
128

Learning Abstraction Selection for Bayesian Program

Analysis

YIFAN ZHANG, Peking University, China
YUANFENG SHI, Peking University, China
XIN ZHANG

∗
, Peking University, China

We propose a learning-based approach to select abstractions for Bayesian program analysis. Bayesian program
analysis converts a program analysis into a Bayesian model by attaching probabilities to analysis rules. It
computes probabilities of analysis results and can update them by learning from user feedback, test runs,
and other information. Its abstraction heavily affects how well it learns from such information. There exists
a long line of works in selecting abstractions for conventional program analysis but they are not effective
for Bayesian program analysis. This is because they do not optimize for generalization ability. We propose a
data-driven framework to solve this problem by learning from labeled programs. Starting from an abstraction,
it decides how to change the abstraction based on analysis derivations. To be general, it considers graph
properties of analysis derivations; to be effective, it considers the derivations before and after changing the
abstraction. We demonstrate the effectiveness of our approach using a datarace analysis and a thread-escape
analysis.

CCS Concepts: • Software and its engineering→ Automated static analysis; •Mathematics of com-

puting→ Bayesian networks; • Information systems→ Probabilistic retrieval models; • Computing

methodologies→Machine learning approaches.

Additional Key Words and Phrases: Static analysis, Bayesian network, alarm ranking, machine learning for
program analysis, abstract interpretation

ACM Reference Format:

Yifan Zhang, Yuanfeng Shi, and Xin Zhang. 2024. Learning Abstraction Selection for Bayesian ProgramAnalysis.
Proc. ACM Program. Lang. 8, OOPSLA1, Article 128 (April 2024), 29 pages. https://doi.org/10.1145/3649845

1 INTRODUCTION

Abstract-interpretation-based program analyses [Cousot 1996] typically make over-approximations
and are often expressed in logical rules. This can lead to a large number of false alarms in their
results, which has a great negative impact on users’ experience. Recently, a new paradigm which
converts conventional analyses into Bayesian models was proposed to address this problem [Mangal
et al. 2015]. We refer to it as Bayesian program analysis in the paper. In this paradigm, probabilities
are attached to analysis rules to quantify their degrees of approximation. The generated reports
also come with probabilities which are used to rank them. As a result, the analysis becomes a
∗Corresponding author.

Authors’ addresses: Yifan Zhang, Key Laboratory of High Confidence Software Technologies (Peking University), Ministry
of Education; School of Computer Science, Peking University, Beijing, China, yfzhang23@stu.pku.edu.cn; Yuanfeng Shi,
Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education; School of Computer
Science, Peking University, Beijing, China, friedrich22@stu.pku.edu.cn; Xin Zhang, Key Laboratory of High Confidence
Software Technologies (Peking University), Ministry of Education; School of Computer Science, Peking University, Beijing,
China, xin@pku.edu.cn.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
2475-1421/2024/4-ART128
https://doi.org/10.1145/3649845

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

HTTPS://ORCID.ORG/0009-0005-2061-0273
HTTPS://ORCID.ORG/0000-0002-3189-2713
HTTPS://ORCID.ORG/0000-0002-1515-7145
https://doi.org/10.1145/3649845
https://orcid.org/0009-0005-2061-0273
https://orcid.org/0000-0002-3189-2713
https://orcid.org/0000-0002-1515-7145
https://doi.org/10.1145/3649845

128:2 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

Bayesian model and can improve its results by learning from various posterior information. Such
information can come from user feedback [Mangal et al. 2015; Raghothaman et al. 2018], older
versions of the program [Heo et al. 2019b], and test runs [Chen et al. 2021].

It is well-known that the choice of abstraction is crucial in balancing the trade-off between
precision and scalability of conventional program analysis. The same problem applies to Bayesian
program analysis. However, since a Bayesian program analysis is also a learning system, the choice
of abstraction additionally affects how well the analysis generalizes from posterior information.
Using a too fine abstraction may prevent posterior information from propagating to relevant
analysis results effectively. On the other hand, using a too coarse abstraction may cause posterior
information to propagate to irrelevant analysis results falsely. Since posterior information like user
labels can be expensive to obtain, often choosing an abstraction that is optimized for generalization
is more important than optimizing for precision and scalability. In other words, we want to choose
an abstraction that can produce good alarm rankings with given amounts of posterior information.

In this paper, we aim to address such a challenge. Concretely, taking learning from user feedback
as an example, our goal is to optimize the quality of the alarm ranking with the same amount
of user feedback. However, we face two major challenges to solve this problem: (1) Effectiveness.
Although there is a long line of works [Bielik et al. 2017; Grigore and Yang 2016; Hassanshahi et al.
2017; He et al. 2020; Heo et al. 2016, 2019a, 2017; Jeon et al. 2019, 2018, 2020; Jeon and Oh 2022;
Jeong et al. 2017; Kastrinis and Smaragdakis 2013; Li et al. 2022, 2018a,b, 2020; Liang and Naik
2011; Liang et al. 2011; Lu and Xue 2019; Oh et al. 2014, 2015; Peleg et al. 2016; Singh et al. 2018;
Smaragdakis et al. 2014; Tan et al. 2021, 2016, 2017; Wei and Ryder 2015; Zhang et al. 2014, 2013]
on how to select adequate abstractions for conventional analysis, they cannot apply to the setting
of Bayesian program analysis. They typically rely on a key assumption: given infinite resources,
the finer the abstraction is, the better the analysis result is. However, such an assumption breaks
due to the problem of generalizing posterior information. (2) Generality. While it is possible to
develop effective solutions for particular analysis instances, our goal is to develop a methodology
that works well for a wide range of Bayesian analyses.

To address these two challenges, we propose a data-driven approach, BinGraph, which selects
program abstractions based on general characteristics of analysis derivations. For a specific program
analysis, given a set of training programs whose true alarms are given, BinGraph identifies ab-
stractions that are optimal for generalization and tries to learn a strategy to select such abstractions
based on analysis derivation characteristics. Then given a new program to analyze, BinGraph
first runs the analysis with a certain abstraction (typically the coarsest). By observing the analysis
derivation, it decides how to modify the analysis abstraction. Compared to existing data-driven
approaches for conventional analyses [Jeon et al. 2019, 2018, 2020; Jeon and Oh 2022; Jeong et al.
2017; Oh et al. 2015], BinGraph also considers the analysis derivation after applying a candidate
abstraction modification to maximize effectiveness. In this way, our approach can be more accurate
in predicting the effect of using a certain abstraction. Our evaluation shows such a learning ap-
proach based on changes in analysis derivations incurred by alternating the abstraction is effective
in optimizing for generalization. In terms of the generality challenge, the features that BinGraph
considers are graph properties of the derivations which are analysis-agnostic. As long as we can
extract derivations graphs of a given analysis, BinGraph can apply. This is true for all existing
Bayesian program analyses as they rely on derivation graphs to perform probabilistic inference.

We have implemented BinGraph and evaluated it on the Bayesian program analysis framework
Bingo [Raghothaman et al. 2018] using two representative analyses: a datarace analysis with 4𝑁
possible abstractions and a thread-escape analysis with 2𝑁 possible abstractions on a suite of 13
Java programs of size 55-529 KLOC, where 𝑁 is the number of object allocation statements in both
analyses. We compare BinGraph to three baselines: the coarsest abstraction Base-C, the most

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

Learning Abstraction Selection for Bayesian Program Analysis 128:3

1 public class Thread1 extends Thread{

2 public static T1 global1;

3 public static T5 global2;

4 public void run(){

5 Scanner s = new Scanner(System.in);

6 switch(s.nextInt()){

7 case 1:

8 global1 = new T1(s.next()); // H1

9 global1.objA = new T2(); // H2

10 T2 a = global1.objA;

11 a.id = s.nextInt(); // E1

12 a.name = s.next(); // E2

13 break;

14 case 2:

15 global1 = new T1(s.next()); // H3

16 global1.objB = new T3(); // H4

17 T3 b = global1.objB;

18 b.id = s.nextInt(); // E3

19 b.name = s.next(); // E4

20 break;

21 case 3:

22 global1 = new T1(s.next()); // H5

23 global1.objC = new T4(); // H6

24 T4 c = global1.objC;

25 c.id = s.nextInt(); // E5

26 c.name = s.next(); // E6

27 break;

28 }

29 global2 = new T5(s.nextInt()); // H7

30 global2.objD = new T6(); // H8

31 T6 d = global2.objD;

32 d.objE = new T7(); // H9

33 T7 e = d.objE;

34 e.id = s.nextInt(); // E7

35 T1 local1 = new T1(); // H10

36 local1.id = s.nextInt(); // E8

37 T5 local2 = new T5(); // H11

38 local2.id = s.nextInt(); // E9

39 }

40 }

41 public class Thread2 extends Thread{

42 public void run(){

43 T5 global2 = Thread1.global2;

44 T6 d = global2.objD;

45 T7 e = d.objE;

46 System.out.println(e.id);

47 }

48 public static void main(String[] args){

49 new Thread1().start();

50 new Thread2().start();

51 }

52 }

Fig. 1. Code fragment of an example Java program.

precise abstraction Base-P, and Base-R, which is a abstraction with randomly selected granularity.
On average, BinGraph has 45.36%, 23.38%, and 45.64% lower inversion count (the number of pairs
of a false alarm inspected by the user before a true alarm) than these baselines, respectively.

Contributions. This paper makes the following contributions:

(1) We propose a framework BinGraph for learning abstraction selection for Bayesian program
analysis. BinGraph has a direct optimization effect on the generalization ability and is general
to apply to Bayesian program analyses with different logical rules.

(2) We show the effectiveness of BinGraph on diverse analyses applied to a suite of real-
world programs. BinGraph significantly improves the generalization ability of the Bayesian
program analyses compared to baselines.

2 MOTIVATING EXAMPLE

This section will take a thread-escape analysis on the Java code fragment in Figure 1 as an
example to explain our problem and key idea. It is synthetic code for illustration. The concrete
members of those classes are not important. Please focus on the points-to relation between fields
and objects. There are two subclasses of Thread. The run method of Thread1 allocates several
objects, and the static fields of Thread1 point to some of these objects. The runmethod of Thread2
operates on a static field of Thread1 and outputs relevant information.
There are 9 statements that the user is concerned with, labeled with E1 to E9 in the comments.

The user wants to know if the targets on which these statements operate are accessed by multiple

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

128:4 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

Input relations

FH(ℎ) : A static field may point to ℎ.
HFH(ℎ1, ℎ2) : A non-static field of ℎ1 may point to ℎ2.

EH(𝑒, ℎ) : The statement 𝑒 may operate on a non-static field of ℎ.
HL(ℎ, 𝑙) : The abstraction level for ℎ is 𝑙 .
HT(ℎ, 𝑡) : The class type of ℎ is 𝑡 .

Output relations

HX(ℎ, 𝑥) : ℎ is considered as 𝑥 during analysis.
FX(𝑥) : A static field may point to 𝑥 .

XFX(𝑥1, 𝑥2) : A non-static field of 𝑥1 may point to 𝑥2.
EX(𝑒, 𝑥) : The statement 𝑒 may operate on a non-static field of 𝑥 .
escX(𝑥) : 𝑥 may be accessed by multiple threads.
escE(𝑒) : The target of 𝑒 may be accessed by multiple threads.

Derivation rules

𝑅1 : HX(ℎ, 𝑡) :- HL(ℎ, 0),HT(ℎ, 𝑡).
𝑅2 : HX(ℎ,ℎ) :- HL(ℎ, 1)
𝑅3 : FX(𝑥) :- FH(ℎ),HX(ℎ, 𝑥) .
𝑅4 : XFX(𝑥1, 𝑥2) :- HFH(ℎ1, ℎ2),HX(ℎ1, 𝑥1),HX(ℎ2, 𝑥2) .
𝑅5 : EX(𝑒, 𝑥) :- EH(𝑒, ℎ),HX(ℎ, 𝑥) .
𝑅6 : escX(𝑥) :- FX(𝑥) .
𝑅7 : escX(𝑥2) :- escX(𝑥1), XFX(𝑥1, 𝑥2) .
𝑅8 : escE(𝑒) :- EX(𝑒, 𝑥), escX(𝑥).

Fig. 2. A simplified parametric thread-escape analysis in Datalog. Here ℎ,ℎ1, ℎ2 are allocation-site-based
objects and 𝑥, 𝑥1, 𝑥2 are objects based on allocation sites or class types.

threads.∗ Since Thread2 only operates the static field global2, only the operation target of statement
E7 is accessed by multiple threads during the actual execution of the program. We will show how a
Bayesian parametric thread-escape analysis can help the user find statement E7.

2.1 A Parametric Thread-Escape Analysis

The analysis in Datalog is shown in Figure 2, which is simplified compared to the real analysis
for exposition. The analysis is flow- and context-insensitive. Many analyses are parameterized to
allow tuning their abstractions to balance the trade-off between precision and scalability. So is the
example analysis. The parameters decide how to model various program facts in the abstraction,
which we refer to as the modeling strategies for these facts. For example, in a cloning-based pointer
analysis such as the 𝑘-object-sensitive pointer analysis [Milanova et al. 2005], each call site can
be parameterized with a 𝑘 value to decide the strategy to model the calling context associated
with it. As for the thread-escape analysis, it is parameterized by how each heap object is modeled.
There are two strategies to model an object: (1) it is considered as the same abstract object as
other objects of the same class and the same modeling strategy, or (2) it is considered as the same
abstract object as other objects that are created at the same line (allocation site) and of the same
strategy. Two objects will not be considered as the same abstract object if they adopt different
modeling strategies. There are 11 allocation sites related to the analysis, labeled with H1 to H11
in the comments. Their class types consist of T1 to T7. For each allocation site, we can model the
objects it allocates in one of these two strategies. If an allocation site adopts the first strategy, we
∗Some thread-escape analyses concernwhether certain objects are visible tomultiple threads. Here, we care about accessibility
which is more useful for downstream concurrency analyses such as datarace checkers.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

Learning Abstraction Selection for Bayesian Program Analysis 128:5

say it has an abstraction level of 0, otherwise, the abstraction level is 1. Here, an abstraction level is
the specific parameter to configure the modeling strategy for all objects created at an allocation
site. In other analyses, abstraction levels may be associated with different program elements. In
the example, we parameterize the whole abstraction used in the analysis by a Boolean vector for
simplicity, whose length is the number of allocation sites in the program. The 𝑖-th element of the
vector indicates the abstraction level of the 𝑖-th allocation site. When an allocation site adopts a
higher abstraction level, the abstraction becomes more precise, but it may lead to less scalable. This
parametric setup is used in conventional analysis to balance precision/scalability trade-offs.
Concretely, relation HL encodes the abstraction, and HX encodes which abstract object that

objects at an allocation site are modeled as. Rules 𝑅1 and 𝑅2 describe how to compute HX from HL.
Besides HL, other input relations encode points-to information that is computed by an allocation-
site-based pointer analysis. Rules 𝑅3, 𝑅4, and 𝑅5 lift them to use the appropriate abstract objects
based on HX. Finally, rules 𝑅6, 𝑅7 and 𝑅8 describe the main logic of the analysis: (1) if an object is
assigned to a static field, it escapes;† (2) if the field of an escaped object points to an object, the
latter object also escapes. A Datalog inference engine takes these rules and the input relations
(from the result of earlier analyses of the Java code fragment), and keeps deriving output tuples
until no more output tuples can be derived. The rules over-approximate and can produce false
alarms. The approximations come from (1) heap abstraction where multiple concrete objects at
runtime are abstracted as one abstract object, and (2) the fact that if an object is reachable from a
static field, it may not be accessed by multiple threads (e.g., the program is single-threaded). We
explain (1) more using an example. Consider an abstract object 𝑂 which consists of two concrete
objects 𝑜1 and 𝑜2. Suppose 𝑜1 is pointed by a static field, and 𝑜2 does not escape. Then according to
𝑅6, 𝑂 escapes which includes 𝑜2, which over-approximates. Suppose instruction 𝑒 only accesses 𝑜2,
then according to 𝑅8, 𝑒 accesses an escaped object, which again over-approximates. The argument
holds similarly for 𝑅7.

When an abstraction is given, we can visualize all the input tuples, derived tuples, and the ground
clauses (i.e., rule instances) involved in deriving these tuples as a directed graph. We refer to such
tuples and rule instances as the analysis derivation for an analysis run, and the corresponding graph
as the derivation graph. Figure 3 shows the derivation graphs under three different abstractions.
In these graphs, vertices that are not wrapped in boxes represent relevant ground clauses. For
example, 𝑅7 (H1, H2) represents one instance of rule 𝑅7 involving elements H1 and H2. Vertices that
are wrapped in boxes represent tuples. The ones with white backgrounds represent derived tuples
while the ones with grey backgrounds represent input tuples. In particular, vertices with double
frames represent alarm tuples. For each abstraction, the analysis gives 7, 9, and 8 alarms respectively,
of which only escE(E7) is a true alarm. The more precise the abstraction, the fewer false alarms
the analysis based on it will generate. However, it is difficult for the user to find the true alarm
quickly even using the most precise abstraction. We next show how Bayesian program analysis
helps the user find the true alarm faster.

2.2 A Parametric Bayesian Program Analysis and the Abstraction Selection Problem

We first introduce Bayesian program analysis briefly. It transforms the analysis derivation to a
probabilistic model, incorporates posterior information, calculates the probability of each alarm
being true, and displays the highest one to the user. The user checks whether this alarm is true
and feeds it back. Then, using the feedback as posterior information, the probability is calculated
again and the interaction continues. We refer to the process of updating probabilities of alarms
based on posterior information as generalization, and the ability to produce good alarm rankings

†Thread objects also escape. For simplicity, we do not consider them in the example.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

128:6 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

FX(H1)

𝑅6 (H1)

escX(H1)XFX(H1, H2)

𝑅7 (H1, H2)

escX(H2)EX(E1, H2)

𝑅8 (E1, H2)

escE(E1)

EX(E2, H2)

𝑅8 (E2, H2)

escE(E2)

FX(H3)

𝑅6 (H3)

escX(H3)XFX(H3, H4)

𝑅7 (H3, H4)

escX(H4)EX(E3, H4)

𝑅8 (E3, H4)

escE(E3)

EX(E4, H4)

𝑅8 (E4, H4)

escE(E4)

FX(H5)

𝑅6 (H5)

escX(H5)XFX(H5, H6)

𝑅7 (H5, H6)

escX(H6)EX(E5, H6)

𝑅8 (E5, H6)

escE(E5)

EX(E6, H6)

𝑅8 (E6, H6)

escE(E6)

FX(H7)

𝑅6 (H7)

escX(H7) XFX(H7, H8)

𝑅7 (H7, H8)

escX(H8) XFX(H8, H9)

𝑅7 (H8, H9)

escX(H9)

EX(E7, H9)

𝑅8 (E7, H9) escE(E7)

(a) Abstraction 𝑆1, represented as 11111111111.

FX(T1)

𝑅6 (T1)

escX(T1)EX(E8, T1)

𝑅8 (E8, T1)

escE(E8)

XFX(T1, T2) 𝑅7 (T1, T2)

escX(T2)EX(E1, T2)

𝑅8 (E1, T2)

escE(E1)

EX(E2, T2)

𝑅8 (E2, T2)

escE(E2)

XFX(T1, T3) 𝑅7 (T1, T3)

escX(T3)EX(E3, T3)

𝑅8 (E3, T3)

escE(E3)

EX(E4, T3)

𝑅8 (E4, T3)

escE(E4)

XFX(T1, T4) 𝑅7 (T1, T4)

escX(T4)EX(E5, T4)

𝑅8 (E5, T4)

escE(E5)

EX(E6, T4)

𝑅8 (E6, T4)

escE(E6)

FX(T5)

𝑅6 (T5)

escX(T5)XFX(T5, T6)

𝑅7 (T5, T6)

escX(T6)XFX(T6, T7)

𝑅7 (T6, T7)

escX(T7)EX(E7, T7)

𝑅8 (E7, T7)

escE(E7)

EX(E9, T5) 𝑅8 (E9, T5) escE(E9)

(b) Abstraction 𝑆2, represented as 00000000000.

FX(T1)

𝑅6 (T1)

escX(T1)EX(E8, T1)

𝑅8 (E8, T1)

escE(E8)

XFX(T1, T2) 𝑅7 (T1, T2)

escX(T2)EX(E1, T2)

𝑅8 (E1, T2)

escE(E1)

EX(E2, T2)

𝑅8 (E2, T2)

escE(E2)

XFX(T1, T3) 𝑅7 (T1, T3)

escX(T3)EX(E3, T3)

𝑅8 (E3, T3)

escE(E3)

EX(E4, T3)

𝑅8 (E4, T3)

escE(E4)

XFX(T1, T4) 𝑅7 (T1, T4)

escX(T4)EX(E5, T4)

𝑅8 (E5, T4)

escE(E5)

EX(E6, T4)

𝑅8 (E6, T4)

escE(E6)

FX(H7)

𝑅6 (H7)

escX(H7)XFX(H7, T6)

𝑅7 (H7, T6)

escX(T6)XFX(T6, T7)

𝑅7 (T6, T7)

escX(T7)EX(E7, T7)

𝑅8 (E7, T7)

escE(E7)

(c) Abstraction 𝑆3, represented as 00000010000

Fig. 3. The derivation graphs of the analysis in Figure 2 applying to the code fragment in Figure 1 under the

three abstractions. Since the origin derivation graph is too huge to display, only derivation rules 𝑅6 to 𝑅8 are
displayed and output relations of derivation rules 𝑅3 to 𝑅5 are treated as input relations. The dotted edges are

just for display purposes and are not different from other edges.

with a given amount of posterior information as the generalization ability of a Bayesian program
analysis. In the scenario of interactive alarm resolution, the stronger the generalization ability is,
the more true alarms will be ranked first with the same amount of user feedback, or the less user

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

Learning Abstraction Selection for Bayesian Program Analysis 128:7

Table 1. The probability of each alarm before and after user feedback based on the abstraction 𝑆1.

(a) Pr(𝑥)

Rank Prob. Alarm

1 0.857 escE(E1)
1 0.857 escE(E2)
1 0.857 escE(E3)
1 0.857 escE(E4)
1 0.857 escE(E5)
1 0.857 escE(E6)
7 0.815 escE(E7)

(b) Pr(𝑥 | ¬escE(E1))

Rank Prob. Alarm

1 0.857 escE(E3)
1 0.857 escE(E4)
1 0.857 escE(E5)
1 0.857 escE(E6)
5 0.815 escE(E7)
6 0.301 escE(E2)
7 0 escE(E1)

feedback is needed to identify all true alarms. To estimate the generalization ability of Bayesian
program analysis in the paper, we assume that the interaction does not stop until all true alarms
have been checked, and in practice, the user may stop at any point they want. In the example, we
use the number of rounds for the user to check all true alarms in the worst case (since there may
be some alarms with equal probability) as an evaluation metric. A lower value indicates a better
generalization ability.
Back to the example, rules 𝑅6, 𝑅7, 𝑅8 over-approximate and may derive spurious program facts.

We can quantify their imprecision by attaching probabilities to them. For simplicity, we set the
probabilities to 0.95. In practice, the probabilities can be learned from labeled programs. Following
this, a derivation graph can be converted into a Bayesian network. Specifically, each tuple and
relevant ground clause in the derivation graph is considered as a Bernoulli random variable,
representing whether the tuple or relevant ground clause holds. The relationships between adjacent
vertices on the derivation graph are expressed using conditional probabilities. Taking relevant
ground clause 𝑅7 (H1, H2) : escX(H2) :- escX(H1), XFX(H1, H2) as an example, the corresponding
conditional probabilities are:

Pr(𝑅7 (H1, H2) | escX(H1) ∧ XFX(H1, H2)) = 0.95 Pr(escX(H2) | 𝑅7 (H1, H2)) = 1
Pr(𝑅7 (H1, H2) | ¬escX(H1) ∨ ¬XFX(H1, H2)) = 0 Pr(escX(H2) | ¬𝑅7 (H1, H2)) = 0

Similar conditional probabilities are used for each relevant ground clause and its adjacent vertices
on the derivation graph.

The probabilities that each alarm is true can be calculated by performing marginal inference on
the Bayesian networks [Murphy et al. 1999]. They are used to rank the alarms. We take the finest
abstraction 𝑆1 as an example. The probability of each alarm being true is shown in Table 1a. The
analysis displays the most probable alarm, escE(E1), to the user. The user finds that this alarm is
false and gives negative feedback. The analysis considers it as posterior information and updates
the probability of each alarm as shown in Table 1b. The interaction continues as the user pleases.
As shown in Table 2, in the 4-th round, the user receives the true alarm. Note that even though
there can be multiple most probable alarms in each round, the user always only needs to inspect 4
alarms to find the true alarm no matter which alarm is posed. On the other hand, the user needs to
inspect all 7 alarms in the worst case using the conventional analysis.
The performance of the Bayesian analysis can be further boosted using a better abstraction.

Consider abstraction 𝑆3 where only the abstraction level of H7 that is directly related to the true
alarm is assigned to 1. Using this abstraction, the performance of the conventional analysis degrades
as it now derives 8 alarms. However, using the Bayesian analysis, the user only needs to inspect
two alarms to find the true alarm. The reason is that a more coarse abstraction can sometimes

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

128:8 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

Table 2. The alarm with the highest probability in each round based on each abstraction. Statistics after the

4-th round are not presented and they are all false alarms.

Round

𝑺1 = 11111111111 𝑺2 = 00000000000 𝑺3 = 00000010000

Prob. Alarm Prob. Alarm Prob. Alarm

1 0.857 escE(E1) 0.903 escE(E8) 0.903 escE(E8)
2 0.857 escE(E3) 0.903 escE(E9) 0.815 escE(E7)
3 0.857 escE(E5) 0.440 escE(E1) 0.440 escE(E1)
4 0.815 escE(E7) 0.418 escE(E7) 0.077 escE(E3)
· ·

correlate more false alarms together. As a result, providing feedback on a false alarm can generalize
to more false alarms. Let us take a closer look at the derivation graph under 𝑆3 in Figure 3c. In it,
all false alarms are connected but disconnected from the only true alarm. As a result, providing
negative feedback on any false alarm will decrease the probability of all the other false alarms. But
the probability of the true alarm is unaffected and therefore its rank is improved. On the other
hand, in the derivation graph under 𝑆1, most false alarms are disconnected.

Using a too coarse-grained abstraction can also be harmful. Let us consider the cheapest abstrac-
tion 𝑆2. In its derivation graph shown in Figure 3b, all alarms are connected together. So feedback
on negative alarms will also affect the probability of the true alarm. As a result, its performance is
worse than that of 𝑆3.

From the observations, we draw two key insights. First, the abstraction selection heavily affects
the Bayesian analysis’ performance. Second, due to the problem of generalization, the Bayesian
analysis’ performance does not align with that of the conventional analysis. For conventional
analyses, ignoring efficiency, more precise abstractions will not lead to worse results. However,
in this example, 𝑆3 which is an abstraction in the middle in terms of precision, is the optimum
abstraction for the Bayesian analysis in all 211 possible abstractions. This shows that the abstraction
selection problem of Bayesian analysis is fundamentally different from that of conventional analysis,
and we need new techniques.

2.3 Our Approach

Figure 4 shows the workflow of our approach to this problem, BinGraph. BinGraph is a learning-
based approach. Let us focus on its online part for now. Starting from the coarsest abstraction
(𝑆2 in the example), it tries to refine the abstraction iteratively. Although in the example the
abstraction level can only be a Boolean value, in general, it can be a natural number. Further, the
parameterization may not be associated with allocation sites in other analyses, but with program
elements such as methods and variables. We refer to these program elements as abstraction points.
Raising the abstraction level for abstraction points makes the abstraction more precise. This is a
very common setting in conventional analysis. For example, the abstraction level is the degree of
context-sensitivity for each call site in parametric 𝑘-object-sensitive pointer analysis [Milanova
et al. 2005]. Moreover, for each abstraction point with a certain abstraction level, a parameter tuple
is included in the input. For example, if the abstraction level for H1 is 0, then the parameter tuple is
HL(H1, 0). If the abstraction level for H1 is 1, then the parameter tuple is HL(H1, 1).
In each iteration, BinGraph decides to raise the abstraction level of each abstraction point by

one or keep it unchanged. The number of iterations is the same as the maximum abstraction level
(only one in the example). As a learning-based approach, BinGraph characterizes the impact of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

Learning Abstraction Selection for Bayesian Program Analysis 128:9

Static
analyzer

Inputs
Outputs

Rules

Program to be
analyzed

Abstraction 1

Level 0
Level 0
Level 0

Characteristics in two
derivation graphs

Abstraction 2

Level 0
Level 1
Level 0

Final
abstraction

Level 2
Level 3
Level 3

Training
programs

Learned
strategy

Offline Part
of BinGraph

Final derivation
graph

Bayesian
network

User

Labeled
alarms

Ranked
alarmsBayesian Program Analysis

Online Part
of BinGraph

Fig. 4. Overview of framework BinGraph for learning abstraction selection for Bayesian program analysis.

raising the level for each abstraction point, then determines whether to raise it based on the learned
strategy.
To obtain Effectiveness, BinGraph considers two derivation graphs when characterizing a pa-

rameter. The first one is the derivation graph under the current abstraction (𝑆2 in the example).
Another one is the derivation graph under the abstraction after overall refinement (i.e., raising
the abstraction level for each abstraction point by one, corresponding to 𝑆1 in the example). The
analyzed information under a coarse abstraction may reflect relevant properties when using a more
precise abstraction in conventional analysis. This is mainly based on that the finer the abstraction
is, the better the analysis result is. Since this assumption does not hold for Bayesian analysis, only
using information under a coarse abstraction is unable to accurately predict the effect of analysis
under a more precise abstraction. Therefore, using both derivation graphs under two abstractions
ensures that the abstraction is made more beneficial to analysis results in each iteration.
To obtain Generality, BinGraph only considers derivation graph properties that are related to

parameter tuples (HL(𝑥,𝑦)) in the example). While BinGraph can be configured with different
graph properties, given a parameter tuple, it uses three property types in the experiment: (1) the
count of reachable vertices, (2) the average of shortest distance to reachable vertices, and (3) the
count of vertices with shortest distance ≤ 𝑘 . Note that these properties are only relevant to the
derivation graph and not to the semantics of the analysis, so they can be applied to any type of
Bayesian program analysis. Moreover, adding other property types is also supported in BinGraph.
The intuition behind choosing these three kinds of features is that they reflect the potential impact
of refining parameter tuples on information propagation in a Bayesian network:

(1) The count of reachable vertices. It reflects the number of vertices that are potentially
affected by refining a parameter tuple. In other words, it reflects the overall influence of
refining the tuple on the Bayesian network.

(2) The average of shortest distance to reachable vertices. Since the impact on each vertex in
the Bayesian network becomes weaker when the distance from the parameter tuple becomes
farther, this feature reflects the average impact on reachable vertices of refining the parameter
tuple.

(3) The count of vertices with shortest distance ≤ 𝑘 . This feature reflects the potential
influence to a certain subgraph. In other words, it reflects the number of affected vertices
within a certain distance. Moreover, irrelevant to information propagation, this feature can
capture different subgraph patterns within a given radius, which in turn can be used to

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

128:10 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

Table 3. Properties in two derivation graphs. Note that properties are a subset of those used in experiments,

and the types and number of properties can be arbitrarily set in actual use.

Property type HL(H1, 0) HL(H1, 1) Ratio

The count of reachable vertices 35 13 0.371
The average of shortest distance to reachable vertices 4.114 4.462 1.085

The count of vertices with shortest distance ≤ 5 18 8 0.444

HL(H1, 0)

𝑅1 (H1, T1)

HX(H1, T1)

𝑅3 (T1)

FX(T1)

𝑅6 (T1)

escX(T1)

𝑅5 (E8, H1, T1)

EX(E8, T1)

𝑅8 (E8, T1)

escE(E8)

𝑅4 (H1, H2, T1, T2) XFX(T1, T2) 𝑅7 (T1, T2) escX(T2)

𝑅8 (E1, T2)

escE(E1)

𝑅8 (E2, T2)

escE(E2)

𝑅4 (H3, H4, T1, T3) XFX(T1, T3) 𝑅7 (T1, T3) escX(T3)

𝑅8 (E3, T3)

escE(E3)

𝑅8 (E4, T3)

escE(E4)

𝑅4 (H5, H6, T1, T4) XFX(T1, T4) 𝑅7 (T1, T4) escX(T4)

𝑅8 (E5, T4)

escE(E5)

𝑅8 (E6, T4)

escE(E6)

(a) The derivation graph based on 𝑆2 and the vertex HL(H1,0).

HL(H1, 1)

𝑅2 (H1)

HX(H1, H1)

𝑅3 (H1)

FX(H1)

𝑅4 (H1, H2)

XFX(H1, H2) 𝑅7 (H1, H2) escX(H2)

𝑅8 (E1, H2)

escE(E1)

𝑅8 (E2, H2)

escE(E2)

(b) The derivation graph based on 𝑆1
and the vertex HL(H1,1).

Fig. 5. The derivation graphs based on 𝑆2 and 𝑆1. Only reachable vertices of parameter tuples are displayed.

identify parameter tuples that need to be refined. In our experiment, we have ten features of
this kind where 𝑘 = 1, 2, . . . , 10.

We did not design these features specifically for the analyses in the paper but believe they are
general features that reflect the impact of information propagation. However, there is space for
carefully engineering features for a specific analysis to achieve even better performance.
We take the part related to H1 as an example to explain BinGraph. BinGraph calculates the

properties of HL(H1, 0) in the derivation graph under 𝑆2 and the properties of HL(H1, 1) in graph
under 𝑆1. Here, we consider three properties which are shown in Table 3, where only one distance
threshold is considered for the third property for simplicity. Figure 5 shows the subgraphs that are
relevant to compute these properties. The actual feature vector is a three-dimensional real vector,
each element of which is a ratio between a property on the original graph and its counterpart
on the refined graph. Table 3 shows these values for H1. Following this approach, H3 and H5
have the same characteristic (0.371, 1.085, 0.444) as H1, while H7 has the different characteristic
(0.882, 0.940, 0.778). The strategy learned by BinGraph is represented as a set of three-dimensional
cubes: only parameter tuples whose feature values fall into them will be refined. For example,
suppose, by training on similar programs, BinGraph learns a strategy that is represented by one
cube [0.8, 1] × [0.9, 1] × [0.7, 1]. Using this strategy, BinGraph is able to separate H7 from other
allocations. Its allocation site is precisely what we need to raise the abstraction level to obtain the
optimum abstraction 𝑆3. We will go into more detail about the online and offline parts of BinGraph
in Section 4.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

Learning Abstraction Selection for Bayesian Program Analysis 128:11

(variables) V = {ℎ1, 𝑥2, . . . }
(constants) D = {E1, H1, 0, 1, . . . }
(relations) R = {HFH, escE, . . . }
(literals) L = R × (D ∪ V)∗ = {HFH(ℎ1, ℎ2),HL(ℎ, 0), . . . }
(tuples) T = R × D∗ = {HFH(H1, H2),HL(H1, 0), . . . }
(clauses) C = L × L∗ = {[escX(𝑥2) :- escX(𝑥1), XFX(𝑥1, 𝑥2)], . . . }

Fig. 6. Auxiliary definitions and notations of Datalog.

𝐹𝑅, 𝑓𝑐 ∈ 𝒫(T) → 𝒫(T)
𝐹𝑅 (𝑇) = 𝑇 ∪ {𝑓𝑐 (𝑇) | 𝑐 ∈ 𝑅}

𝑓[𝑙0:-𝑙1,...,𝑙𝑛] (𝑇) = {𝜎 (𝑙0) | 𝜎 (𝑙𝑖) ∈ 𝑇 for 1 ≤ 𝑖 ≤ 𝑛, 𝜎 ∈ 𝚺}

Fig. 7. Semantics of Datalog.

3 PRELIMINARIES

3.1 Datalog Syntax and Semantics

A Datalog program D = (𝐼 ,𝑂, 𝑅) consists of input relations 𝐼 ⊆ R, output relations 𝑂 ⊆ R and
derivation rules 𝑅 ⊆ C. The auxiliary definitions and notations are shown in Figure 6. A substitution
function 𝜎 ∈ Σ = V → D replaces a variable with a constant. We also abuse its notation so it
applies to a literal by replacing all variables in the literal with constants according to the function.
In other words, for a literal 𝑙 = 𝑟 (𝑎1, 𝑎2, . . . , 𝑎𝑛), 𝜎 (𝑙) = 𝑟 (𝑏1, 𝑏2, . . . , 𝑏𝑛) where 𝑏𝑖 = 𝑎𝑖 if 𝑎𝑖 ∈ D else
𝑏𝑖 = 𝜎 (𝑎𝑖). The output tuples of the Datalog program D with the input tuples 𝑇0 ⊆ T is defined
as [[D,𝑇0]] = lfp(𝐹𝑅,𝑇0). Here, 𝐹𝑅 computes output tuples by applying rules in 𝑅 to a given set of
tuples for one round. In other words, let 𝑇 be the output tuples a Datalog program computes: the
program initially makes 𝑇 ← 𝑇0 and then keeps making 𝑇 ← 𝐹𝑅 (𝑇) until 𝑇 = 𝐹𝑅 (𝑇), at which
point 𝑇 is [[D,𝑇0]]. Figure 7 shows the relevant definitions.

3.2 Parametric Datalog Program Analysis

We now turn to Datalog programs that implement parametric program analyses. Compared to a
standard Datalog program, its input now consists of two parts: (1) a set of tuples that are extracted
from a given program 𝑃 ∈ P, (2) a set of tuples that encode abstraction parameters. For simplicity,
we omit the first part and assume a program 𝑃 is given. While the form of the abstraction family
varies, the specific form we consider is parameterized by an array of natural numbers. Such a form
can encode rich ways to parameterize an analysis, including context sensitivity, lengths of access
paths, number of unrollings of a loop, and others. Typically, the length of such an array varies across
programs and each element is associated with a program fact such as an allocation site. We refer to
such program facts as abstraction points, and the set of all abstraction points in a given program 𝑃

as an abstraction point set AS ⊂ D. We refer to the number associated with an abstraction point as
its abstraction level. We use AL to denote the allowed maximum abstraction level. The abstraction,
or the analysis’s configuration is defined as 𝑆 ∈ AS→ {0, 1, . . . ,AL}. So there are total (AL + 1) |AS |
possible abstractions. Specifically, we define S0 as the coarsest abstraction such that S0 (𝑥) = 0
holds for 𝑥 ∈ AS. We generate parameter tuples using function AI ∈ D × N→ T which maps an
abstraction point and its level to a tuple. The output tuples based on the abstraction 𝑆 are defined
as Output(𝑆) = [[D, {AI(𝑥, 𝑆 (𝑥)) | 𝑥 ∈ AS}]].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

128:12 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

Among the output tuples, we use 𝑞 ∈ R to denote a query relation that represents alarms. The
output alarms is defined as Alarms(𝑆) = {𝑡 | 𝑡 = 𝑞(𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ Output(𝑆)]}. Typically, a
higher abstraction level leads to a more precise and expensive abstraction. Formally, for a program
𝑃 , abstractions 𝑆 and 𝑆 ′, if 𝑆 (𝑥) ≤ 𝑆 ′ (𝑥) holds for any 𝑥 ∈ AS, then Alarms(𝑆) ⊇ Alarms(𝑆 ′).

As a result, a parametric Datalog program analysis can defined as A = (D, 𝑞,AS,AL,AI).

Example 3.1. Consider the parametric Datalog analysis A = (D, 𝑞,AS,AL,AI) shown in Sec-
tion 2 applying to the program 𝑃 shown in Figure 1: D is shown in Figure 2; 𝑞 is the relation
escE; AS is the set of allocation sites {H1, H2, . . . , H11}; AL is equal to 1; AI(𝑥,𝑦) = HL(𝑥,𝑦)
where 𝑥 ∈ AS and 𝑦 ∈ {0, 1}; tuples in FH, HFH, and EH are the non-parameter input
tuples. For three abstractions we presented in the example, 𝑆1 (𝑥) = 1 holds for 𝑥 ∈ AS,
𝑆2 = S0, 𝑆3 (𝑥) = 0 holds for 𝑥 ∈ AS − {H7} and 𝑆3 (H7) = 1. Taking 𝑆1 as an example,
Output(𝑆1) = {FX(H1), XFX(H1, H2), escX(H1), escE(E1), . . . } is the set of all tuples in output
relations HX, FX, XFX, EX, escX and escE. Alarm(𝑆1) = {escE(E1), escE(E2), . . . , escE(E7)} is
the set of tuples representing alarms. Since 𝑆2 (𝑥) ≤ 𝑆3 (𝑥) ≤ 𝑆1 (𝑥) holds for any 𝑥 ∈ AS(𝑃),
Alarms(𝑆2) ⊇ Alarms(𝑆3) ⊇ Alarms(𝑆1) holds.

3.3 Parametric Bayesian Program Analysis

We only introduce the Bayesian program analysis using user feedback as posterior information
in this part. A parametric Bayesian program analysis is based on a parametric Datalog program
analysis A = (D, 𝑞,AS,AL,AI). We assume abstraction 𝑆 is used when analyzing program 𝑃 . We
next explain how to convert a Bayesian analysis into a probabilistic graphical model to compute
the probabilities of the alarms. A ground clause is a clause that does not involve any variable. We
refer to a ground clause that is involved in the analysis derivation as a relevant ground clause.
Formally, a relevant ground clause is ([𝑙0 :- 𝑙1, . . . , 𝑙𝑛], 𝑡0, 𝑡1, . . . , 𝑡𝑛) ∈ C × T∗ such that it satisfies
𝑡𝑖 ∈ Output(𝑆) and there exists a function 𝜎 ∈ 𝚺 that 𝜎 (𝑙𝑖) = 𝑡𝑖 holds. The set of all relevant
ground clauses is defined as Ground(𝑆). The derivation graph is defined as Graph(𝑆) = (𝑉 , 𝐸). It
is a directed graph and 𝑉 = Output(𝑆) ∪ Ground(𝑆). For each 𝑖 = (𝑐, 𝑡0, 𝑡1, . . . , 𝑡𝑛) ∈ Ground(𝑆),
there exist 𝑛 + 1 directed edges (𝑡1, 𝑖), . . . , (𝑡𝑛, 𝑖), (𝑖, 𝑡0) in 𝐸. A derivation graph with the above
definition may contain cycles, which can be problematical for efficient inference. Following previous
works [Chen et al. 2021; Heo et al. 2019b; Kim et al. 2022; Raghothaman et al. 2018], we remove
cycles in the graph. In the rest of the paper, we assume Graph(𝑆) = (𝑉 , 𝐸) contains no cycles.

Example 3.2. Take the parametric Datalog analysis A = (D, 𝑞,AS,AL,AI) shown in Sec-
tion 2 using abstraction 𝑆1 applying to the program 𝑃 shown in Figure 1 as an example:
([escX(𝑥2) :- escX(𝑥1), XFX(𝑥1, 𝑥2)], escX(H2), escX(H1), XFX(H1, H2)) ∈ Ground(𝑆1), and the ver-
tex representing it in the derivation graph Graph(𝑆1) is 𝑅7 (H1, H2) in Figure 3a. Note that the three
derivation graphs in Figure 3 are not complete for display convenience.

To compute the marginal probabilities of the alarms, the derivation graph is compiled into a
Bayesian network. For each 𝑣 in 𝑉 , a Bernoulli random variable 𝑥𝑣 is created. We denote the set of
these random variables as 𝑋 . In addition, we assume there exists a function 𝑌 ∈ C→ [0, 1] that
assigns a probability to each rule in the original Datalog analysis. Such a function can be learned on
labeled data or specified by experts. Since our focus is the impact of abstraction selection, we use the
same configuration in previous research [Raghothaman et al. 2018] where we set 𝑌 (𝑐) = 0.999 for
all rules in the experiments. For each 𝑡 ∈ Output(𝑆), let the relevant ground rules that can derive
it be 𝑖1, 𝑖2, . . . , 𝑖𝑛 , we create edges between their corresponding random variables with conditional
probabilities Pr(𝑥𝑡 | 𝑥𝑖1 ∨ 𝑥𝑖2 ∨ · · · ∨ 𝑥𝑖𝑛) = 1 and Pr(𝑥𝑡 | ¬𝑥𝑖1 ∧ ¬𝑥𝑖2 ∧ · · · ∧ ¬𝑥𝑖𝑛) = 0. For
each 𝑖 = (𝑐, 𝑡0, 𝑡1, . . . , 𝑡𝑛) ∈ Ground(𝑆), we create edges with conditional probabilities Pr(𝑥𝑖 |

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

Learning Abstraction Selection for Bayesian Program Analysis 128:13

𝑥𝑡1 ∧ 𝑥𝑡2 ∧ · · · ∧ 𝑥𝑡𝑛) = 𝑌 (𝑐) and Pr(𝑥𝑖 | ¬𝑥𝑡1 ∨ ¬𝑥𝑡2 ∨ · · · ∨ ¬𝑥𝑡𝑛) = 0. Then, 𝐵 = (𝑉 , 𝐸, 𝑋,𝑌) forms
a Bayesian network [Koller and Friedman 2009].

Example 3.3. Consider the following two relevant ground clauses:

𝑐1 = ([A(𝑡) :- B(𝑡),C(𝑡)],A(𝑡1),B(𝑡1),C(𝑡1)) 𝑐2 = ([A(𝑡) :- D(𝑡), E(𝑡)],A(𝑡1),D(𝑡1), E(𝑡1))

The corresponding conditional probabilities in the Bayesian network are:

Pr(𝑥𝑐1 | 𝑥B(𝑡1) ∧ 𝑥C(𝑡1)) = 0.999 Pr(𝑥𝑐1 | ¬𝑥B(𝑡1) ∨ ¬𝑥C(𝑡1)) = 0
Pr(𝑥𝑐2 | 𝑥D(𝑡1) ∧ 𝑥E(𝑡1)) = 0.999 Pr(𝑥𝑐2 | ¬𝑥D(𝑡1) ∨ ¬𝑥E(𝑡1)) = 0
Pr(𝑥A(𝑡1) | 𝑥𝑐1 ∨ 𝑥𝑐2) = 1 Pr(𝑥A(𝑡1) | ¬𝑥𝑐1 ∧ ¬𝑥𝑐2) = 0

Finally, we present using a Bayesian program analysis to perform interactive alarm resolution. The
interaction consists of multiple rounds, in each of which the analysis produces an alarm and the user
inspects it and provides binary feedback. Let 𝐸𝑖 be the set of user feedback before the 𝑖-th round. Ini-
tially, 𝐸1 = ∅. For the 𝑖-th round, using probability inference algorithms [Murphy et al. 1999] on the
Bayesian network 𝐵, the alarm with the highest probability, 𝑎 = argmax𝑡 ∈Alarm(𝑆) Pr

(
𝑥𝑡 |

∧
𝑒∈𝐸𝑖 𝑒

)
,

will be displayed to the user. The user will check if 𝑎 is true and feed it back. If 𝑎 is true then
𝐸𝑖+1 = 𝐸𝑖 ∪ {𝑥𝑎} else 𝐸𝑖+1 = 𝐸𝑖 ∪ {¬𝑥𝑎}, and the interaction moves to the next round. The user may
terminate the interaction at any time. To evaluate the generalization ability of Bayesian program
analysis in experiments, we assume that the user do not terminate until all alarms have been
checked. This setup follows recent works [Chen et al. 2021; Heo et al. 2019b; Kim et al. 2022;
Raghothaman et al. 2018] in Bayesian program analysis. In practice, the user may use other termi-
nation conditions. For example, they may decide to stop after 𝑛 consecutive alarms are false. In
our experiment, it is usually that a small fraction of the true alarms can only be discovered after
inspecting many false alarms. Let 𝑙𝑖 be 1 if the alarm displayed in the 𝑖-th round is true else be
0. We use the inversion count of 𝑙1, 𝑙2, . . . , 𝑙𝑛 to evaluate the quality of the analysis results. The
inversion count is the number of pairs of a false alarm and a true alarm such that the false alarm is
inspected by the user before the true alarm, and thus reflects the generalization ability. We define
Inversion(𝑆) = ∑𝑛

𝑖=1
∑𝑛

𝑗=𝑖+1 [𝑙𝑖 > 𝑙 𝑗]‡. There are also three other metrics used in previous research.
We will demonstrate them in Section 5 as a supplement.

Example 3.4. Take the parametric Datalog analysis A = (D, 𝑞,AS,AL,AI) shown in Section 2
applying to the program 𝑃 shown in Figure 1 as an example: Inversion(𝑆1) = Inversion(𝑆2) = 3
and Inversion(𝑆3) = 1, so the Bayesian program analysis under abstraction 𝑆3 has stronger
generalization ability according to our metric. Table 2 visualizes the whole process of interaction.
The probabilities of the rules we presented in the example are 0.95, which are different from those
in the experiments.

4 THE BINGRAPH FRAMEWORK

Given a parametric Bayesian program analysis based on a parametric Datalog program analysis
A = (D, 𝑞,AS,AL,AI), the goal of abstraction selection problem is to find a function 𝑓 ∈ P →
(D → N) to minimize a given metric (e.g., Inversion(𝑓 (𝑃))) for every program to be analyzed
𝑃 ∈ P. BinGraph applies a data-driven approach to address this problem and consists of two parts.
The online part selects an abstraction for a given program by iteratively raising abstraction levels
of abstraction points. The offline part learns a strategy from training programs for use in the online
part. We will introduce these two parts in the next two subsections.

‡ [] denotes Iverson Bracket. If the statement 𝑆 is true, then [𝑆] = 1 else [𝑆] = 0.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

128:14 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

4.1 Online Part of BinGraph

We summarize the online selection process of BinGraph. As shown in Figure 4, starting from the
coarsest abstractionS0, it iteratively refines the abstraction forAL rounds whereAL is the maximum
abstraction level. We use 𝑆𝑖 to denote the abstraction after the 𝑖-th round, and 𝑆0 = S0 to denote the
initial abstraction. In the 𝑖-th round, BinGraph calculates analysis derivation characteristics for each
abstraction point based on the abstraction 𝑆𝑖−1. For each abstraction point 𝑥 , if its characteristics
matches the learned strategy, then 𝑆𝑖 (𝑥) ← 𝑆𝑖−1 (𝑥) +1 else 𝑆𝑖 (𝑥) ← 𝑆𝑖−1 (𝑥). After the AL-th round,
𝑆AL will be the abstraction selected by BinGraph. Our design chooses to iterate a fixed number of
AL times, instead of setting a termination condition such as 𝑆 = 𝑆 ′ or when the difference between
𝑆 and 𝑆 ′ is small. This is because it can take many iterations for it to be satisfied. There are two main
reasons: (1) there may be noise in our learned strategy, and (2) after refining an abstraction point,
the features of other abstraction points can change, which may lead to a chain reaction consisting
of many rounds. Our design is a simpler alternative which ensures that the highest abstraction
level is reachable.

Example 4.1. Suppose the maximum abstraction level AL = 3 and the size of the set of abstraction
points |AS| = 5. We use a natural number vector of length 5 to represent an abstraction for simplicity.
The 𝑖-th element of the vector indicates the abstraction level of the 𝑖-th abstraction point. Initially,
𝑆0 can be represented as 00000. In the 1-st round of the online part of BinGraph, the overall
refinement of 𝑆0 is 𝑆 ′0 : 11111. BinGraph characterizes each of 5 abstraction points based on two
derivation graphs based on 𝑆0 and 𝑆 ′0. We assume only the characteristics of the 3-rd and the 4-th
abstraction points match the learned strategy, then we have 𝑆1 : 00110. In the 2-nd round, the
overall refinement of 𝑆1 is 𝑆 ′1 : 11221. BinGraph characterizes each of 5 abstraction points based on
two derivation graphs based on 𝑆1 and 𝑆 ′1. We assume only the characteristics of the 3-rd and the
5-th abstraction points match the learned strategy, then we have 𝑆2 : 00211. In the 3-rd round, the
overall refinement of 𝑆2 is 𝑆 ′2 : 11322. BinGraph characterizes each of 5 abstraction points based
on two derivation graphs based on 𝑆2 and 𝑆 ′2. We assume only the characteristics of the 3-rd and
the 4-th abstraction points match the learned strategy, then we have 𝑆3 : 00321. Finally, 𝑆3 is the
abstraction selected by BinGraph.

We present the selection algorithm in Algorithm 1 and explain relevant definitions in detail. The
analysis derivation characteristics are calculated based on an abstraction and its overall refinement.
An overall refinement raises the abstraction levels of all abstraction points by one. Formally, given
a program 𝑃 and an abstraction 𝑆 , the overall refinement of 𝑆 is 𝑆 ′ ∈ AS → {0, 1, . . . ,AL} such
that 𝑆 ′ (𝑥) = 𝑆 (𝑥) + 1 for 𝑥 ∈ AS. BinGraph uses graph properties to characterize each abstraction
point on the derivation graphs based on abstraction 𝑆 and 𝑆 ′. Formally, let N be the number of
properties and 𝛽𝑖 (𝐺, 𝑣) ∈ R be the 𝑖-th property for the vertex 𝑣 in graph 𝐺 .
To combine characteristics of each abstraction point in two derivation graphs, we define the

feature value for each abstraction point 𝑥 as 𝜆(𝑆, 𝑥) ∈ RN , where the 𝑖-th component is:

𝜆𝑖 (𝑆, 𝑥) =
𝛽𝑖 (Graph(𝑆 ′),AI(𝑥, 𝑆 ′ (𝑥))
𝛽𝑖 (Graph(𝑆),AI(𝑥, 𝑆 (𝑥))

The feature value of an abstraction point represents its analysis derivation characteristics based
on a certain abstraction. Feature values will be used throughout the process of BinGraph. The
strategy Learned is a set of feature values calculated in the offline part. If the feature value of an
abstraction point is contained in Learned, then its abstraction level is raised. The types and numbers
of properties we use in experiments will be demonstrated in Section 5.

Example 4.2. Take the parametric Datalog analysisA = (D, 𝑞,AS,AL,AI) shown in Section 2 ap-
plying to the program 𝑃 shown in Figure 1 as an example: the types of properties are shown in Table 3

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

Learning Abstraction Selection for Bayesian Program Analysis 128:15

Algorithm 1 Selection algorithm

Input: A strategy Learned ⊆ RN .
Output: A function 𝑓 ∈ P→ (D→ N).
1: procedure Select(Learned)
2: Let 𝑃 ∈ P be the program to be analyzed, 𝑆0 ← S0
3: for 𝑖 = 1→ AL do

4: 𝑆𝑖 ← 𝑆𝑖−1
5: for 𝑥 ∈ AS(𝑃) do
6: 𝑆𝑖 (𝑥) ← 𝑆𝑖−1 (𝑥) + [𝜆(𝑆𝑖−1, 𝑥) ∈ Learned]‡
7: return 𝑓 (𝑃) = 𝑆AL

Algorithm 2 Labeling algorithm
Input: A set of training programs 𝑃T ⊆ P.
Output: Labeled sets of feature values Labeled0, Labeled1 ⊆ RN .
1: procedure Label(𝑃T)
2: Labeled0 ← ∅, Labeled1 ← ∅
3: for 𝑃 ∈ 𝑃T do

4: Let 𝑃 be the program to be analyzed, 𝑆0 ← S0
5: for 𝑖 = 1→ AL do

6: Using SA to find 𝑆𝑖 ∈ Search(𝑆𝑖−1) minimizing Inversion(𝑆𝑖)
7: for 𝑥 ∈ AS(𝑃) do
8: 𝑙 ← [𝑆𝑖 (𝑥) ≠ 𝑆𝑖−1 (𝑥)]‡
9: Labeled𝑙 ← Labeled𝑙 ∪ {𝜆(𝑆𝑖−1, 𝑥)}
10: return Labeled0, Labeled1

with N = 3. 𝛽1 (Graph(𝑆2),AI(H1, 0)) = 35 represents the count of reachable vertices from vertex
HL(H1, 0) in the derivation graph shown in Figure 5a. It can be shown that the overall refinement
of 𝑆2 is 𝑆1. 𝛽1 (Graph(𝑆1),AI(H1, 1)) = 13 represents the count of reachable vertices from vertex
HL(H1, 1) in the derivation graph shown in Figure 5b. Therefore, 𝜆1 (𝑆2, H1) = 13

35 = 0.371. Similarly,
𝜆(𝑆2, H1) = 𝜆(𝑆2, H3) = 𝜆(𝑆2, H5) = (0.371, 1.085, 0.444) and 𝜆(𝑆2, H7) = (0.882, 0.940, 0.778).

4.2 Offline Part of BinGraph

The offline part of BinGraph consists of a labeling algorithm and a learning algorithm. For
each training program, we obtain the true alarms on them in advance and simulate the whole
interaction under different abstractions automatically to calculate inversion counts. Algorithm 2
shows the labeling algorithm, which generates two labeled sets of feature values Labeled0, Labeled1
for subsequent supervised learning. Labeled0 corresponds to abstraction points whose abstraction
levels should not be raised, while Labeled1 corresponds to the opposite. The process of labeling
each training program is similar to selection. It consists of AL rounds and maintains an abstraction
𝑆𝑖 after the 𝑖-th round. The difference is that 𝑆𝑖 is an optimal abstraction obtained by searching
based on 𝑆𝑖−1. Formally, we define the search space in the 𝑖-th round as Search(𝑆𝑖−1) = {𝑆 |
𝑆 ∈→ {0, 1, . . . ,AL}, 𝑆𝑖−1 (𝑥) ≤ 𝑆 (𝑥) ≤ 𝑆𝑖−1 (𝑥) + 1}. In the 𝑖-th round, an abstraction 𝑆𝑖 with low
Inversion(𝑆𝑖) is searched by Simulated Annealing (SA) [Kirkpatrick et al. 1983]. If the abstraction
level of an abstraction point 𝑥 is raised, then 𝜆(𝑆𝑖−1, 𝑥) is labeled with 1 else 0. It is obvious that
levels of abstraction points with similar characteristics to Labeled0 should not be raised, and it is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

128:16 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

Algorithm 3 Learning algorithm

Input: Labeled sets of feature values Labeled0, Labeled1 ⊆ RN .
Output: A strategy Learned ⊆ RN .
1: procedure Learn(Labeled0, Labeled1)
2: Learned← ∅, 𝐿0 ← Labeled0, 𝐿1 ← Labeled1
3: while 𝐿1 ≠ ∅ do

4: 𝐶 ← FindCube(𝐿0, 𝐿1)
5: Learned← Learned ∪𝐶, 𝐿0 ← 𝐿0 −𝐶, 𝐿1 ← 𝐿1 −𝐶
6: return Learned

the opposite for Labeled1. The learning process of BinGraph is designed to exploit this insight. The
reason for our design choice (i.e., to only iterate for AL rounds) in labeling is similar to selection:
(1) too many and uncertain iteration rounds may introduce noise into the labeled data, and (2)
iterating for AL rounds ensures that the highest abstraction level is reachable.

Example 4.3. Suppose the maximum abstraction level AL = 2 and the size of the set of abstraction
points |AS| = 3. We use a natural number vector of length 3 to represent an abstraction for
simplicity. The 𝑖-th element of the vector indicates the abstraction level of the 𝑖-th abstraction
point. Initially, 𝑆0 can be represented as 000. In the 1-st round of the labeling process, the search
space is {000, 001, 010, 100, 011, 101, 110, 111}. BinGraph will choose an abstraction with minimum
inversion count during the interaction. We assume it is 𝑆1 : 110. Then, the feature values of the
1-st, and 2-nd abstraction points under abstraction 𝑆0 will be labeled as 1, and the 3-rd abstraction
point under abstraction 𝑆0 will be labeled as 0. In the 2-nd round of the labeling process, the search
space is {110, 111, 120, 210, 121, 211, 220, 221}. BinGraph will choose an abstraction with minimum
inversion count during the interaction. We assume it is 𝑆2 : 211. Then, the feature values of the 1-st,
3-rd abstraction points under abstraction 𝑆1 will be labeled as 1, and the 2-nd abstraction point
under abstraction 𝑆1 will be labeled as 0.

The learning algorithm of BinGraph is inspired by Graphick [Jeon et al. 2020]. The main idea
is to find a range of real values such that it covers as many suitable labeled feature values and
as few unsuitable labeled feature values as possible. Then, it is highly likely to be beneficial

for the analysis when raising the abstraction level of an abstraction point whose feature value
is contained in such a range. Since there are N types of property, we use N-dimension cubes
to represent a selection range. A N-dimension cube [𝑙1, 𝑟1] × [𝑙2, 𝑟2] × · · · × [𝑙N, 𝑟N] includes all
the feature values whose 𝑖-th element is contained in the segment [𝑙𝑖 , 𝑟𝑖]. The learning algorithm
is shown in Algorithm 3, which generates a strategy Learned. Learned is a set of feature values,
which is implemented as a union of several N-dimension cubes. Formally, let Cubes =

{[𝑙1, 𝑟1] × [𝑙2, 𝑟2] × · · · × [𝑙N, 𝑟N] | 𝑙𝑖 , 𝑟𝑖 ∈ R, 𝑙𝑖 ≤ 𝑟𝑖 } be the set of all N-dimension cubes, then
Learned ∈ {⋃𝐶∈CubeSet𝐶 | CubeSet ⊆ Cubes} ⊆ RN . The learning algorithm maintains two sets of
labeled feature values 𝐿0 and 𝐿1. They are points in Labeled0 and Labeled1 which have not yet been
covered by 𝐿𝑒𝑎𝑟𝑛𝑒𝑑 . The algorithm expands 𝐿𝑒𝑎𝑟𝑛𝑒𝑑 through several rounds of computation until
𝐿1 is empty. In each round, a N -dimension cube 𝐶 ⊆ RN is calculated by the procedure FindCube
with the remaining labeled sets of feature values 𝐿0 and 𝐿1.𝐶 will be contained in the final strategy
Learned and the feature values contained by 𝐶 will be remove from 𝐿0 and 𝐿1.

The algorithm of finding cubes is shown in Algorithm 4, which generates a N -dimension cube.
The output cube has proper coverage on remaining labeled sets of feature values 𝐿0 and 𝐿1. It starts
with the cube containing each feature value in 𝐿1 and gradually divides the cube into two smaller

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

Learning Abstraction Selection for Bayesian Program Analysis 128:17

Algorithm 4 Finding cubes during learning.

Input: Remained labeled sets of feature values 𝐿0, 𝐿1 ⊆ RN .
Output: A N -dimension cube 𝐶 ⊆ RN .
1: procedure FindCube(𝐹0, 𝐹1)
2: 𝑚𝑖 ← min{𝑓𝑖 | 𝑓 ∈ 𝐿1}, 𝑀𝑖 ← max{𝑓𝑖 | 𝑓 ∈ 𝐿1}
3: 𝐶 ← [𝑚1, 𝑀1] × [𝑚2, 𝑀2] × · · · × [𝑚N, 𝑀N]
4: repeat

5: Random choose 𝑖 ∈ {1, 2, . . . ,N}
6: Let 𝐶 = [𝑙1, 𝑟1] × [𝑙2, 𝑟2] × · · · × [𝑙N, 𝑟N],mid← 𝑙𝑖+𝑟𝑖

2
7: 𝐶L ← [𝑙1, 𝑟1] × [𝑙2, 𝑟2] × · · · × [𝑙𝑖 ,mid] × · · · × [𝑙N, 𝑟N]
8: 𝐶R ← [𝑙1, 𝑟1] × [𝑙2, 𝑟2] × · · · × [mid, 𝑟𝑖] × · · · × [𝑙N, 𝑟N]
9: 𝐶 ← argmax𝐶′∈{𝐶L,𝐶R } FeatureScore(𝐿0, 𝐿1,𝐶′)
10: until FeatureScore(𝐿0, 𝐿1,𝐶) ≥ 𝜃 or timeout
11: return 𝐶

cubes and picks the one with the higher FeatureScore. The definition of FeatureScore is:

FeatureScore(𝐶, 𝐿0, 𝐿1) =
|𝐶 ∩ 𝐿1 |

|𝐶 ∩ (𝐿0 ∪ 𝐿1) |
FeatureScore describes the fraction of feature values in 𝐿1 in the cube. The division will terminate
if the FeatureScore is not less than a hyper-parameter 𝜃 or it exceeds the time limit. The final
cube will be returned.

Example 4.4. Consider N = 3, Labeled0 = {(3, 3, 3), (4, 4, 4), (5, 5, 5)}, Labeled1 = {(1, 1, 1), (2,
2, 2), (4, 4, 4), (6, 6, 6)} and the hyper-parameter 𝜃 = 0.6. Initially, we set 𝐿0 ← Labeled0 and 𝐿1 ←
Labeled1. The first cube starts from the smallest cube [1, 6] × [1, 6] × [1, 6] containing each feature
value in 𝐿1. The process of finding a cube is shown as follows, with the index randomly chosen:

[1, 6] × [1, 6] × [1, 6]
FeatureScore = 0.57

choose 𝑖=1−−−−−−−−→
[1, 3.5] × [1, 6] × [1, 6]
FeatureScore = 0.67

Then, the first cube [1, 3.5] × [1, 6] × [1, 6] is found. Feature values contained by this cube are
removed. Now we have 𝐿0 = {(4, 4, 4), (5, 5, 5)} and 𝐿1 = {(4, 4, 4), (6, 6, 6)}. The second cube starts
from the smallest cube [4, 6] × [4, 6] × [4, 6] containing each feature value in 𝐿1. The process of
finding a cube is shown following:

[4, 6] × [4, 6] × [4, 6]
FeatureScore = 0.5

choose 𝑖=2−−−−−−−−→
[4, 6] × [5, 6] × [4, 6]
FeatureScore = 0.5

choose 𝑖=2−−−−−−−−→
[4, 6] × [5.5, 6] × [4, 6]
FeatureScore = 1

Finally, the second cube [4, 6] × [5.5, 6] × [4, 6] is found. Feature values contained by this cube
are removed. Now we have 𝐿0 = {(4, 4, 4), (5, 5, 5)} and 𝐿1 = ∅. Therefore, the learning process is
terminated and the result is Learned = [1, 3.5] × [1, 6] × [1, 6] ∪ [4, 6] × [5.5, 6] × [4, 6].

5 EXPERIMENTAL EVALUATION

Our evaluation aims to answer the following questions:
RQ1. How effective is BinGraph at optimization for generalization ability of Bayesian program

analysis?
RQ2. How sensitive is BinGraph to the hyper-parameter and training benchmarks?

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

128:18 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

Table 4. Statistics of the instance analyses.

Analysis

Input

relations

Output

relations

Derivation

rules

Datarace analysis 58 44 102
Thread-escape analysis 34 27 60

RQ3. Is it necessary to calculate the derivation graph after an overall refinement to characterize
abstraction points?

RQ4. How scalable is Bayesian program analysis using the abstraction selected by BinGraph?
RQ5. Can an existing abstraction selection approach for conventional program analyses replace our

approach? Does an abstraction with a good balance of precision/scalability in a conventional
analysis happen to be one with good generalization in its Bayesian counterpart?

We describe our experimental setup in Section 5.1, then discuss answers to the above questions
in Section 5.2 to Section 5.6.

5.1 Experimental Setup

We conducted all experiments on Linux machines with 2.6 GHz processors and 256 GB RAM
running Oracle HotSpot JVM 1.6. We use the Chord framework [Naik 2006] for Datalog program
analysis and the Bingo framework [Raghothaman et al. 2018] for Bayesian inference. We set a size
limit of 40 GB for the derivation graph and a time limit of 2 hours for one run of the inference on
Bayesian networks. Exceeding one of these limits will be labeled as failed and be terminated.
Instance analyses. We summarize statistics of our two instance analyses in Table 4. (1) The

first is a datarace analysis [Naik et al. 2006] that finds all possible statement pairs which may
operate on the same heap object simultaneously with at least one write operation. It includes a
parametric flow-insensitive and context-sensitive 𝑘-object-sensitive pointer analysis [Milanova
et al. 2005]. The abstraction points are the allocation sites in the 𝑘-object-sensitive analysis, and
the abstraction level (i.e., the 𝑘 value) for each allocation site is in {0, 1, 2, 3}. The abstraction levels
indicate the degree of context-sensitivity and the site is handled in a context-insensitive way when
the corresponding level is 0. (2) To demonstrate the generality of BinGraph, we also consider a
thread-escape analysis [Naik et al. 2012] that finds all possible statements whose operation target
may be accessed by multiple threads. The analysis is flow- and context-insensitive. The analysis
is parameterized by how the heap objects are modeled. The abstraction points are also allocation
sites and the abstraction level for each allocation site is in {0, 1}. All objects in allocation sites of
level 0 will be considered as one object together during analysis. For an allocation site of level 1, a
standalone abstract object is created and all objects created at the site will be considered as it.

Benchmarks. We evaluated BinGraph on 13 benchmarks shown in Table 5, including programs
from the DaCapo suite [Blackburn et al. 2006] and from past works. For each benchmark, we
previously check each alarm whether it is true and simulate the whole interaction automatically to
calculate relevant metrics. For the datarace analysis, we obtain true alarms by manual inspection
[Raghothaman et al. 2018]. For the thread-escape analysis, we use the result of a CEGAR-based
flow- and context-sensitive analysis [Zhang et al. 2013] as true alarms.§ Four programs are excluded
from the datarace evaluation since the analysis generates no alarms for these programs. Another
§Since manual inspection of real bugs requires a lot of manual effort, it is common practice in program analysis studies
[Jeon et al. 2020; Li et al. 2018a; Mangal et al. 2015; Zhang et al. 2017] to use an accurate but heavy analysis to obtain ground
truth for interaction or comparison. In addition to this, our approach can be viewed as a lightweight but effective way to
approximate an accurate but heavy analysis [Zhang et al. 2013].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

Learning Abstraction Selection for Bayesian Program Analysis 128:19

Table 5. Benchmark characteristics. “Total” and “App” are numbers with and without the JDK using 0-CFA

call graph construction. “DA” and “TEA” are the datarace analysis and the thread-escape analysis. “-” denotes

the benchmark is not used in the analysis.

Program Description
Classes # Methods Bytecode (KB) Source (KLOC) # True alarms

App Total App Total App Total App Total DA TEA

ftp Apache FTP server 119 1,196 608 7,650 35 443 17 305 75 643
javasrc-p Java source code to HTML translator 51 1,009 471 6,624 42 403 12 276 - 695
jspider Web spider engine 113 1,193 426 7,431 17 429 6.7 298 9 430
hedc Web crawler from ETH 44 1,157 230 7,501 15 464 6 292 12 287
montecarlo Financial simulator 18 974 115 6,260 5 365 3.5 266 - 54
pool Apache Commons Pool 27 1,132 194 7,313 7.5 417 5.3 302 - 312
raytracer 3D raytracer 18 105 74 391 4.9 23 1.8 55 3 233
toba-s Java bytecode to C compiler 25 985 154 6,338 31 393 6.2 270 - 998
weblech Website download/mirror tool 56 1,276 303 8,421 18 503 10 322 6 276
avrora AVR microcontroller simulator 1,119 2,080 3,875 10,095 191 553 54 318 29 -
luindex Document indexing tool 169 1,164 1,030 7,461 72 453 30 299 2 -
sunflow Photo-realistic image rendering system 127 1,853 967 12,901 87 878 15 529 171 -
xalan XML to HTML transforming tool 390 1,723 3,007 12,181 159 786 119 495 75 -

Table 6. The type of properties used in experiments with N = 12.

Number Type Number Type

1 The count of reachable vertices 7 The count of vertices with shortest distance ≤ 5
2 Average of shortest distance to reachable vertices 8 The count of vertices with shortest distance ≤ 6
3 The count of vertices with shortest distance ≤ 1 9 The count of vertices with shortest distance ≤ 7
4 The count of vertices with shortest distance ≤ 2 10 The count of vertices with shortest distance ≤ 8
5 The count of vertices with shortest distance ≤ 3 11 The count of vertices with shortest distance ≤ 9
6 The count of vertices with shortest distance ≤ 4 12 The count of vertices with shortest distance ≤ 10

four programs are excluded from the thread-escape analysis evaluation because the oracle analysis
fails to terminate on them.
Baseline abstractions. We compare abstractions produced by BinGraph to three baseline ab-

stractions, Base-C, Base-P and Base-R. Base-C corresponds to the coarsest abstraction S0. Base-P
corresponds to the most precise abstraction where 𝑆P (𝑥) = AL for 𝑥 ∈ AS. Base-R corresponds to
the random abstraction 𝑆R (𝑥) where abstraction levels are uniformly distributed in {0, 1, . . . ,AL}.
For Base-R, we show the average measurement across 3 runs. We compare BinGraph to these
baselines to demonstrate that the direction in which BinGraphmakes an abstraction more precise is
beneficial to the generalization ability, being neither too coarse nor too fine, and not degenerating to
a random selection. We will evaluate abstractions with a good balance between precision/scalability
in conventional program analysis in Section 5.6.
Features. We present the type (i.e., the meaning of 𝛽𝑖 (𝐺, 𝑣)) and number (i.e., the value of N)

of properties used of BinGraph in Table 6. These properties characterize abstraction points
straightforwardly. We recommend using BinGraph with the properties used in the experiments
since they show good optimization results. To avoid dividing by 0, all properties will be added by 1
during calculating feature values.

Metrics. The main metric is the inversion count introduced in Section 3.3, which reflects the user
experience during the overall interaction and further reflects the generalization ability of a Bayesian
program analysis. We also demonstrate two metrics used in previous research [Raghothaman et al.
2018] for supplement: Rank-100%-T represents the rounds for inspecting all true alarms by the user.
Rank-90%-T represents that for inspecting 90% true alarms (rounding up) by the user.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

128:20 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

Table 7. Summary of metrics for effectiveness of BinGraph. “Average” represents the average reduction ratio

compared to baselines.

Program
Inversion Rank-100%-T Rank-90%-T

BinGraph Base-C Base-P Base-R BinGraph Base-C Base-P Base-R BinGraph Base-C Base-P Base-R

D
at
ar
ac
e

an
al
ys
is

avrora 6,249 3,852 6,944 7,341 761 938 717 744 364 421 392 415
ftp 388 1,173 432 540 84 169 83 86 77 112 75 77
sunflow 10,055 17,790 failed 14,443 359 460 failed 961 254 429 failed 315
raytracer 19 87 18 37 10 32 9 15 10 32 9 15
luindex 22 32 646 236 13 18 325 120 13 18 325 120
xalan failed 14,868 failed failed failed 326 failed failed failed 319 failed failed

Average 31.52%↓ 27.81%↓ 42.55%↓ 37.53%↓ 19.39%↓ 37.04%↓ 36.42%↓ 22.34%↓ 30.83%↓

Th
re
ad
-e
sc
ap
e

an
al
ys
is

hedc 5,991 14,381 7,045 10,065 372 396 379 393 303 337 316 325
jspider 20,033 36,838 35,517 40,411 635 662 618 629 451 500 527 540
montecarlo 496 1,812 583 1,969 78 163 78 154 59 156 61 122
pool 9,591 20,226 10,450 18,423 371 402 395 411 323 369 361 377
raytracer 6,101 9,756 6,822 8,353 287 314 319 339 263 287 286 281
toba-s 53,419 118,509 76,604 104,175 1,278 1,222 1,278 1,256 960 1,052 1,149 1,103

Average 53.59%↓ 20.42%↓ 48.22%↓ 12.34%↓ 2.53%↓ 12.84%↓ 18.61%↓ 9.47%↓ 18.10%↓

Learning configuration. We divide benchmarks into training/validation/test sets. The validation
set is used to determine the hyper-parameter 𝜃 introduced in Section 4.2. For the datarace analysis,
we use {jspider, hedc} for training and {weblech} for validation. For the thread-escape analysis,
we use {ftp, javasrc-p} for training and {weblech} for validation. We choose these benchmarks
as they are among the smaller benchmarks in the size of bytecode since the time cost of using large
programs is unacceptable for training and validation. Other benchmarks are used for test.

5.2 Effectiveness

We present the summary of the metrics for the effectiveness result in Table 7. Compared to the
baselines, BinGraph has significantly fewer inversion counts on most benchmarks. BinGraph
outperforms Base-C on 10 of 12 benchmarks, with an average reduction ratio of 31.52% and 53.59%
for the two analyses respectively. This shows that BinGraph improves generalization ability by
making abstractions more precise. BinGraph outperforms Base-P on 11 of 12 benchmarks, with
an average reduction ratio of 27.81% and 20.42% for the two analyses respectively. This shows
that the abstractions selected by BinGraph are not as precise as Base-P, but have much better
generalization ability. This is because BinGraph only raises the levels of abstraction points that
are beneficial to generalization. A typical example is luindex, in which Base-P has 29× inversion
count compared to BinGraph because the links between false alarms are cut under high precision
abstractions. BinGraph outperforms Base-R on 12 of 12 benchmarks, with an average reduction
ratio of 42.55% and 48.22% for the two analyses. This shows that the strategy learned by BinGraph
is quite different from random selections. Moreover, there are similar improvements in the other
two metrics.

We plot ROC curves [Fawcett 2006] for the datarace analysis in Figure 8 and for the thread-escape
analysis in Figure 9. A point (𝑥,𝑦) represents that the user has inspected 𝑥 false alarms and 𝑦 true
alarms after (𝑥 + 𝑦) rounds of interaction. A relevant metric AUC is the normalized area under the
ROC curve, which is used in previous research [Raghothaman et al. 2018]. The relation between
inversion counts and AUC is Inversion(𝑆) = 𝑁𝑇𝑁𝐹 (1 − AUC), where 𝑁𝑇 and 𝑁𝐹 are numbers
of true alarms and false alarms. Since the number of false alarms may differ due to abstractions,
we use inversion counts instead of AUC as the major metric. The larger the AUC is, the lower
the inversion count is. Therefore, AUC can visually show the difference in generalization ability

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

Learning Abstraction Selection for Bayesian Program Analysis 128:21

0 200 400 600 800
Number of false alarms inspected

0

10

20

30

N
um

be
r

of
 tr

ue
 a

la
rm

s
in

sp
ec

te
d

BinGraph
Base-C
Base-P
Base-R1
Base-R2
Base-R3

(a) avrora

0 25 50 75
Number of false alarms inspected

0

20

40

60

N
um

be
r

of
 tr

ue
 a

la
rm

s
in

sp
ec

te
d

BinGraph
Base-C
Base-P
Base-R1
Base-R2
Base-R3

(b) ftp

0 500 1000
Number of false alarms inspected

0

50

100

150

N
um

be
r

of
 tr

ue
 a

la
rm

s
in

sp
ec

te
d

BinGraph
Base-C
Base-R1
Base-R2
Base-R3

(c) sunflow

0 10 20 30
Number of false alarms inspected

0

1

2

3

N
um

be
r

of
 tr

ue
 a

la
rm

s
in

sp
ec

te
d

BinGraph
Base-C
Base-P
Base-R1
Base-R2
Base-R3

(d) raytracer

0 100 200 300
Number of false alarms inspected

0.0

0.5

1.0

1.5

2.0

N
um

be
r

of
 tr

ue
 a

la
rm

s
in

sp
ec

te
d

BinGraph
Base-C
Base-P
Base-R1
Base-R2
Base-R3

(e) luindex

0 100 200
Number of false alarms inspected

0

20

40

60

N
um

be
r

of
 tr

ue
 a

la
rm

s
in

sp
ec

te
d

Base-C

(f) xalan

Fig. 8. The ROC curves for the datarace analysis. Base-R1 to Base-R3 correspond to 3 runs of Base-R. Results

for failed configurations are not displayed.

between different abstractions. Compared to other baselines, BinGraph can be clearly seen to
have significantly higher AUC. This is a visual illustration of the powerful generalization ability of
abstractions BinGraph selects.

There are two outliers. One is that Base-C has a lower inversion count than other approaches for
benchmark avrora in the datarace analysis experiment, but has higher rank-100%-T and rank-90%-T.
The main reason is that Base-C finds 25 true alarms in only 130 rounds (while BinGraph, Base-P
and Base-R use 363, 391, and 414 rounds, respectively), but takes 808 rounds to find the remaining 4

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

128:22 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

0 50 100 150
Number of false alarms inspected

0

100

200

300

N
um

be
r

of
 tr

ue
 a

la
rm

s
in

sp
ec

te
d

BinGraph
Base-C
Base-P
Base-R1
Base-R2
Base-R3

(a) hedc

0 100 200
Number of false alarms inspected

0

100

200

300

400

N
um

be
r

of
 tr

ue
 a

la
rm

s
in

sp
ec

te
d

BinGraph
Base-C
Base-P
Base-R1
Base-R2
Base-R3

(b) jspider

0 50 100 150
Number of false alarms inspected

0

10

20

30

40

50

N
um

be
r

of
 tr

ue
 a

la
rm

s
in

sp
ec

te
d

BinGraph
Base-C
Base-P
Base-R1
Base-R2
Base-R3

(c) montecarlo

0 50 100
Number of false alarms inspected

0

100

200

300

N
um

be
r

of
 tr

ue
 a

la
rm

s
in

sp
ec

te
d

BinGraph
Base-C
Base-P
Base-R1
Base-R2
Base-R3

(d) pool

0 50 100 150
Number of false alarms inspected

0

50

100

150

200

N
um

be
r

of
 tr

ue
 a

la
rm

s
in

sp
ec

te
d

BinGraph
Base-C
Base-P
Base-R1
Base-R2
Base-R3

(e) raytracer

0 100 200 300
Number of false alarms inspected

0

200

400

600

800

1000

N
um

be
r

of
 tr

ue
 a

la
rm

s
in

sp
ec

te
d

BinGraph
Base-C
Base-P
Base-R1
Base-R2
Base-R3

(f) toba-s

Fig. 9. The ROC curves for the thread-escape analysis. Base-R1 to Base-R3 correspond to 3 runs of Base-R.

true alarms. This shows that the performance of Base-C is good at the beginning of the interaction,
but is very bad afterward. For this particular reason, Base-C has a very low inversion count, but
this does not mean that Base-C has a stronger generalization ability. Another exception is that
most valuable abstractions, except the coarsest one 0-CFA, are labeled as failed for benchmark
xalan in the datarace analysis, including 1-object-sensitivity and 2-object-sensitivity (i.e., 𝑆 (𝑥) = 1
or 2 respectively holds for 𝑥 ∈ AS in the abstraction). The main reason is that existing Bayesian
program analysis frameworks are not scalable for large programs using precise abstractions.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

Learning Abstraction Selection for Bayesian Program Analysis 128:23

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of hyper-parameter

150%

100%

50%

0%

50%

A
ve

ra
ge

 r
ed

uc
ti

on
 r

at
e

Training

Validation

(a) Datarace analysis

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of hyper-parameter

0%

10%

20%

30%

40%

A
ve

ra
ge

 r
ed

uc
ti

on
 r

at
e

Training

Validation

(b) Thread-escape analysis

Fig. 10. Performance of BinGraph on training and validation sets with different hyper-parameter 𝜃 . The

vertical dotted lines represent the chosen 𝜃 .

Table 8. Summary of metrics for the leave-one-out cross-validation in the thread-escape analysis. Statistics

are average reduction compared to Base-R.

Setting Inversion Rank-100%-T Rank-90%-T

BinGraph 48.22%↓ 12.84%↓ 18.10%↓
BinGraphC 40.76%↓ 11.34%↓ 15.69%↓

In summary, BinGraph is indeed effective at optimizing for the generalization ability of Bayesian
program analysis, and can potentially improve user experience during interaction.

5.3 Sensitivity Study

We evaluate the sensitivity of BinGraph to hyper-parameter and training benchmarks.
Sensitivity to the hyper-parameter.We present the performance of BinGraph on training and

validation sets with different hyper-parameter 𝜃 values (see Algorithm 4) in Figure 10. We iterate
𝜃 from 0 to 1 with 0.05 intervals and evaluate the effect of it using the average reduction ratio
of inversion count compared to Base-R. The performance of BinGraph varies with the change
of 𝜃 . For example, when 𝜃 is close to 1, its performance is significantly better on the training set
than that on the validation set. The main reason is that Algorithm 4 will generate low coverage
cubes when 𝜃 is high, which will cause over-fitting. To counter the sensitivity of BinGraph to
hyper-parameter, we choose 𝜃 with the highest combined average reduction ratio among training
and validation sets. The chosen 𝜃 values are 0.35 and 0.45 for the thread-escape analysis and the
datarace analysis, respectively.
Sensitivity to training benchmarks. In order to measure the sensitivity of BinGraph to training

benchmarks, we conducted leave-one-out cross-validation. Since some benchmarks for the datarace
analysis are too large to be used for training, we only studied the thread-escape analysis with all 9
benchmarks. Let BinGraphC be the setting of cross-validation, we present the summary of metrics
in Table 8. It can be shown that BinGraph and BinGraphC have a similar improvement over
Base-R, with the differences only being 7.46%, 1.50%, and 2.41% in the three metrics. In summary,
BinGraph is not sensitive to the selection of training benchmarks.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

128:24 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

Table 9. Summary of metrics for the ablation experiment. Statistics are average reduction (or increase)

compared to Base-R.

Setting

Datarace analysis Thread-escape analysis

Inversion Rank-100%-T Rank-90%-T Inversion Rank-100%-T Rank-90%-T

BinGraph 42.55%↓ 37.04%↓ 30.83%↓ 48.22%↓ 12.84%↓ 18.10%↓
BinGraphA 2.54%↓ 1.49%↓ 4.48%↑ 28.45%↑ 13.40%↑ 10.00%↑

5.4 Necessity to Use Two Derivation Graphs

Note that BinGraph uses two derivation graphs to characterize each abstraction point. However,
the computational cost on the derivation graph after an overall refinement𝐺 ′ is significantly higher
than that on the derivation graph before an overall refinement 𝐺 . To validate the necessity to
calculate 𝐺 ′, we conduct an ablation experiment that only uses 𝐺 to characterize each abstraction
point. Formally, we redefine the feature value in Section 4.1 as 𝜆𝑖 (𝑆, 𝑥) = 𝛽𝑖 (Graph(𝑆),AI(𝑥, 𝑆 (𝑥)) .

For instance, the feature value of H1 in Table 3 will become (35, 4.114, 18). Other settings remain
unchanged, including the training set, validation set, and the criteria to choose hyper-parameter
𝜃 . Let BinGraphA be the setting of the ablation experiment, we present the summary of metrics
in Table 9. It can be shown that the variation of BinGraphA compared to Base-R is completely
different from BinGraph, and even worse than Base-R in most metrics. The main reason is that
𝐺 only characterizes each abstraction point based on the information in the current abstraction
but not that after potential refinements, which leads to the learned strategy being not beneficial in
finding the suitable abstraction. Overall, using 𝐺 ′ is necessary and valuable.

5.5 Scalability

We evaluate the scalability of the two parts of BinGraph separately. In the offline part, we evaluate
the training cost of BinGraph. In the online part, we evaluate the running cost of the Bayesian
program analysis under the abstraction selected by BinGraph. Since the running cost of the Datalog
engine is negligible for the overall running process (less than 1%), we only present the evaluation
of Bayesian inference.
Training cost. To speed up the training process, we implemented parallelism in (1) Simulated

Annealing for labeling, and (2) validation for obtaining the hyper-parameter. For the datarace
analysis, the labeling process took 4 days and the learning process (including validation) took 1 day.
For the thread-escape analysis, the labeling process took 2 days and the learning process (including
validation) took 8 hours. In total, the training cost of BinGraph is acceptable.

Bayesian inference cost. The computational cost of Bayesian inference depends mainly on the
size of the derivation graph after reduction. Since the average iteration times for the thread-escape
analysis are negligible (less than 1 second), we do not present them. We present the summary
of metrics for the scalability of the datarace analysis in Table 10. It is counter-intuitive that the
most precise abstraction Base-P has a smaller derivation graph than other abstractions in some
benchmarks such as ftp. However, the derivation graph before the reduction of Base-P is the
biggest one. The main reason is that the algorithm to remove cycles is heuristic, and its effect
depends on the structure of the graph. The conclusion is that, under the existing framework of
Bayesian program analysis, the scalability of BinGraph is acceptable compared to other approaches.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

Learning Abstraction Selection for Bayesian Program Analysis 128:25

Table 10. Summary of metrics for the Bayesian inference cost of BinGraph in the datarace analysis. Tuples

and relevant ground clauses are counted from the derivation graph after reduction. Iteration times are average

values during the interaction.

Program
Tuples # Relevant ground clauses Iteration time (s)

BinGraph Base-C Base-P Base-R BinGraph Base-C Base-P Base-R BinGraph Base-C Base-P Base-R

avrora 44,613 84,507 59,061 47,971 33,467 85,585 48,285 36,899 97 612 189 114
ftp 65,931 115,621 19,269 27,905 63,940 116,628 13,593 21,474 309 680 25 86
sunflow 84,561 390,638 failed 76,065 73,711 420,254 failed 62,069 456 3,044 failed 415
raytracer 7,121 4,750 6,886 6,383 5,480 3,175 5,342 4,756 5.9 4.0 6.9 6.3
luindex 36,941 53,154 32,167 43,992 24,261 42,210 20,625 32,118 22 198 27 134

Table 11. Summary ofmetrics for the experiments on conventional approaches. Statistics are average reduction

(or increase) compared to Base-R.

Setting

Datarace analysis Thread-escape analysis

Inversion Rank-100%-T Rank-90%-T Inversion Rank-100%-T Rank-90%-T

BinGraph 42.55%↓ 37.04%↓ 30.83%↓ 48.22%↓ 12.84%↓ 18.10%↓
BinGraphM 267.16%↑ 27.42%↑ 31.55%↑ 40.49%↓ 16.99%↓ 17.72%↓
Minimal - - - 27.29%↓ 15.12%↓ 13.00%↓

5.6 Ineffectiveness of Conventional Approaches

Conventional approaches aim to find abstractions with a good balance between precision and
scalability. Are these abstractions also good for generalization and can we use a conventional
approach to replace our approach? To answer these questions, we first conducted a controlled
variable experiment where we modify BinGraph such that it learns such abstractions. Given a
training program, we apply BinGraph to learn an abstraction that is the cheapest abstraction
among all the abstractions producing the least alarms. We refer to these abstractions as minimal
abstractions and find them using a systematic search LearnMinimalAbstraction [Jeon et al. 2020].
Further, since our approach is not originally designed for learning these abstractions, to remove
the noise incurred by learning, we apply the systematic search to identify minimal abstractions
on the test programs and evaluate their generalization effect. We only study the results of the
thread-escape analysis because the systematic search does not scale for the datarace analysis
when using the test programs. Table 11 shows how much these abstractions identified under the
two settings improve over the cheapest abstraction when applied to a Bayesian program analysis.
BinGraphM and Minimal denote the results under the two setting respectively.

The result shows that BinGraphM has a similarly good performance compared to our approach
on the thread-escape analysis, but has extremely bad performance on the datarace analysis. The
reason is that for the thread-escape dataset, some of the abstractions that balance precision and
scalability happen to be abstractions with good generalization ability. But this is not the case for the
datarace analysis. Moreover, the performance of Minimal is significantly worse than BinGraph and
BinGraphM. This shows that the minimal abstractions on the test programs for the thread-escape
analysis are actually worse in terms of generalization. As a result, conventional approaches cannot
reliably find abstractions with good generalization ability for Bayesian program analyses.

6 RELATEDWORK

Our approach is related to research on Bayesian program analysis and data-driven abstraction
selection techniques for conventional analysis. We summarize the related prior works below.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

128:26 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

Bayesian program analysis. Bayesian program analysis tools build probabilistic models based on
logical rules, generalize various posterior information, and calculate the probability for each alarm
to be true. Eugene [Mangal et al. 2015] and Bingo [Raghothaman et al. 2018] use user feedback as
posterior information. Drake [Heo et al. 2019b] uses information from programs of old versions
and DynaBoost [Chen et al. 2021] uses dynamic analysis results. Since using different abstractions
is equivalent to using different logical rules and does not cause incompatibility in subsequent
procedures (such as building probabilistic models and generalizing posterior information), our
approach can be directly combined with these tools. BayeSmith [Kim et al. 2022] learns new
derivation rules and probabilities from existing rules using syntactic information. For an existing
rule 𝑅1 : A(𝑥) :- B(𝑥), BayeSmith may refine it to two rules 𝑅11 : A(𝑥) :- B(𝑥), Loop(𝑥) and
𝑅12 : A(𝑥) :- B(𝑥),¬Loop(𝑥) with different probabilities. For each ground clause of 𝑅1, it will be
replaced by one of 𝑅11 or one of 𝑅12. The only difference in the generated Bayesian network is
new input tuples Loop(𝑥),¬Loop(𝑥), and new probabilities of the ground clauses. Since input
tuples have probabilities of 1, they do not affect Bayesian inference. Therefore, BayeSmith does
not substantially change the structure of Bayesian networks, and it can be equated to an approach
to learning probabilities of ground clauses. Instead, our approach changes the structure of Bayesian
networks rather than probabilities of ground clauses, so that our approach and BayeSmith are
actually complementary to each other.

Data-driven abstraction selection for conventional analysis. The abstraction selection problem for
conventional program analysis has been extensively studied [Bielik et al. 2017; Grigore and Yang
2016; He et al. 2020; Heo et al. 2016, 2019a, 2017; Jeon et al. 2019, 2018, 2020; Jeon and Oh 2022;
Jeong et al. 2017; Liang et al. 2011; Oh et al. 2015; Peleg et al. 2016; Singh et al. 2018; Wei and Ryder
2015]. Although these approaches are not effective in optimizing for generalization, some of the
ideas are worth learning from. Our approach adapts some of them [Jeon et al. 2019, 2018, 2020; Jeon
and Oh 2022; Jeong et al. 2017; Oh et al. 2015], which use features to express the characteristics
of each abstraction point independently. In these approaches, the chosen features are related to
the program itself (such as whether a method has an allocation site or not), or the analysis itself
(such as the degree of a vertex in the object allocation graph [Li et al. 2018b; Tan et al. 2016]).
For generality and effectiveness in the context of Bayesian program analysis, our approach uses
properties based on differences in the derivation graphs before and after an overall refinement.

7 CONCLUSION

We present BinGraph, a general framework for learning abstraction selection for Bayesian program
analysis. The main idea of BinGraph is refining the abstraction for several rounds and leveraging
the difference of derivation graphs to characterize each abstraction point. In the experiments with
two instance analyses and 13 Java programs, we demonstrate the effectiveness of BinGraph in
enhancing the generalization ability of Bayesian program analysis.

REFERENCES

Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2017. Learning a Static Analyzer from Data. In Computer Aided
Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 10426), Rupak Majumdar and Viktor Kuncak (Eds.). Springer, 233–253. https://doi.org/10.
1007/978-3-319-63387-9_12

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,
Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006.
The DaCapo benchmarks: java benchmarking development and analysis. In Proceedings of the 21th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006,
Portland, Oregon, USA, Peri L. Tarr and William R. Cook (Eds.). ACM, 169–190. https://doi.org/10.1145/1167473.1167488

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

https://doi.org/10.1007/978-3-319-63387-9_12
https://doi.org/10.1007/978-3-319-63387-9_12
https://doi.org/10.1145/1167473.1167488

Learning Abstraction Selection for Bayesian Program Analysis 128:27

Tianyi Chen, Kihong Heo, and Mukund Raghothaman. 2021. Boosting static analysis accuracy with instrumented test
executions. In ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Athens, Greece, August 23-28, 2021, Diomidis Spinellis, Georgios Gousios, Marsha Chechik, and
Massimiliano Di Penta (Eds.). ACM, 1154–1165. https://doi.org/10.1145/3468264.3468626

Patrick Cousot. 1996. Abstract Interpretation. ACMComput. Surv. 28, 2 (1996), 324–328. https://doi.org/10.1145/234528.234740
Tom Fawcett. 2006. An introduction to ROC analysis. Pattern Recognit. Lett. 27, 8 (2006), 861–874. https://doi.org/10.1016/j.

patrec.2005.10.010
Radu Grigore and Hongseok Yang. 2016. Abstraction refinement guided by a learnt probabilistic model. In Proceedings of the

43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, Rastislav Bodík and RupakMajumdar (Eds.). ACM, 485–498. https://doi.org/10.1145/2837614.2837663

Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krishnan, Bernhard Scholz, and Yi Lu. 2017. An
efficient tunable selective points-to analysis for large codebases. In Proceedings of the 6th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis, SOAP@PLDI 2017, Barcelona, Spain, June 18, 2017, Karim Ali and
Cristina Cifuentes (Eds.). ACM, 13–18. https://doi.org/10.1145/3088515.3088519

Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2020. Learning fast and precise numerical analysis.
In Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 1112–1127. https:
//doi.org/10.1145/3385412.3386016

Kihong Heo, Hakjoo Oh, and Hongseok Yang. 2016. Learning a Variable-Clustering Strategy for Octagon from Labeled
Data Generated by a Static Analysis. In Static Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK,
September 8-10, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 9837), Xavier Rival (Ed.). Springer, 237–256.
https://doi.org/10.1007/978-3-662-53413-7_12

Kihong Heo, Hakjoo Oh, and Hongseok Yang. 2019a. Resource-aware program analysis via online abstraction coarsening. In
Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 94–104. https://doi.org/10.1109/ICSE.2019.00027

Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. 2017. Machine-learning-guided selectively unsound static analysis. In
Proceedings of the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28,
2017, Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard (Eds.). IEEE / ACM, 519–529. https://doi.org/10.1109/
ICSE.2017.54

Kihong Heo, Mukund Raghothaman, Xujie Si, and Mayur Naik. 2019b. Continuously reasoning about programs using
differential Bayesian inference. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.).
ACM, 561–575. https://doi.org/10.1145/3314221.3314616

Minseok Jeon, Sehun Jeong, SungDeok Cha, andHakjooOh. 2019. AMachine-LearningAlgorithmwithDisjunctiveModel for
Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst. 41, 2 (2019), 13:1–13:41. https://doi.org/10.1145/3293607

Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and scalable points-to analysis via data-driven context tunneling.
Proc. ACM Program. Lang. 2, OOPSLA (2018), 140:1–140:29. https://doi.org/10.1145/3276510

Minseok Jeon,Myungho Lee, andHakjoo Oh. 2020. Learning graph-based heuristics for pointer analysis without handcrafting
application-specific features. Proc. ACM Program. Lang. 4, OOPSLA (2020), 179:1–179:30. https://doi.org/10.1145/3428247

Minseok Jeon and Hakjoo Oh. 2022. Return of CFA: call-site sensitivity can be superior to object sensitivity even for
object-oriented programs. Proc. ACM Program. Lang. 6, POPL (2022), 1–29. https://doi.org/10.1145/3498720

Sehun Jeong, Minseok Jeon, Sung Deok Cha, and Hakjoo Oh. 2017. Data-driven context-sensitivity for points-to analysis.
Proc. ACM Program. Lang. 1, OOPSLA (2017), 100:1–100:28. https://doi.org/10.1145/3133924

George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-sensitivity for points-to analysis. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-
Juergen Boehm and Cormac Flanagan (Eds.). ACM, 423–434. https://doi.org/10.1145/2491956.2462191

Hyunsu Kim, Mukund Raghothaman, and Kihong Heo. 2022. Learning Probabilistic Models for Static Analysis Alarms. In
44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022.
ACM, 1282–1293. https://doi.org/10.1145/3510003.3510098

Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. 1983. Optimization by Simmulated Annealing. Sci. 220, 4598 (1983),
671–680. https://doi.org/10.1126/science.220.4598.671

Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models - Principles and Techniques. MIT Press. https:
//dl.acm.org/doi/10.5555/1795555

Haofeng Li, Jie Lu, Haining Meng, Liqing Cao, Yongheng Huang, Lian Li, and Lin Gao. 2022. Generic sensitivity: customizing
context-sensitive pointer analysis for generics. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November
14-18, 2022, Abhik Roychoudhury, Cristian Cadar, and Miryung Kim (Eds.). ACM, 1110–1121. https://doi.org/10.1145/

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

https://doi.org/10.1145/3468264.3468626
https://doi.org/10.1145/234528.234740
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1145/2837614.2837663
https://doi.org/10.1145/3088515.3088519
https://doi.org/10.1145/3385412.3386016
https://doi.org/10.1145/3385412.3386016
https://doi.org/10.1007/978-3-662-53413-7_12
https://doi.org/10.1109/ICSE.2019.00027
https://doi.org/10.1109/ICSE.2017.54
https://doi.org/10.1109/ICSE.2017.54
https://doi.org/10.1145/3314221.3314616
https://doi.org/10.1145/3293607
https://doi.org/10.1145/3276510
https://doi.org/10.1145/3428247
https://doi.org/10.1145/3498720
https://doi.org/10.1145/3133924
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/3510003.3510098
https://doi.org/10.1126/science.220.4598.671
https://dl.acm.org/doi/10.5555/1795555
https://dl.acm.org/doi/10.5555/1795555
https://doi.org/10.1145/3540250.3549122
https://doi.org/10.1145/3540250.3549122

128:28 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

3540250.3549122
Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018a. Precision-guided context sensitivity for pointer analysis.

Proc. ACM Program. Lang. 2, OOPSLA (2018), 141:1–141:29. https://doi.org/10.1145/3276511
Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018b. Scalability-first pointer analysis with self-tuning context-

sensitivity. In Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T.
Leavens, Alessandro Garcia, and Corina S. Pasareanu (Eds.). ACM, 129–140. https://doi.org/10.1145/3236024.3236041

Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2020. A Principled Approach to Selective Context Sensitivity for
Pointer Analysis. ACM Trans. Program. Lang. Syst. 42, 2 (2020), 10:1–10:40. https://doi.org/10.1145/3381915

Percy Liang and Mayur Naik. 2011. Scaling abstraction refinement via pruning. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, Mary W.
Hall and David A. Padua (Eds.). ACM, 590–601. https://doi.org/10.1145/1993498.1993567

Percy Liang, Omer Tripp, and Mayur Naik. 2011. Learning minimal abstractions. In Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, Thomas
Ball and Mooly Sagiv (Eds.). ACM, 31–42. https://doi.org/10.1145/1926385.1926391

Jingbo Lu and Jingling Xue. 2019. Precision-preserving yet fast object-sensitive pointer analysis with partial context
sensitivity. Proc. ACM Program. Lang. 3, OOPSLA (2019), 148:1–148:29. https://doi.org/10.1145/3360574

Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. 2015. A user-guided approach to program analysis. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September
4, 2015, Elisabetta Di Nitto, Mark Harman, and Patrick Heymans (Eds.). ACM, 462–473. https://doi.org/10.1145/2786805.
2786851

Ana L. Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized object sensitivity for points-to analysis for
Java. ACM Trans. Softw. Eng. Methodol. 14, 1 (2005), 1–41. https://doi.org/10.1145/1044834.1044835

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. 1999. Loopy Belief Propagation for Approximate Inference: An
Empirical Study. In UAI ’99: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm,
Sweden, July 30 - August 1, 1999, Kathryn B. Laskey and Henri Prade (Eds.). Morgan Kaufmann, 467–475. https:
//dl.acm.org/doi/10.5555/2073796.2073849

Mayur Naik. 2006. Chord: A program analysis platform for Java. https://bitbucket.org/psl-lab/jchord/src/master/
Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection for Java. In Proceedings of the ACM

SIGPLAN 2006 Conference on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June 11-14,
2006, Michael I. Schwartzbach and Thomas Ball (Eds.). ACM, 308–319. https://doi.org/10.1145/1133981.1134018

Mayur Naik, Hongseok Yang, Ghila Castelnuovo, and Mooly Sagiv. 2012. Abstractions from tests. In Proceedings of the 39th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA,
January 22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 373–386. https://doi.org/10.1145/2103656.2103701

Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. 2014. Selective context-sensitivity guided
by impact pre-analysis. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, Edinburgh, United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 475–484.
https://doi.org/10.1145/2594291.2594318

Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. 2015. Learning a strategy for adapting a program analysis via bayesian
optimisation. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, Jonathan
Aldrich and Patrick Eugster (Eds.). ACM, 572–588. https://doi.org/10.1145/2814270.2814309

Hila Peleg, Sharon Shoham, and Eran Yahav. 2016. Dˆ3 : Data-Driven Disjunctive Abstraction. In Verification, Model Checking,
and Abstract Interpretation - 17th International Conference, VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016.
Proceedings (Lecture Notes in Computer Science, Vol. 9583), Barbara Jobstmann and K. Rustan M. Leino (Eds.). Springer,
185–205. https://doi.org/10.1007/978-3-662-49122-5_9

Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018. User-guided program reasoning using
Bayesian inference. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 722–735.
https://doi.org/10.1145/3192366.3192417

Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2018. Fast Numerical Program Analysis with Reinforcement
Learning. In Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10981),
Hana Chockler and Georg Weissenbacher (Eds.). Springer, 211–229. https://doi.org/10.1007/978-3-319-96145-3_12

Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective analysis: context-sensitivity, across the
board. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 485–495. https://doi.org/10.1145/

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

https://doi.org/10.1145/3540250.3549122
https://doi.org/10.1145/3540250.3549122
https://doi.org/10.1145/3540250.3549122
https://doi.org/10.1145/3276511
https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1145/3381915
https://doi.org/10.1145/1993498.1993567
https://doi.org/10.1145/1926385.1926391
https://doi.org/10.1145/3360574
https://doi.org/10.1145/2786805.2786851
https://doi.org/10.1145/2786805.2786851
https://doi.org/10.1145/1044834.1044835
https://dl.acm.org/doi/10.5555/2073796.2073849
https://dl.acm.org/doi/10.5555/2073796.2073849
https://bitbucket.org/psl-lab/jchord/src/master/
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/2103656.2103701
https://doi.org/10.1145/2594291.2594318
https://doi.org/10.1145/2814270.2814309
https://doi.org/10.1007/978-3-662-49122-5_9
https://doi.org/10.1145/3192366.3192417
https://doi.org/10.1007/978-3-319-96145-3_12
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/2594291.2594320

Learning Abstraction Selection for Bayesian Program Analysis 128:29

2594291.2594320
Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis. 2021. Making pointer analysis more precise by

unleashing the power of selective context sensitivity. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–27. https:
//doi.org/10.1145/3485524

Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-Object-Sensitive Pointer Analysis More Precise with Still k-Limiting. In
Static Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings (Lecture Notes
in Computer Science, Vol. 9837), Xavier Rival (Ed.). Springer, 489–510. https://doi.org/10.1007/978-3-662-53413-7_24

Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and precise points-to analysis: modeling the heap by merging equivalent
automata. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 278–291. https://doi.org/
10.1145/3062341.3062360

Shiyi Wei and Barbara G. Ryder. 2015. Adaptive Context-sensitive Analysis for JavaScript. In 29th European Conference on
Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic (LIPIcs, Vol. 37), John Tang Boyland
(Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 712–734. https://doi.org/10.4230/LIPIcs.ECOOP.2015.712

Xin Zhang, Radu Grigore, Xujie Si, and Mayur Naik. 2017. Effective interactive resolution of static analysis alarms. Proc.
ACM Program. Lang. 1, OOPSLA (2017), 57:1–57:30. https://doi.org/10.1145/3133881

Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014. On abstraction refinement for program
analyses in Datalog. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14,
Edinburgh, United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 239–248. https:
//doi.org/10.1145/2594291.2594327

Xin Zhang, Mayur Naik, and Hongseok Yang. 2013. Finding optimum abstractions in parametric dataflow analysis. In ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013,
Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 365–376. https://doi.org/10.1145/2491956.2462185

Received 21-OCT-2023; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/3485524
https://doi.org/10.1145/3485524
https://doi.org/10.1007/978-3-662-53413-7_24
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.4230/LIPIcs.ECOOP.2015.712
https://doi.org/10.1145/3133881
https://doi.org/10.1145/2594291.2594327
https://doi.org/10.1145/2594291.2594327
https://doi.org/10.1145/2491956.2462185

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 A Parametric Thread-Escape Analysis
	2.2 A Parametric Bayesian Program Analysis and the Abstraction Selection Problem
	2.3 Our Approach

	3 Preliminaries
	3.1 Datalog Syntax and Semantics
	3.2 Parametric Datalog Program Analysis
	3.3 Parametric Bayesian Program Analysis

	4 The BinGraph Framework
	4.1 Online Part of BinGraph
	4.2 Offline Part of BinGraph

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness
	5.3 Sensitivity Study
	5.4 Necessity to Use Two Derivation Graphs
	5.5 Scalability
	5.6 Ineffectiveness of Conventional Approaches

	6 Related Work
	7 Conclusion
	References

