models but recurrent
neural networks involve a loop operation.

Benchmark. The classifier in our benchmark is an RNN f : X → {0, 1}, where x ∈ X is
representation of a 256× 256 image that is a black and white sketch drawn by a human. This image
is represented as a sequence of strokes (x ,y,p), where (x ,y) is the displacementand p is a command
(pen down, pen up, or finish drawing). Each input is a drawing of one of 345 different categories
of objects, including dogs, cats, firetrucks, gardens, etc. To obtain a binary classifier, we train a
classifier to predict a binary label y ∈ {0, 1} indicating whether the input image is a drawing of a
dog. The neural network was trained on a dataset X ⊆ X containing 70K training examples, 2.5K
cross-validation examples, and 2.5K test examples; overall, 0.3% of the training images are dogs. Its
accuracy is 18.8%, which is 626× better than random. Our population model is the decoder portion
of a VAE [Ha and Eck 2017], which generates a random sequence in the form described above.

We have the country of origin for each image; we consider images from the United States to be
the majority subpopulation (43.9% of training examples), and images from other countries to be the
minority subpopulation. We train two population models: (i) a decoder dmaj trained to generate
sketches of dogs from the United States, and (ii) dmin to generate sketches of dogs from other
countries.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:19

We aim to verify the equal opportunity property. Recall that this property says that the classifier
f should not make mistakes (in particular, false negatives) much more frequently for members of
the minority class than for members of the majority class. For example, a classifier that always
responds randomly is fine, but the classifier cannot respond accurately for majority members
and randomly for minority members. In the context of the Quick Draw benchmark, this fairness
property says that the classifier should not perform worse for people from outside of the United
States. This guarantee is important for related tasks—e.g., classifiers for detecting skin cancer
from photographs [Esteva et al. 2017] and login systems based on face recognition [Simon 2009];
for example, certain face recognition systems have been shown to have more difficulty detecting
minority users than detecting majority users. As before, we use parameter c = 0.15 in the fairness
specification.

Batched samples. Typical deep learning frameworks are much more efficient when they operate
on batches of data. Thus, we batch the samples taken by VeriFair—on each iteration, it samples
1000 images Xmaj ∼ dmaj and 1000 images Xmin ∼ dmin as a batch, and computes f (Xmaj) and
f (Xmin) as a batch as well. As a consequence, Algorithm 1 may sample up to 999 more images than
needed, but we find that execution time improves significantly—sampling a single image takes
about 0.5 seconds, whereas sampling 1000 images takes about 30 seconds, for a speed up of about
17×.

Results. We ran VeriFair on our benchmark; using ∆ = 10−5, VeriFair terminates in 301
seconds and uses 14,000 samples, and using ∆ = 10−10, VeriFair terminated in 606 seconds and
uses 28,000 samples.

Varying c . Besides the running time of the classifier f and population models dmaj and dmin, the
most important factor affecting the running time of VeriFair is the value of the parameter c . In
particular, in the specification

Yequal ≡

(
µRmin

µRmaj

≥ 1 − c
)
,

as the left-hand side and right-hand side of the inequality become closer together, then we need
increasingly accurate estimates of µRmin and µRmaj to check whether the specification holds. Thus,
VeriFair needs to take a larger number of samples to confidently determine whether Yequal holds.

We ran VeriFair on with values of c near

c0 = 1 −
µRmin

µRmaj

≈ 0.41,

in particular, c ∈ {0.35, 0.36, ..., 0.45} (with ∆ = 10−5). In Figure 6 (a), we plot the running time
of VeriFair on Quick Draw as a function of c . VeriFair terminated for all choices of c except
c = 0.41, which timed out after 96 hours. For the remaining choices of c , the longest running time
was c = 0.40, which terminated after 84 hours. We also show whether VeriFair concludes that the
specification is true (green marker) or false (red marker)—VeriFair concludes that Quick Draw is
fair if c > 0.41 and unfair if c ≤ 0.40.
In practice, c is unlikely to be very close to c0. Furthermore, approaches based on numerical

integration would suffer from a similar divergence near c = c0, since their estimate of Yequal is
subject to numerical errors that must be reduced by increasing precision, which increases running
time.

Varying ∆. We study the running time of VeriFair on Quick Draw as a function of ∆, which
controls the probability that VeriFair may respond incorrectly. In particular, we ran VeriFair

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:20 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

on Quick Draw with values ∆ ∈ {10−10, 10−9, ..., 10−1} (with c = 0.15). In Figure 6 (b), we plot the
running time of VeriFair as a function of ∆. As expected, the running time increases as ∆ becomes
smaller. Even using ∆ = 10−10, the running time is only about 10 minutes. In particular, VeriFair
scales very well as a function of ∆—the running time only increases linearly even as we decrease ∆
exponentially.

7 DISCUSSION
In this section, we discuss various aspects of our algorithm.

Population models. A key input to our algorithm is the population model encoding the distri-
bution over population members. Intuitively, population models are analogous to preconditions.
Population models are required for most fairness definitions, since these definitions are typically
constraints on statistical properties of the classifier for different subpopulations. Without a popula-
tion model, we cannot reason about the distribution of outputs. Population models can easily be
obtained by fitting a density estimation model (e.g., a GAN, Bayesian network, VAE, etc.) to the
data.
An advantage of our approach compared to previous work is that we only require blackbox

access to the population model. Thus, if a population model is unavailable, our tool can actually
be run online as real population members arrive over time. In this setting, it may be possible that
an unfair model is deployed in production for some amount of time, but our tool will eventually
detect the unfairness, upon which the model can be removed.

Additional fairness specifications. While we have focused on a small number of fairness
specifications, many others have been proposed in the literature. Indeed, the exact notion of
fairness can be context-dependent; a major benefit of our approach is that it can be applied to a
wide range of specifications. For example, we can straightforwardly support other kinds of fairness
for supervised learning [Galhotra et al. 2017; Kleinberg et al. 2017; Zafar et al. 2017]. We can also
straightforwardly extend our techniques to handle multiple minority subgroups; for example, the
extension of demographic parity to a setMmin of minority subgroups is

Yparity ≡
∧

m∈Mmin

(
µRm
µRmaj

≥ 1 − c
)
,

where Rm = f (Vm) and Vm = PV | A = m. Furthermore, we can support extensions of these
properties to regression and multi-class classification; for example, for regression, an analog of
demographic parity is

Yreg ≡ |µRmaj − µRmin | ≤ c,

where f : V → [0, 1] is a real-valued function (where [0, 1] is the unit interval), Rmaj = f (Vmaj)
and Rmin = f (Vmin) are as before, and c ∈ R+ is a constant. 4 In other words, the outcomes for
members of the majority and minority subpopulations are similar on average. In the same way, we
can support extensions to the reinforcement learning setting [Wen et al. 2019]. We can also support
counterfactual fairness [Kusner et al. 2017] and causal fairness [Kilbertus et al. 2017], which are
variants of path-specific causal fairness without a mediator variable.

Another approach to fairness is individual fairness [Dwork et al. 2012], which intuitively says
that people with similar observed covariates should be treated similarly. Traditionally, this notion

4The constraint that f (V) ∈ [0, 1] is needed for our concentration inequality, Theorem 4.1, to apply.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:21

is defined over a finite set of individuals x ,y ∈ X, in which case it says:∧
V ∈V

∧
V ′∈V

∥ f (V) − f (V ′)∥1 ≤ λ · ∥V −V ′∥1 (13)

where f (x) ∈ Rk are the outcomes and λ ∈ R+ is a given constant. This finite notion is trivial
to check by enumerating over V ,V ′ ∈ V . We can check an extension to the case of continous
V ,V ′ ∈ V , except where we only want Eq. 13 to hold with high probability:

Yind ≡ (µR ≥ 1 − c),

where c ∈ R+ is a constant, and where V ∼ V , V ′ ∼ V , and

R = I
[
∥ f (V) − f (V ′)∥1 ≤ ∥V −V

′∥1
]
.

In particular, note that R is a Bernoulli random variable that indicates whether Eq. 13 holds for a
random pair V ,V ′ ∼ V . Thus, the specification Yind says that the probability that Eq. 13 holds for
random individuals V and V ′ is at least 1 − c .

Sampling algorithm. Recall that VeriFair uses rejection sampling, which we find works well
for typical fairness definitions. In particular, most definitions only condition on being a member of
the majority or minority subpopulation, or other fairly generic qualifications. These events are not
rare, so there is no need to use more sophisticated sampling techniques. We briefly discuss how our
approach compares to symbolic methods, as well as a possible approach to speeding up sampling
by using importance sampling.

First, we note that existing approaches based on symbolic methods—in particular, FairSqare;
see Figure 6 in [Albarghouthi et al. 2017]—would also have trouble scaling to specifications that
condition on rare events. The reason is that FairSqare requires that the user provides a piecewise
constant distribution P̃V that approximates the true distribution PV . Their approach performs
integration by computing regions of the input space that have high probability according to
this approximate distribution P̃V ; once an input region is chosen, it computes the actual volume
according to the true distribution PV . Thus, if the approximation P̃V is poor, then the actual volume
could be much smaller than the volume according to the approximation, so their approach would
also scale poorly.
Furthermore, if our algorithm has access to a good approximation P̃V , then we may be able to

use it to speed up sampling. In particular, suppose that we have access to a piecewise constant P̃V ,
where each piece is on a polytope Ai (for i ∈ [h]) of the input space, and the probability on Ai is
a constant pi ∈ [0, 1]. We consider the problem of sampling from PV | C , where we assume (as
in FairSqare) that the constraints C are affine. In this context, we can use P̃V to improve the
scalability of sampling by using importance sampling. First, to sample P̃V | C , we can efficiently
compute the volume of each of constrained polytope vi = Vol(Ai ∩AC), where AC is the polytope
corresponding to the constraints C [Lawrence 1991]. Next, we can directly sample V ∼ P̃V as
follows: (i) sample a random polytope according to their probabilities according to P̃V | C , i.e.,
i ∼ Categorical(p1 · v1, ...,ph · vh), and (ii) randomly sample a point V ∼ Uniform(Ai ∩ AC); the
second step can be accomplished efficiently [Chen et al. 2018]. Finally, for a random variable X
that is a function of V , we have the following identity:

EV∼PV [X | C] = EV∼P̃V

X · fPV (V)

fP̃V (V)

�����
C

,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:22 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

where fPV and fP̃V are the density functions of PV and P̃V , respectively, and where we assume
that the support of P̃V contains the support of PV . Thus, the importance sampling estimator is

µ̂X =
n∑
i=1

Xi · fPV (Vi)

fP̃V (Vi)
, (14)

for samples V1, ...,Vn and where the corresponding values of X are X1, ...,Xn . Assuming

argmax
V ∈V

X · fPV (V)

fP̃V (V)
≤ 1,

then Theorem 4.1 continues to hold for Eq. 14; in general, it is straightforward to scale X so that
the theorem applies.
One caveat is that this approach is that it requires that PV has bounded domain (since the

support of P̃V must contain the support of PV). Technically, the same is true for FairSqare; in
particular, since tails of most distributions are small (e.g., Gaussian distributions have doubly expo-
nentially decaying tails), truncating the distribution yields a very good approximation. However,
the FairSqare algorithm remains sound since its upper and lower bounds account for the error
due to truncation; thus, it converges as long as the truncation error is smaller than the tolerance ε .
Similarly, we can likely bound the error for our algorithm, but we leave this approach to future
work.

Limitations. As we have already discussed, our algorithm suffers from several limitations.
Unlike FairSqare, it is only able to provide high-probability fairness guarantees. Nevertheless, in
practice, our experiments show that we can make the failure probability vanishingly small (e.g.,
∆ = 10−10). Furthermore, our termination guarantee is not absolute, and there are inputs for which
our algorithm would fail to terminate (i.e., where fairness “just barely” holds). However, existing
tools such as FairSqare would fail to terminate on these problem instances as well. Finally, our
approach would have difficulty if the events conditioned on in the population model have very low
probability since it relies on rejection sampling.

Challenges for specifications beyond fairness. We focus on fairness properties since sampling
population models tends to be very scalable in this setting. In particular, we find that sampling
the population model is usually efficient—as above, they are often learned probabilistic models,
which are designed to be easy to sample. Furthermore, we find that the conditional statements
in the fairness specifications usually do not encode rare events—e.g., in the case of demographic
parity, we do not expect minority and majority subpopulations to be particularly rare. In more
general settings, there are often conditional sampling problems that are more challenging. For
these settings, more sophisticated sampling algorithms would need to be developed, possibly along
the lines of what we described above.
Furthermore, our specification language is tailored to fairness specifications, which typically

consist of inequalities over arithmetic formulas, and boolean formulas over these inequalities. For
other specifications, other kinds of logical operators such as temporal operators may be needed.

Finally, we note that our approach cannot be applied to verifying adversarial properties such as
robustness [Goodfellow et al. 2014], which inherently require solving an optimization problem over
the inputs of the machine learning model. In contrast, fairness properties are probabilistic in the
sense that they can be expressed as expectations over the outputs of the machine learning model.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:23

8 RELATEDWORK
Verifying fairness. The work most closely related to ours is [Albarghouthi et al. 2017], which

uses numerical integration to verify fairness properties of machine learning models including
decision trees, SVMs, and neural networks. Because they rely on constraint solving techniques (in
particular, SMT solvers), their tool is substantially less scalable than ours—whereas their tool does
not even scale to a neural network with 37 parameters (including those in the Bayes net population
model), our tool scales to deep neural networks with 16 million parameters. In contrast to their
work, our algorithm may return an incorrect result; however, in our evaluation, we show that these
events are very unlikely to happen.

Checking fairness using hypothesis testing. There has also been recent work on checking
whether fairness holds by using hypothesis testing [Galhotra et al. 2017]. There are two major
advantages of our work compared to their approach. First, they use p-values, which are asymptotic,
so they cannot give any formal guarantees; furthermore, they do not account for multiple hypothesis
testing, which can yield misleading results. In contrast, our approach establishes concrete, high-
probability fairness guarantees. Second, their approach is tailored to a single fairness definition. In
contrast, our algorithm can be used with a variety of fairness specifications (including theirs).

Fairness in machine learning. There has been a large literature attempting to devise new
fairness specifications, including demographic parity [Calders et al. 2009], equal opportunity [Hardt
et al. 2016], and approaches based on causality [Kilbertus et al. 2017; Kusner et al. 2017]. There
has also been a large literature focusing on how to train fair machine learning classifiers [Calders
and Verwer 2010; Corbett-Davies et al. 2017; Dwork et al. 2012, 2018; Fish et al. 2016; Pedreshi et al.
2008] and transforming the data into fair representations [Calmon et al. 2017; Feldman et al. 2015;
Hajian and Domingo-Ferrer 2013; Zemel et al. 2013]. Finally, there has been work on quantifying
the influence of input variables on the output of a machine learning classifier; this technique can be
used to study fairness, but does not provide any formal fairness guarantees [Datta et al. 2017]. In
contrast, our work takes fairness properties as given, and aims to design algorithms for verifying
the correctness of existing machine learning systems, which are treated as blackbox functions.

Verifying probabilistic properties. There has been a long history of work attempting to verify
probabilistic properties, including program analysis [Albarghouthi et al. 2017; Sampson et al. 2014;
Sankaranarayanan et al. 2013], symbolic execution [Filieri et al. 2013; Geldenhuys et al. 2012],
and model checking [Clarke and Zuliani 2011; Grosu and Smolka 2005; Kwiatkowska et al. 2002;
Younes et al. 2002]. Many of these tools rely on techniques such as numerical integration, which
do not scale in our setting [Albarghouthi et al. 2017]. Alternatively, abstraction interpretation has
been extended to probabilistic programs [Claret et al. 2013; Monniaux 2000, 2001a,b]; see [Gordon
et al. 2014] for a survey. However, these approaches may be imprecise and incomplete (even on
non-pathelogical problem instances).

Statistical model checking. There has been work on using statistical hypothesis tests to check
probabilistic properties [Clarke and Zuliani 2011; Grosu and Smolka 2005; Herault et al. 2006;
Sampson et al. 2014; Sankaranarayanan et al. 2013; Younes et al. 2002; Younes and Simmons 2002].
One line of work relies on a fixed sample size [Hérault et al. 2004; Sampson et al. 2014; Sen

et al. 2004, 2005]. Then, they use a statistical test to compute a bound on the probability that the
property holds. Assuming a concentration inequality such as Hoeffding’s inequality is used [Hérault

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:24 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

et al. 2004], 5 then they can obtain high-probability bounds such as ours. A key drawback is that
because they do not adaptively collect data, there is a chance that the statistical test will be able to
neither prove nor disprove the specification. Furthermore, simply re-running the algorithm is not
statistically sound, since it runs into the problem of multiple hypothesis testing [Johari et al. 2017;
Zhao et al. 2016].
An alternative approach that has been studied is to leverage adaptive statistical hypothesis

tests—in particular, Wald’s sequential probability ratio test (SPRT) [Wald 1945]. Like the adaptive
concentration inequalities used in our work, SPRT continues to collect data until the specification
is either proven or disproven [Legay et al. 2010; Younes et al. 2002; Younes and Simmons 2002, 2006;
Younes 2004]. SPRT can distinguish two hypotheses of the form

H0 ≡ µZ ≤ d0 vs. H1 ≡ µZ ≥ d1,

where Z is a Bernoulli random variable and d1 > d0. There are two key shortcomings of these
approaches. First, we need to distinguish H0 vs. ¬H0 (or equivalently, the case d0 = d1). This
limitation is fundamental to approaches based on Wald’s test—it computes a statistic S0 based on
d0 and a statistic S1 based on d1, and compares them; if d0 = d1, then we always have S0 = S1, so
the test can never distinguish H0 from H1. Second, Wald’s test requires that the distribution of the
random variables is known (but the parameters of the distribution may be unknown). While we
have made this assumption (i.e., they are Bernoulli), our techniques are much more general. In
particular, we only require a bound on the random variables. Indeed, our techniques directly apply
to the setting where Rmin = f (Vmin) and Rmaj = f (Vmaj) are only known to satisfy Rmin,Rmaj ∈ [0, 1].
In particular, Theorem 4.1 applies as stated to random variables with domain [0, 1].

Finally, for verifying fairness properties, we need to compare a ratio of means µRmin
µRmaj

rather than
a single mean µZ . Prior work has focused on developing inference rules for handling formulas in
temporal logics such as continuous stochastic logic (CSL) [Sen et al. 2004; Younes and Simmons
2002] and linear temporal logic (LTL) [Hérault et al. 2004] rather than arithmetic formulas such as
ours. The inference rules we develop enable us to do so.

Verifying machine learning systems. More broadly, there has been a large amount of recent
work on verifying machine learning systems; the work has primarily focused on verifying robust-
ness properties of deep neural networks [Bastani et al. 2016; Gehr et al. 2018; Goodfellow et al.
2014; Huang et al. 2017; Katz et al. 2017; Raghunathan et al. 2018; Tjeng and Tedrake 2017]. At a
high level, robustness can be thought of as an optimization problem (e.g., MAX-SMT), whereas
fairness properties involve integration and are therefore more similar to counting problems (e.g.,
COUNTING-SMT). In general, counting is harder than optimization [Valiant 1979], at least when
asking for exact solutions. In our setting, we can obtain high-probability approximations of the
counts.

9 CONCLUSION
We have designed an algorithm for verifying fairness properties of machine learning systems. Our
algorithm uses a sampling-based approach in conjunction with adaptive concentration inequalities
to achieve probabilistic soundness and precision guarantees. As we have shown, our implementation
VeriFair can scale to large machine learning models, including a deep recurrent neural network
benchmark that is more than six orders of magnitude larger than the largest neural network in
the FairSqare benchmark. While we have focused on verifying fairness, we believe that our
5We note that Hoeffding’s inequality is sometimes called the Chernoff-Hoeffding inequality. It handles an additive error
| µ̂Z − µZ | ≤ ε . The variant of the bound that handles multiplicative error | µ̂Z − µZ | ≤ ε)µZ is typically called Chernoff’s
inequality.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:25

approach of using adaptive concentration inequalities can be applied to verify other probabilistic
properties as well.

ACKNOWLEDGMENTS
This work was supported by ONR N00014-17-1-2699.

REFERENCES
Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V Nori. 2017. FairSquare: probabilistic verification of program

fairness. In OOPSLA.
Solon Barocas and Andrew D Selbst. 2016. Big data’s disparate impact. Cal. L. Rev. 104 (2016), 671.
Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori, and Antonio Criminisi. 2016.

Measuring neural net robustness with constraints. In Advances in neural information processing systems. 2613–2621.
Dan Biddle. 2006. Adverse impact and test validation: A practitioner’s guide to valid and defensible employment testing. Gower

Publishing, Ltd.
Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. 2009. Building classifiers with independency constraints. In ICDMW.

13–18.
Toon Calders and Sicco Verwer. 2010. Three naive Bayes approaches for discrimination-free classification. Data Mining and

Knowledge Discovery 21, 2 (2010), 277–292.
Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and Kush R Varshney. 2017.

Optimized Pre-Processing for Discrimination Prevention. In Advances in Neural Information Processing Systems. 3995–
4004.

Yuansi Chen, Raaz Dwivedi, Martin J Wainwright, and Bin Yu. 2018. Fast MCMC sampling algorithms on polytopes. The
Journal of Machine Learning Research 19, 1 (2018), 2146–2231.

Guillaume Claret, Sriram K Rajamani, Aditya V Nori, Andrew D Gordon, and Johannes Borgström. 2013. Bayesian inference
using data flow analysis. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering. ACM,
92–102.

EdmundM Clarke and Paolo Zuliani. 2011. Statistical model checking for cyber-physical systems. In International Symposium
on Automated Technology for Verification and Analysis. Springer, 1–12.

Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. 2017. Algorithmic decision making and the cost
of fairness. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 797–806.

Anupam Datta, Shayak Sen, and Yair Zick. 2017. Algorithmic transparency via quantitative input influence. In Transparent
Data Mining for Big and Small Data. Springer, 71–94.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. 2012. Fairness through awareness. In
Proceedings of the 3rd innovations in theoretical computer science conference. ACM, 214–226.

Cynthia Dwork, Nicole Immorlica, Adam Tauman Kalai, and Mark DM Leiserson. 2018. Decoupled Classifiers for Group-Fair
and Efficient Machine Learning. In Conference on Fairness, Accountability and Transparency. 119–133.

Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and Sebastian Thrun. 2017.
Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 7639 (2017), 115.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian. 2015. Certifying
and removing disparate impact. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 259–268.

Antonio Filieri, Corina S Păsăreanu, and Willem Visser. 2013. Reliability analysis in symbolic pathfinder. In Proceedings of
the 2013 International Conference on Software Engineering. IEEE Press, 622–631.

Benjamin Fish, Jeremy Kun, and Ádám D Lelkes. 2016. A confidence-based approach for balancing fairness and accuracy. In
Proceedings of the 2016 SIAM International Conference on Data Mining. SIAM, 144–152.

Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness testing: testing software for discrimination. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM, 498–510.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. 2018. AI2:
Safety and Robustness Certification of Neural Networks with Abstract Interpretation. In IEEE Symposium on Security and
Privacy.

Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. Psi: Exact symbolic inference for probabilistic programs. In CAV.
Jaco Geldenhuys, Matthew B Dwyer, and Willem Visser. 2012. Probabilistic symbolic execution. In Proceedings of the 2012

International Symposium on Software Testing and Analysis. ACM, 166–176.
Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples. In ICLR.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:26 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

Google. 2018. Recurrent Neural Networks for Drawing Classification. https://www.tensorflow.org/versions/master/tutorials/
recurrent_quickdraw. Accessed: 2018-04-15.

Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani. 2014. Probabilistic programming. In
Proceedings of the on Future of Software Engineering. ACM, 167–181.

Radu Grosu and Scott A Smolka. 2005. Monte carlo model checking. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 271–286.

David Ha and Douglas Eck. 2017. A neural representation of sketch drawings. arXiv preprint arXiv:1704.03477 (2017).
Sara Hajian and Josep Domingo-Ferrer. 2013. A methodology for direct and indirect discrimination prevention in data

mining. IEEE transactions on knowledge and data engineering 25, 7 (2013), 1445–1459.
Moritz Hardt, Eric Price, and Nathan Srebro. 2016. Equality of opportunity in supervised learning. In NIPS. 3315–3323.
Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyronnet. 2004. Approximate probabilistic model

checking. In International Workshop on Verification, Model Checking, and Abstract Interpretation. Springer, 73–84.
Thomas Herault, Richard Lassaigne, and Sylvain Peyronnet. 2006. APMC 3.0: Approximate verification of discrete and

continuous time Markov chains. In Quantitative Evaluation of Systems, 2006. QEST 2006. Third International Conference
on. IEEE, 129–130.

Wassily Hoeffding. 1963. Probability inequalities for sums of bounded random variables. Journal of the American statistical
association 58, 301 (1963), 13–30.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety verification of deep neural networks. In
International Conference on Computer Aided Verification. Springer, 3–29.

Ramesh Johari, Pete Koomen, Leonid Pekelis, and David Walsh. 2017. Peeking at a/b tests: Why it matters, and what to
do about it. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 1517–1525.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. 2017. Reluplex: An efficient SMT solver for
verifying deep neural networks. In International Conference on Computer Aided Verification. Springer, 97–117.

Niki Kilbertus, Mateo Rojas Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing, and Bernhard Schölkopf.
2017. Avoiding discrimination through causal reasoning. In Advances in Neural Information Processing Systems. 656–666.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2017. Inherent trade-offs in the fair determination of risk
scores. In ITCS.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfactual fairness. In Advances in Neural
Information Processing Systems. 4069–4079.

Marta Kwiatkowska, Gethin Norman, and David Parker. 2002. PRISM: Probabilistic symbolic model checker. In International
Conference on Modelling Techniques and Tools for Computer Performance Evaluation. Springer, 200–204.

Himabindu Lakkaraju, Jon Kleinberg, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan. 2017. The Selective Labels
Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables. In KDD.

Jim Lawrence. 1991. Polytope volume computation. Math. Comp. 57, 195 (1991), 259–271.
Axel Legay, Benoît Delahaye, and Saddek Bensalem. 2010. Statistical model checking: An overview. In International conference

on runtime verification.
David Monniaux. 2000. Abstract interpretation of probabilistic semantics. In International Static Analysis Symposium.

Springer, 322–339.
David Monniaux. 2001a. An abstract Monte-Carlo method for the analysis of probabilistic programs. In ACM SIGPLAN

Notices, Vol. 36. ACM, 93–101.
David Monniaux. 2001b. Backwards abstract interpretation of probabilistic programs. In European Symposium on Program-

ming. Springer, 367–382.
Razieh Nabi and Ilya Shpitser. 2018. Fair inference on outcomes. In AAAI, Vol. 2018.
Dino Pedreshi, Salvatore Ruggieri, and Franco Turini. 2008. Discrimination-aware data mining. In Proceedings of the 14th

ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 560–568.
Aimee Picchi. 2019. Odds of winning $1 billion Mega Millions and Powerball: 1 in 88 quadrillion. CBS News (2019).

https://www.cbsnews.com/news/odds-of-winning-1-billion-mega-millions-and-powerball-1-in-88-quadrillion
Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified defenses against adversarial examples. In ICLR.
Adrian Sampson, Pavel Panchekha, Todd Mytkowicz, Kathryn S McKinley, Dan Grossman, and Luis Ceze. 2014. Expressing

and verifying probabilistic assertions. In PLDI.
Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. 2013. Static analysis for probabilistic programs:

inferring whole program properties from finitely many paths. In PLDI. 447–458.
Koushik Sen, Mahesh Viswanathan, and Gul Agha. 2004. Statistical model checking of black-box probabilistic systems. In

International Conference on Computer Aided Verification. Springer, 202–215.
Koushik Sen, Mahesh Viswanathan, and Gul Agha. 2005. On statistical model checking of stochastic systems. In International

Conference on Computer Aided Verification. Springer, 266–280.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

https://www.tensorflow.org/versions/master/tutorials/recurrent_quickdraw
https://www.tensorflow.org/versions/master/tutorials/recurrent_quickdraw
https://www.cbsnews.com/news/odds-of-winning-1-billion-mega-millions-and-powerball-1-in-88-quadrillion

Probabilistic Verification of Fairness Properties via Concentration 118:27

Mallory Simon. 2009. HP looking into claim webcams can’t see black people. http://www.cnn.com/2009/TECH/12/22/hp.
webcams/index.html

Vincent Tjeng and Russ Tedrake. 2017. Verifying Neural Networks with Mixed Integer Programming. arXiv preprint
arXiv:1711.07356 (2017).

Leslie G Valiant. 1979. The complexity of computing the permanent. Theoretical computer science 8, 2 (1979), 189–201.
Abraham Wald. 1945. Sequential tests of statistical hypotheses. The annals of mathematical statistics 16, 2 (1945), 117–186.
Min Wen, Osbert Bastani, and Ufuk Topcu. 2019. Fairness with Dynamics. arXiv preprint arXiv:1901.08568 (2019).
Håkan LS Younes, David J Musliner, et al. 2002. Probabilistic plan verification through acceptance sampling. In Proceedings

of the AIPS-02 Workshop on Planning via Model Checking. Citeseer, 81–88.
Håkan LS Younes and Reid G Simmons. 2002. Probabilistic verification of discrete event systems using acceptance sampling.

In International Conference on Computer Aided Verification. Springer, 223–235.
Håkan LS Younes and Reid G Simmons. 2006. Statistical probabilistic model checking with a focus on time-bounded

properties. Information and Computation 204, 9 (2006), 1368–1409.
Hakan Lorens Samir Younes. 2004. Verification and Planning for Stochastic Processes with Asynchronous Events. Ph.D.

Dissertation. Pittsburgh, PA, USA.
Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi. 2017. Fairness beyond dis-

parate treatment & disparate impact: Learning classification without disparate mistreatment. In Proceedings of the 26th
International Conference onWorldWideWeb. International WorldWideWeb Conferences Steering Committee, 1171–1180.

Tal Z Zarsky. 2014. Understanding discrimination in the scored society. Wash. L. Rev. 89 (2014), 1375.
Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. 2013. Learning fair representations. In International

Conference on Machine Learning. 325–333.
Shengjia Zhao, Enze Zhou, Ashish Sabharwal, and Stefano Ermon. 2016. Adaptive Concentration Inequalities for Sequential

Decision Problems. In NIPS. 1343–1351.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

http://www.cnn.com/2009/TECH/12/22/hp.webcams/index.html
http://www.cnn.com/2009/TECH/12/22/hp.webcams/index.html

118:28 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

A PROOFS OF THEORETICAL RESULTS
We prove a number of correctness results for Algorithm 1.

A.1 Proof of Theorem 4.1
First, we have the following well-known definition, which is a key component for the adaptive
concentration inequality we use [Zhao et al. 2016].

Definition A.1. A random variable Z is d-subgaussian if µZ = 0 and

E[erZ] ≤ ed
2r 2/2

for all r ∈ R.

Theorem A.2. Suppose that Z is a 1
2 -subgaussian random variable with probability distribution

PZ . Let

µ̂ (n)Z =
1
n

n∑
i=1

Zi ,

where {Zi ∼ PZ }i ∈N are i.i.d. samples from PZ , let J be a random variable on N ∪ {∞}, let

εb (n) =

√
3
5 · log(log11/10 n + 1) + b

n

for some constant b ∈ R, and let δb = 24e−9b/5. Then,

Pr[J < ∞∧ (|µ̂ (J)Z | ≥ εb (J))] ≤ δb .

Using this result, we first prove the following slight variant of Theorem 4.1, which accounts for
the case Pr[J < ∞] < 1.

Theorem A.3. Given a Bernoulli random variable Z with probability distribution PZ , let {Zi ∼
PZ }i ∈N be i.i.d. samples of Z , let

µ̂ (n)Z =
1
n

n∑
i=1

Zi ,

let J be a random variable on N ∪ {∞}, and let

ε (δ ,n) =

√
3
5 · log(log11/10 n + 1) +

5
9 · log(24/δ)

n

for a given δ ∈ R+. Then,

Pr[J < ∞∧ (|µ̂ (J)Z − µZ | ≥ ε (δ , J))] ≤ δ .

Proof. As described in [Zhao et al. 2016], any distribution bounded in an interval of length
2d is d-subgaussian. Thus, for any Bernoulli random variable Z , the random variable Z − µZ is
1
2 -subgassian. Then, the claim follows by applying Theorem A.2 (noting that b = 5

9 · log(24/δb)). □

Note that Theorem 4.1 follows immediately from Theorem A.3 since it assumes that Pr[J < ∞] =
1, so this term can be dropped from the probability event. □

A.2 Proof of Theorem 4.2
We prove by structural induction on the derivation.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:29

Random variable. This case follows by our assumption that the initial environment Γ is correct.

Constant. This case follows by definition since a constant c satisfies JcK = c .

Sum. By assumption, |E − JX K| ≤ ε with probability at least 1 − δ , and |E ′ − JX ′K| ≤ ε ′ with
probability at least 1−δ ′. By a union bound, both of these hold with probability at least 1− (δ +δ ′).
Then,

|(E + E ′) − JX + X ′K| = |(E + E ′) − (JX K + JX ′K) |
≤ |E − JX K| + |E ′ − JX ′K|
≤ ε + ε ′.

In other words, we can conclude that X + X ′ : (E + E ′, ε + ε ′,δ + δ ′).

Negative. By assumption, |E − JX K| ≤ ε with probability at least 1 − δ . Then,

|(−E) − J−X K) | = |E − JX K| ≤ ε

In other words, we can conclude that −X : (−E, ε,δ).

Product. By assumption, |E − JX K| ≤ ε with probability at least 1 − δ , and |E ′ − JX ′K| ≤ ε ′ with
probability at least 1 − δ ′. a union bound, both of these hold with probability at least 1 − (δ + δ ′).
Then,

|E ′ − E ′ + JX ′K| = |E ′ − E ′ + JX ′K|
≤ |E ′ | + | − E ′ + JX ′K|
≤ |E ′ | + ε ′,

so

|E · E ′ − JX · X ′K|
= |E · E ′ − JX K · JX ′K|
= |E · E ′ − E · JX ′K + E · JX ′K − JX K · JX ′K|
= |E · (E ′ − JX ′K) + JX ′K · (E − JX K) |
≤ |E | · |E ′ − JX ′K| + |JX ′K| · |E − JX K|
≤ |E | · ε ′ + |JX ′K| · ε
≤ |E | · ε ′ + (|E ′ | + ε ′) · ε

= |E | · ε ′ + |E ′ | · ε + ε · ε ′.

In other words, we can conclude that X · X ′ : (E · E ′,E · ε ′ + E ′ · ε + ε · ε ′,δ + δ ′).

Inverse. By assumption, |E − JX K| ≤ ε with probability at least 1 − δ . Then,

|E | = |E − JX K + JX K|
≤ |E − JX K| + |JX K|
≤ ε + |JX K|,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:30 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

i.e., |JX K| ≥ |E | − ε , so

|E−1 − JX−1K| = |E−1 − JX K−1 |

=
�����
JX K − E
E · JX K

�����
≤

ε

|E | · |JX K|

≤
ε

|E | · (|E | − ε)
,

where the last step follows since we have assumed that |E | − ε > 0. In other words, we can conclude
that X−1 : (E−1, ε

|E | ·(|E |−ε) ,δ).

Inequality true. By assumption, |E − JX K| ≤ ε with probability at least 1 − δ , and furthermore
E − ε ≥ 0. Thus,

E − JX K ≤ ε,

or equivalently,

JX K ≥ E − ε ≥ 0.

In other words, we can conclude that X ≥ 0 : (true,δ).

Inequality false. By assumption, |E − JX K| ≤ ε with probability at least 1 − δ , and furthermore
E + ε <. Thus,

JX K − E ≤ ε,

or equivalently,

JX K ≤ E + ε < 0.

In other words, we can conclude that X ≥ 0 : (false,δ).

And. By assumption, JY K = I with probability at least 1 − δ , and JY ′K = I ′ with probability at
least 1 − δ ′. a union bound, both of these hold with probability at least 1 − (δ + δ ′). Then,

JY ∧ Y ′K = JY K ∧ JY ′K = I ∧ I ′.

In other words, we can conclude that Y ∧ Y ′ : (I ∧ I ′,δ + δ ′).

Or. By assumption, JY K = I with probability at least 1 − δ , and JY ′K = I ′ with probability at least
1 − δ ′. a union bound, both of these hold with probability at least 1 − (δ + δ ′). Then,

JY ∨ Y ′K = JY K ∨ JY ′K = I ∨ I ′.

In other words, we can conclude that Y ∨ Y ′ : (I ∨ I ′,δ + δ ′).

Not. By assumption, JY K = I with probability at least 1 − δ . Then,

J¬Y K = ¬JY K = ¬I .

In other words, we can conclude that ¬Y : (¬I ,δ). □

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:31

A.3 Proof of Theorem 4.3
First, we prove the following stronger lemma, which says that as n → ∞ (where n is the number of
samples), our algorithm eventually infers arbitrarily tight bounds on any given well-defined problem
instance. Then, Theorem 4.3 follows from the applying this lemma to the given specification Y and
γ = ∆, where ∆ ∈ R+ is the given confidence level.

Lemma A.4. Given any well-defined problem instance (PZ,X), where X ∈ L (T), and any δ ∈ R+,
let

Γ (n) = {µZ : (E (n), ε (δZ ,n),δZ)}

where

E (n) =
1
n

n∑
i=1

Zi

ε (δZ ,n) =

√
3
5 · log(log11/10 n + 1) +

5
9 · log(24/δZ)

n

δZ = δ/JX Kδ .

Intuitively, Γ (n) is the lemma established for µZ on the nth iteration of Algorithm 1. Then, for any
ε ∈ R+ and any ε0,δ0 ∈ R+, there exists n0 ∈ N such that for any n ≥ n0, with probability at least
1 − δ0, so

Γ (n) ⊢ X : (E, ε,δ)

for some E ∈ R such that |E − JX K| ≤ ε0. We are allowed to make the given values ε,δ , ε0,δ0 smaller.
Similarly, given any well-defined problem-instance (PZ,Y), where Y ∈ L (S) and any γ ∈ R+, let

Γ (n) = {µZ : (E (n), ε (δZ ,n),δZ)}

as before. Then, for any γ ∈ R+ and δ0 ∈ R+, there exists n0 ∈ N such that for all n ≥ n0, with
probability at least 1 − δ0, so

Γ (n) ⊢ Y : (JY K,γ).

Again, we are allowed to make the given values γ ,δ0 smaller.

Proof. We prove by structural induction on the inference rules in Figure 3, focusing on the
following cases of interest: random variables, inverses, and inequalities; the remaining cases follow
similarly.

Random variable. Consider the specification µZ , and let ε,δ , ε0,δ0 ∈ R+ be given. Note that as
n → ∞, we have ε (δZ ,n) → 0; furthermore, δZ = δ/JµZ Kδ = δ . Thus, it suffices to prove that as
E (n) → µZ as n → ∞ as well. To this end, let

n0 =
log(2/δ0)
2(ε0)2

.

By Hoeffding’s inequality,

Pr[|E (n) − µZ | ≤ ε0] ≥ 1 − 2e−2nε
2
0 ≥ 1 − 2e−2n0ε20 = 1 − δ0,

as claimed.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:32 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

Inverse. Consider the specification X−1, and let ε,δ , ε0,δ0 ∈ R+ be given. Because we have
assumed that the problem instance is well-defined, we must have JX K , 0. Let α = |JX K|, and let

ε̃ = min
{

ε · (α/2)2

1 + ε · (α/2)
,
α

2

}
δ̃ = δ

ε̃0 = min
{
α

4
,
ε0 · α

2

2

}
δ̃0 = δ0.

Note that δZ = δ/JX−1Kδ = δ̃/JX Kδ . Therefore, by induction, there exists n0 ∈ N such that for all
n ≥ n0, with probability at least 1 − δ̃0 = 1 − δ0, our algorithm proves the lemma

Γ (n) ⊢ X : (Ẽ, ε̃, δ̃),

where |Ẽ − JX K| | ≤ ε̃0. Then, note that
α

2
> ε̃0 ≥ |Ẽ − JX K|

≥ |JX K| − |Ẽ |

≥ α − |Ẽ |,

from which it follows that

|Ẽ | >
α

2
≥ ε̃ .

Thus, the inference rule for inverses applies, so Algorithm 1 proves the lemma

Γ (n) ⊢ X−1 :
(
Ẽ−1,

ε̃

|Ẽ |(|Ẽ | − ε̃)
, δ̃

)
.

Next, note that

ε̃ ≤
ε · (α/2)2

1 + ε · (α/2)
≤

ε · (α/2) · |Ẽ |
1 + ε · (α/2)

,

from which it follows that

ε ≥
ε̃

(α/2) · (|Ẽ | − ε̃)
≥

ε̃

|Ẽ |(|Ẽ | − ε̃)
.

Furthermore, we have δ̃ ≤ δ . Finally, note that

|Ẽ−1 − JX K−1 | =
������

Ẽ − JX K
Ẽ · JX K

������
≤

ε̃0
α2/2

≤ ε0,

which holds with probability at least δ0 ≤ δ̃0. Note that we can make ε and ε0 smaller so that

Γ (n) ⊢ X−1 : (E, ε,δ),

where E = Ẽ−1 satisfies |E − JX−1K| ≤ ε0, so the claim follows.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

Probabilistic Verification of Fairness Properties via Concentration 118:33

Inequality. Consider the specification X ≥ 0, and let γ ,δ0 ∈ R+ be given. Let α = |JX K|, and let

ε̃ =
α

3
δ̃ = γ

ε̃0 =
α

3
δ̃0 = δ0.

Note that δZ = γ/JX ≥ 0Kδ = δ̃/JX Kδ . Therefore, by induction, there exists n0 ∈ N such that for
any n ≥ n0, with probability at least 1 − δ̃0 = 1 − δ0, our algorithm proves the lemma

Γ (n) ⊢ X : (Ẽ, ε̃, δ̃),

where |Ẽ − JX K| ≤ ε̃0. Without loss of generality, assume that JX K ≥ 0 (so α = JX K). Then, note that

Ẽ ≥ JX K − ε̃

≥
2α
3

> ε̃,

so Ẽ − ε̃ ≥ 0, which implies that the inference rule for true inequalities applies. Thus, our algorithm
proves the lemma

Γ (n) ⊢ X : (true, δ̃),

where δ̃ = γ . Note that since JX K ≥ 0, we have JX ≥ 0K = true, so the claim follows. □

A.4 Proof of Theorem 5.2
To show that Algorithm 1 terminates with probability 1, it suffices to show that for any δ0 ∈ R,
there exists n0 ∈ N such that our algorithm terminates after n ≤ n0 steps with probability at least
1 − δ0. Applying Lemma A.4, we have that there exists n0 ∈ N such that with probability at least
1 − δ0, so

Γ (n) ⊢ Y : (JY K,γ),

where γ ≤ ∆, where ∆ is the confidence level given as input to Algorithm 1. Therefore, the claim
follows. □

A.5 Proof of Theorem 5.5
For simplicity, we consider the case where there is a single leaf node labeled µZ in the given
specification Y (so JY Kδ = 1); the general case is a straightforward extension. First, we claim that if
Algorithm 1 terminates and returns an incorrect response, then it must be the case that

|µ̂ (J)Z − µZ | > ε (δZ , J),

where
δZ = ∆/JY Kδ = ∆,

and J is the number of iterations of our algorithm. Suppose to the contrary; then, the lemma
µZ : (s/J , εZ (s/n, J),δZ)

in Γ on the J th iteration of our algorithm holds. By Theorem 4.2, we have Γ ⊢ Y : (I ,γ) if and only if
Pr[JY K = I] ≥ 1 − γ .

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

118:34 Osbert Bastani, Xin Zhang, and Armando Solar-Lezama

Since Algorithm 1 has terminated, then it must be the case that γ ≤ ∆. Thus, the response is correct,
which is a contradiction, so the claim follows. Then,

Pr[Algorithm 1 terminates and responds incorrectly]

≤ Pr[J < ∞∧ |µ̂ (J)Z − µZ | > ε (δZ , J)]
≤ δZ

≤ ∆.

The second inequality follows from Theorem A.3. Thus, Algorithm 1 is probabilistically sound and
precise, as claimed. □

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 118. Publication date: October 2019.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Problem Formulation
	3.1 Verification Algorithm Inputs
	3.2 Fairness Specifications

	4 Verification Algorithm
	4.1 High-Level Algorithm
	4.2 Adaptive Concentration Inequalities
	4.3 Concentration for Specifications
	4.4 Choosing Z

	5 Theoretical Guarantees
	5.1 Termination
	5.2 Probabilistic Soundness and Precision

	6 Evaluation
	6.1 FairSquare Benchmark
	6.2 Quick Draw Benchmark

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Proofs of Theoretical Results
	A.1 Proof of Theorem 4.1
	A.2 Proof of Theorem 4.2
	A.3 Proof of Theorem 4.3
	A.4 Proof of Theorem 5.2
	A.5 Proof of Theorem 5.5

