
Scaling Abstraction Refinement for Program Analyses in

Datalog using Graph Neural Networks

ZHENYU YAN, Peking University, China
XIN ZHANG∗, Peking University, China
PENG DI, Ant Group, China

Counterexample-guided abstraction refinement (CEGAR) is a popular approach for automatically selecting
abstractions with high precision and low time costs. Existing works cast abstraction refinements as constraint-
solving problems. Due to the complexity of these problems, they cannot be scaled to large programs or
complex analyses. We propose a novel approach that applies graph neural networks to improve the scalability
of CEGAR for Datalog-based program analyses. By constructing graphs directly from the Datalog solver’s
calculations, our method then uses a neural network to score abstraction parameters based on the information
in these graphs. Then we reform the constraint problems such that the constraint solver ignores parameters
with low scores. This in turn reduces the solution space and the size of the constraint problems. Since our
graphs are directly constructed from Datalog computation without human effort, our approach can be applied
to a broad range of parametric static analyses implemented in Datalog. We evaluate our approach on a pointer
analysis and a typestate analysis and our approach can answer 2.83× and 1.5× as many queries as the baseline
approach on large programs for the pointer analysis and the typestate analysis, respectively.

CCS Concepts: • Software and its engineering→ Automated static analysis.

Additional Key Words and Phrases: program analysis, graph neural networks, abstraction refinement

ACM Reference Format:
Zhenyu Yan, Xin Zhang, and Peng Di. 2024. Scaling Abstraction Refinement for Program Analyses in Datalog
using Graph Neural Networks. Proc. ACM Program. Lang. 8, OOPSLA2, Article 325 (October 2024), 29 pages.
https://doi.org/10.1145/3689765

1 Introduction

Selecting appropriate abstractions for program analysis is a hard and critical problem. Coarse
abstractions tend to produce many false alarms, while fine abstractions may fail to scale to large
programs. However, existing works [Li et al. 2020; Smaragdakis et al. 2014; Yao et al. 2021] have
shown not all improvements in precision will increase time costs significantly. It is possible to
resolve more queries (i.e., assertions) without losing scalability. It is crucial to select abstractions
carefully so they balance precision and scalability.

Counterexample-guided abstraction refinement (CEGAR) [Clarke et al. 2000] is a class of query-
driven approaches for selecting abstractions wisely. CEGAR usually starts with a coarse abstraction
∗Corresponding author.

Authors’ Contact Information: Zhenyu Yan, Key Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education; School of Computer Science, Peking University, China, zhenyuyan@stu.pku.edu.cn; Xin Zhang, Key
Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education; School of Computer
Science, Peking University, Beijing, China, xin@pku.edu.cn; Peng Di, Ant Group, Hangzhou, Zhejiang, China, dipeng.dp@
antgroup.com.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART325
https://doi.org/10.1145/3689765

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

HTTPS://ORCID.ORG/0009-0007-6181-6205
HTTPS://ORCID.ORG/0000-0002-1515-7145
HTTPS://ORCID.ORG/0000-0002-5799-5876
https://doi.org/10.1145/3689765
https://orcid.org/0009-0007-6181-6205
https://orcid.org/0000-0002-1515-7145
https://orcid.org/0000-0002-5799-5876
https://doi.org/10.1145/3689765
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689765&domain=pdf&date_stamp=2024-10-08

325:2 Zhenyu Yan, Xin Zhang, and Peng Di

to resolve given queries. If it fails to resolve any query, it will refine the abstraction by analyzing
counterexamples that hinder resolving failed queries. By refining certain abstraction parameters,
CEGAR usually leads to abstractions that are just fine enough to resolve the queries. Problems of
analyzing counterexamples and then refining abstractions are typically cast as constraint-solving
problems [McMillan 2003; Zhang et al. 2014]. While constraint solvers have made great strides in
recent years, it is still hard to scale them to problems that are produced by analyzing large programs
due to the complexities of constraint problems. Furthermore, CEGAR-based approach sometimes
may refine abstractions unnecessarily, as the constraint problems only encode why the current
abstraction does not work but cannot predict accurately how unseen abstractions would work.

To solve this problem, our key idea is that we can scale abstraction refinement using deep learning.
Deep learning has demonstrated its power to solve complex problems in many applications [Jumper
et al. 2021; Silver et al. 2016], including constraint solving [Lederman 2021; Zhang et al. 2020]. In our
case, our goal is not to simply offer a more scalable alternative to constraint solving but to be more
effective in finding good abstractions. However, to apply deep learning effectively, we face three
challenges. First, how do we apply deep learning to a large range of analyses without requiring
heavy engineering from analysis designers? Second, as mentioned above, simply solving constraint
problems may refine abstractions unnecessarily. How can we select abstraction refinements that are
truly useful for improving analysis precision? Third, in practice, we find that while learning-based
approaches are effective in pruning parts of abstraction parameters that do not need to be refined,
it is hard for them to identify exactly the parts that need to be refined. This is because multiple
parameters can be helpful for resolving a given query while refining just part of them may suffice.
However, since all these parameters are helpful, learning-based approaches tend to refine them all,
resulting in overly precise abstractions with higher time and space costs.
To address the first challenge, we target program analyses expressed in Datalog and propose a

general framework that translates abstraction refinement problems into classification problems
using neural networks. Datalog is a logic programming language that has been used widely in
recent years to express various program analyses [Bravenboer and Smaragdakis 2009; Madsen et al.
2016; Naik 2011]. Its declarative nature and powerful runtime allow analysis designers to focus on
analysis specifications without worrying much about implementation details. Furthermore, the
result of a Datalog-based analysis automatically forms a hypergraph. We propose an approach to
transform the hypergraph into a graph. Our graph neural network (GNN) then takes the graph and
filters out unhelpful parameters. The input features of our approach are directly extracted from
the derivation of the target analysis. This is different from existing learning-based abstractions
selection works [Jeon et al. 2019, 2020]. For example, Jeon et al. [2019] relies on hand-crafted
syntactic features and Jeon et al. [2020] relies on graphs designed by experts and a predefined
feature description language. Therefore, though their approaches achieve good performances in
pointer analysis, it can be hard to apply their approaches to other analyses. To show our generality,
we run our approach on a pointer analysis and a typestate analysis and the result shows that our
approach generalizes well among those two analyses.

To tackle the second challenge that constraint-solving approaches may refine unhelpful parame-
ters, we design an algorithm to filter out unhelpful parameters in the training data. Given refinement
traces of constraint-solving approaches, our algorithm iteratively checks whether each refined
parameter is truly useful for resolving queries. Then, our algorithm looks for helpful parameters
that are not selected in the given traces. By learning from processed traces, our neural network can
ignore most unhelpful parameters and focus more on helpful parameters.
For the third challenge that learning-based approaches cannot accurately select a proper set

of parameters, we use our neural network to filter out unhelpful parameters and then apply a
constraint solver to exactly identify the refinement. In this way, we combine the strengths of the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:3

Refiner
(MaxSat solver)

Graph
Neural
Network

Abstraction

Static analyzer
(Datalog solver)

Program & queries

Resolved queries

Unresolved queries

Counterexample
(derivation graph) transformation

Fig. 1. Workflow of our approach.

neural approach and the traditional constraint-solving approach, overcoming the neural network’s
tendency to select toomany parameters and the constraint-solving approach’s potential for selecting
unhelpful parameters. Since the neural network only affects the abstraction selection, as long as all
abstractions from the family are all sound (which is usually the case), soundness will be preserved.

We have instantiated our approach on a CEGAR framework for Datalog-based analyses proposed
by Zhang et al. [2014]. In this framework, the constraint solver is a partial weighted maximum

satisfiability (MaxSat) solver [Li andManyà 2021]. To demonstrate the effectiveness of our approach,
we have applied it to a context-sensitive, flow-insensitive pointer analysis and a context/flow-
sensitive typestate analysis. The experiment result shows that given the same timeout threshold,
our approach can answer 2.83× and 1.5× asmany queries as the baseline approach on large programs
for the pointer analysis and the typestate analysis, respectively.

In summary, our work makes the following contributions:
• We have proposed a general framework to scale abstraction refinements for Datalog-based
program analyses by leveraging graph neural networks.
• We have designed an algorithm to improve training data quality by identifying effective
refinements selected by existing traces and other unselected alternative effective refinements.
• We have implemented our framework and evaluated it using two analyses. The results show
that our approach effectively increases the number of resolved queries on large programs
where the baseline approach fails to scale.

2 Overview

Figure 1 presents the high-level workflow of our work, emphasizing the role of our graph neural
network. Our approach formulates the calculation (i.e., derivation graph) of a parametric static
analyzer as MaxSat constraints, incorporating costs of refining abstraction parameters and the
requirement to resolve queries. The graph neural network filters abstraction parameters to prune
the MaxSat problem, and the MaxSat solver determines the next abstraction to try for the
static analyzer by solving the MaxSat problem. The goal of our approach is to find one of the
(approximately) cheapest abstractions among abstractions that can resolve the most queries (see
§ 3.3).
We illustrate our approach by applying a pointer analysis to a small Java program shown in

Figure 2a. This program contains two classes implementing the interface Dog, named Corgi and
Teddy. The program creates an object for each class and passes them through identity methods.
The query is to determine what objects corgi3 may point to.

A pointer analysis typically calculates the set of objects that each pointer may point to throughout
the program’s execution. This is achieved by propagating points-to information through assign-
ments and argument passing. In this case, dog in id1 will be assigned with either corgi1 or teddy1.
Since corgi1 may point to a Corgi object and teddy1 may point to a Teddy object, the type of dog in

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

325:4 Zhenyu Yan, Xin Zhang, and Peng Di

1 public i n f e r f a c e Dog { void bark () ; }
2 public c l a s s Corg i implements Dog { / ∗ . . . ∗ / }
3 public c l a s s Teddy implements Dog { / ∗ . . . ∗ / }
4 public Dog i d 1 (Dog dog) { return dog ; }
5 public Dog i d 2 (Dog dog) { return dog ; }
6 public s t a t i c void main (S t r i n g a rg s []) {
7 Dog c o r g i 1 = new Corg i () ;
8 Dog teddy1 = new Teddy () ;
9 Dog c o r g i 2 = i d 1 (c o r g i 1) ;
10 Dog teddy2 = i d 1 (t eddy1) ;
11 Dog c o r g i 3 = i d 2 (c o r g i 2) ;
12 c o r g i 3 . bark () ; / / que ry q

13 }
(a) Example program.

MayPointTo (𝑢 , 𝑜𝑏 𝑗) : − MayPointTo (𝑣 , 𝑜𝑏 𝑗) , Assignment (𝑢 , 𝑣) .
Assignment (𝑣 , 𝑢) : − Ass ignmentCI (𝑣 , 𝑢 , 𝑖) , CI (𝑖) .
Assignment (𝑣 , 𝑢) : − AssignmentCS (𝑣 , 𝑢 , 𝑖) , CS (𝑖) .
. . .

(b) Datalog rules of a parametric pointer analysis.

MayPointTo (0 : main : co rg i 1 , Corg i) .
MayPointTo (0 : main : teddy1 , Teddy) .
Ass ignmentCI (0 : i d 1 : dog , 0 : main : co rg i 1 , 9 : i d 1) .
AssignmentCS (9 : i d 1 : dog , 0 : main : co rg i 1 , 9 : i d 1) .
Ass ignmentCI (0 : main : co rg i 2 , 0 : i d 1 : dog , 9 : i d 1) .
AssignmentCS (0 : main : co rg i 2 , 9 : i d 1 : dog , 9 : i d 1) .
Ass ignmentCI (0 : i d 1 : dog , 0 : main : teddy1 , 1 0 : i d 1) .
AssignmentCS (1 0 : i d 1 : dog , 0 : main : teddy1 , 1 0 : i d 1) .
. . .

(c) Input tuples extracted from the program.

CI (9 : i d 1) . CI (1 0 : i d 1) . CI (1 1 : i d 2) .

(d) Analysis parameters of the program.

Assignment (0 : i d 1 : dog , 0 : main : c o r g i 1) .
MayPointTo (0 : i d 1 : dog , Corg i) .
Assignment (0 : i d 1 : dog , 0 : main : t eddy1) .
MayPointTo (0 : i d 1 : dog , Teddy) .
Assignment (0 : main : co rg i 2 , 0 : i d 1 : dog) .
MayPointTo (0 : main : co rg i 2 , Corg i) .
MayPointTo (0 : main : co rg i 2 , Teddy) .
Assignment (0 : i d 2 : dog , 0 : main : c o r g i 2) .
MayPointTo (0 : i d 2 : dog , Corg i) .
MayPointTo (0 : i d 2 : dog , Teddy) .
Assignment (0 : main : co rg i 3 , 0 : i d 2 : dog) .
MayPointTo (0 : main : co rg i 3 , Corg i) .
MayPointTo (0 : main : co rg i 3 , Teddy) .
(e) Tuples derived under context-insensitivity.

MayPointTo
(0:main:corgi1,Corgi)

(𝑟11, 𝑟12, . . . , 𝑟1𝑛)

MayPointTo
(0:id1:dog,Corgi)

(𝑟11, 𝑟12, . . . , 𝑟1𝑛)

MayPointTo
(0:main:corgi2,Corgi)

(𝑟11, 𝑟12, . . . , 𝑟1𝑛)

Assignment
(0:id1:dog, corgi1)

(𝑟31, 𝑟32, . . . , 𝑟3𝑛)

Assignment
(corgi2, 0:id1:dog)

(𝑟31, 𝑟32, . . . , 𝑟3𝑛)
CI(10:id1)
(𝑟41, 𝑟42, . . . , 𝑟4𝑛)

(f) Embedding of part of Figure 2g.
MayPointTo

(0:main:corgi1,Corgi)
MayPointTo

(0:main:teddy1,Teddy)

MayPointTo
(0:id1:dog,Corgi)

MayPointTo
(0:main:corgi2,Corgi)

Assignment
(0:id1:dog, corgi1)

Assignment
(0:main:corgi2, 0:id1:dog)

MayPointTo
(0:id1:dog,Teddy)

MayPointTo
(0:main:corgi2,Teddy)

Assignment
(0:id1:dog, teddy1)

Assignment
(0:main:corgi2, 0:id1:dog)

CI(9:id1) CI(10:id1)

MayPointTo
(0:id2:dog,Corgi)

MayPointTo
(0:main:corgi3,Corgi)

Assignment
(0:id2:dog, corgi2)

Assignment
(0:main:corgi3, 0:id2:dog)

MayPointTo
(0:id2:dog,Teddy)

MayPointTo
(0:main:corgi3,Teddy)

Assignment
(0:id2:dog, corgi2)

Assignment
(0:main:corgi3, 0:id2:dog)

CI(11:id2)

(g) Part of the derivation graph of the example in Figure 2a.

Fig. 2. A motivating example.

id1 cannot be determined. This is how context-insensitive pointer analysis works. To make the anal-
ysis more precise, a context-sensitive pointer analysis is needed. One well-known context-sensitive
pointer analysis is k-CFA, it clones method bodies based on call sites [Shivers 1991] (equivalent to
replacing id1 at Line 9 with a functionally equivalent function named 9:id1), so it can distinguish
the dog variable in id1 called by Line 9 (denoted as 9:id1:dog) from the one called by Line 10
(denoted as 10:id1:dog). Therefore, pointer analysis can make sure that 9:id1:dog must only point
to the Corgi object. Analogously, corgi2 and corgi3 in the main function must only point to the
Corgi object. Finally, the analysis concludes that only the barkmethod of class Corgiwill be invoked

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:5

at Line 12. Though context sensitivity improves the precision of pointer analysis, it increases the
time and space cost to run a pointer analysis. So for real-world programs, people only pick certain
parts of program components (such as call sites in k-CFA) to be context-sensitive to trade off time
and precision. In this example, analyzing the id1 at Line 9 or Line 10 in a context-sensitive way
can resolve the query, because it distinguishes the two Dog objects. Thus, refining id2 at Line 11 is
unnecessary.
We formalize the aforementioned may-point-to flows between variables in the Datalog rules

presented in Figure 2b, where 𝑘 of k-CFA can be either 0 or 1 for each call site (stands for context
insensitivity and context sensitivity, respectively). May-point-to flow is transformed into tuples
represented in Figure 2c and 2d. Certain rules related to context calculation, argument passing, and
method return values are omitted for clarity, and their results are denoted using AssignmentCI and
AssignmentCS. Variables are represented in the format context:method:variable to differentiate
variables with the same name in different contexts or methods. The first rule in Figure 2b propagates
the may-point-to relation along dataflows in the program. It means that if a variable v may point to
an object obj and there is a value flow (assignment, argument passing, and so on) from v to u, umay
also point to the object obj. The subsequent rules extract dataflows from argument passing and
return values of functions. AssignmentCI and AssignmentCS are calculated beforehand, representing
dataflows under context insensitivity and sensitivity, respectively. If a call site i is associated
with CI, related AssignmentCI tuples will be appended to the set of Assignment tuples, so that the
function call at i will be analyzed context-insensitively. Therefore, this analysis is parameterized in
a way that each call site is associated with either a CI or CS tuple, representing context insensitivity
and sensitivity. Those CI and CS tuples are called (abstract) parameter tuples, which stands for the
parameters of the analysis. Given a set of parameter tuples, the analyzer will compute all tuples
that can be derived from other tuples. For the parameter set shown in Figure 2d, the tuples derived
are shown in Figure 2g (AssignmentCI and AssignmentCS are ignored for simplicity). The derivation
forms a hypergraph where every hyperedge may have multiple heads. Every hyperedge stands for
a derivation relation, it starts from the condition(s) and points to the conclusion.
To avoid analyzing all call sites context-sensitively, which is impractical for most real-world

programs, our method effectively selects context sensitivity based on iterative counterexample-
guided abstraction refinement: We start with the coarsest abstraction that analyzes all method
calls context-insensitively, the Datalog solver computes tuples derived from input tuples and rules.
Then, in each iteration, the MaxSat solver will select a new abstraction according to current
counterexamples (paths to queries in the derivation graph). We then use the new abstraction to
analyze the program again. This process stops until all queries are resolved, the abstraction cannot
be further refined, or the time threshold is met. Since new abstractions are more precise than old
abstractions, the selection of new abstractions is named abstraction refinement. Figure 2g shows the
derivation of both MayPointTo(0:id1:dog,Corgi) and MayPointTo(0:id1:dog,Teddy). This indicates
that dog in id1 may point to either a Corgi or a Teddy object. Consequently, the query q is
irresolved under context-insensitivity.
Therefore, to analyze the program more precisely, we refine our abstraction by replacing some

CI tuples with their corresponding CS tuples. Because paths in a derivation graph represent the
derivation relation between tuples, to eliminate a query, we need to cut all paths to the query in the
derivation graphs by refining certain parameter tuples. For example, if CI(10:id1) is removed, the
path to Assignment(0:id1:dog, corgi1) will be cut off, and therefore MayPointTo(0:main:corgi3,

Corgi) will also be eliminated. Constraint solvers are usually used to find the smallest set of param-
eter tuples (which is CI here) that cuts off the paths of as many queries as possible. According to the
derivation graph shown in Figure 2g, the precision of q may be affected by all the parameter tuples.
However, this strategy does not guarantee the elimination of the query. Because we do not simply

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

325:6 Zhenyu Yan, Xin Zhang, and Peng Di

remove the parameter tuple but replace it with a more precise one. The new (refined) parameter
tuple may generate the query in another path. For example, although removing CI(11:id2) also
cuts off the path to MayPointTo(0:main:crogi3,Teddy), adding CS(11:id2) will create another path
to it. As a result, refining it will not resolve the query. But by only looking at the derivation graph,
as previous works [Zhang et al. 2014] do, the MaxSat solver cannot figure out unhelpful parameter
tuples. Therefore, even though the MaxSat solver can return one of the smallest sets of CI that cut
off all certain paths, that set may contain unhelpful parts, which makes abstraction refinement take
more iterations. Furthermore, due to unnecessary refinements, the analyzer may take more time
and space to analyze programs and the analysis may even become unscalable.

Refinement Space Pruning. Our approach utilizes a graph neural network to reduce the size
of MaxSat problems and guide the MaxSat solver in selecting more effective parameter tuples.
Unlike the aforementioned learning-based approaches, our approach does not rely on manual
feature engineering. Instead, our graph neural network takes the automatically extracted derivation
graph as input. It embeds nodes into real vectors based on their relations and neighborhoods (which
represent tuples that derive it and tuples it derives). Then, our approach uses a fully connected
neural network to transform these vectors into real values representing the usefulness of parameter
tuples. This enables us to prune unhelpful tuples and improve the analysis efficiency.
Our approach involves embedding nodes from derivation graphs into real vectors using a two-

step process. First, we map each node to initial feature vectors based on their relation names.
Then, we perform message passing to aggregate information from node neighborhoods and update
the feature vectors accordingly. This captures information about high-order neighbors. Next, the
feature vectors are passed through a two-layer fully connected neural network to generate scalar
scores for each parameter tuple. Unhelpful tuples are excluded based on their scores, improving
the efficiency of the refinement process. Overall, our approach effectively embeds nodes into real
vectors and prunes unhelpful parameter tuples, leading to accelerated solving of the MaxSat solver
and improved performance.
Learning. Since we aim to filter out unhelpful abstraction parameters, this problem can be

modeled as a binary classification problem. We run a conventional refinement algorithm [Zhang
et al. 2014] on small benchmarks and collect the derivation graphs and refinement traces that are
identified using a MaxSat solver. Then we run a data processing algorithm as described in § 4.4 to
mark helpful parameters as positive samples, while the remaining parameters are negative samples.

Concretely, our approach performs a backward iteration through the trace. For every refinement,
we first filter out unhelpful parameters that are refined in this refinement. Then we look for other
helpful parameters that are not refined and add them to the set of helpful parameters. In this
example, suppose the trace chooses to refine CI(11:id2) at the first refinement and refine CI(9:id1)
at the second refinement. We process the last refinement first. The second refinement in this
example refines the abstraction from 𝐴1 ={CS(11:id2)} to 𝐴2 ={CS(11:id2), CS(9:id1)} (CI tuples
are omitted for simplicity). Since𝐴1 cannot eliminate the query, we can conclude that the parameter
refined in this refinement (CS(9:id1)) is helpful. Then, we look for other helpful parameters that
are not refined. We achieve this goal by trying all other abstractions like {CS(11:id2), 𝑝}. Those
parameters 𝑝 that eliminate 𝑞 will also be marked as helpful. In this example, only CS(10:id1)

satisfies this condition. After processing this refinement, we add (𝐴1, {CS(9:id1), CS(10:id1)}) to
our training dataset, which means that our neural network should classify {CS(9:id1), CS(10:id1)}
as helpful given abstraction 𝐴1 as its input.1 Then we check the last but one refinement. Because
neither 𝐴0 ={} nor 𝐴1 ={CS(11:id2)} can eliminate the query, we cannot determine whether

1Since analyzers generate derivation graphs using the given abstractions, derivation graphs can be determined by abstractions.
Therefore, we denote abstractions as inputs for simplicity.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:7

CS(11:id2) is helpful (Some queries may only be eliminated by the coexistence of multiple parame-
ters. therefore, refining a parameter may not eliminate any query until some other parameters are
also refined.). To tackle this problem, helpful parameters in later refinements (CS(9:id1) in this
example) are added to current abstractions. By adding CS(9:id1) to 𝐴0 and 𝐴1, We get auxiliary
abstractions 𝐴′0 ={CS(9:id1)} and 𝐴′1 ={CS(9:id1),CS(11:id2)}. Since 𝐴′1 can eliminate the query
q, the helpfulness of CS(11:id2) can be determined by running the analysis with the abstraction
𝐴′0, as 𝐴

′
0 = 𝐴′1 \ {CS(11:id2)}. We run the analysis with 𝐴′0 and find out that {CS(9:id1)} is

enough to eliminate 𝑞, so we can safely mark parameters refined this refinement (CS(11:id2))
as unhelpful. Since no helpful parameter is refined in this refinement, we do not look for other
helpful parameters. According to properties of pointer analysis (for example, monotonicity), helpful
parameters in later refinements can be considered helpful for earlier refinements. Therefore, we
add {CS(9:id1), CS(10:id1)} to the set of helpful parameters of𝐴0. Finally, this refinement is added
to the dataset as (𝐴0, {CS(9:id1), CS(10:id1)}). After generating the dataset, we train our graph
neural network using the standard settings of binary classification.

3 Preliminaries

In this section, we introduce the necessary notations before introducing our approach. In particular,
we will define the syntax and semantics of Datalog(§ 3.1), parametric program analyses(§ 3.2), and
the cheapest abstraction problem(§ 3.3), which is the problem that we try to solve approximately.

3.1 Datalog Syntax and Semantics

Figure 3 shows the syntax and denotational semantics of Datalog, where ★ represents zero or
more occurrences of objects. Figure 3a shows the syntax. The topmost component is a program,
which comprises zero or more constraints. Every constraint has a head and a tail, representing its
conclusion and conditions, respectively. Head is a literal and tail is formed by zero or more literals.
Every literal is a relation name followed by arguments, which are either variables or constants.
Specially, tuples are literals whose arguments are all constants.
Figure 3b shows the denotational semantics. Every Datalog program 𝐶 outputs a set of tuples.

Datalog programs typically come with input tuples, but they can be encoded as constraints without
conditions. So we omit them for simplicity. Every constraint of the form 𝑙0 : −𝑙1, . . . , 𝑙𝑛 is interpreted
as a rule: for any substitution 𝜎 , if 𝜎 (𝑙1), . . . 𝜎 (𝑙𝑛) are all derived, 𝜎 (𝑙0) will be derived. For example,
rule A(x):-B(x,y),C(y) means that A(x) is derived if there exists at least one y such that B(x,y)
and C(y) are both derived. More specifically, if B(1,2) and C(2) are derived, then we can pick
𝜎 = [𝑥 → 1, 𝑦 → 2], so that 𝜎 (A(x)) = A(1) is derived. We here abuse the notation of 𝜎 so it can
apply to a literal and substitute all variables in the literal with constants. In particular, if a constraint
has no tail literal, we consider its head literal as derived. The denotation of a Datalog program 𝐶

is the least fixpoint of denotations of its constraints. It is known that the denotation of a Datalog
program is monotonic: if 𝐶1 ⊆ 𝐶2, then ⟦𝐶1⟧ ⊆ ⟦𝐶2⟧.

3.2 Parametric Program Analysis

We now introduce parametric program analyses in Datalog, which include parameters that allow
users to control the granularity of their abstractions, thereby controlling their precision and
scalability. For example, k-CFA [Shivers 1991] is a typical family of such analyses. In k-CFA, every
method invocation is combined with a parameter that determines how this invocation should be
analyzed (context insensitively/context sensitively), like the example in the Overview.

In a parametric program analysis, we introduce a special set of tuples called parameter tuples, or
parameters for short. A parametric program analysis in Datalog comprises three parts:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

325:8 Zhenyu Yan, Xin Zhang, and Peng Di

(program) 𝐶 ::= 𝑐★ (constraint) 𝑐 ::= 𝑙 : −𝑙★
(literal) 𝑙 ::= 𝑟 (𝑎★) (argument) 𝑎 ::= 𝑣 | 𝑑

(variables) 𝑣 ∈ V = {𝑥,𝑦, . . . } (constants) 𝑑 ∈ D = {0, 1, . . . }
(relations) 𝑟 ∈ R (tuples) 𝑡 ∈ T = R × D★

(a) Syntax of Datalog.

⟦𝐶⟧ = lfp 𝐹𝐶 ∈ P(T)
𝐹𝐶 , 𝑓𝑐 ∈ P(T) → P(T)

𝐹𝐶 (𝑇) = 𝑇 ∪
⋃
{𝑓𝑐 (𝑇) | 𝑐 ∈ 𝐶}

𝑓𝑐 (𝑇) = {𝜎 (𝑙0) | ∃𝜎 ∈ V ↦→ D.

𝜎 (𝑙𝑘) ∈ 𝑇 for 1 ≤ 𝑘 ≤ 𝑛}

(b) Denotational semantics of Datalog.

Fig. 3. Syntax and denotational semantics of Datalog.

• a set of constraints that represent the analysis specification which is consistent across different
programs;
• a set of input tuples extracted from a specific program that represent its facts;
• a set of parameter tuples specifying the precision of analysis across different components.

We denote running a parametric analysis as ⟦𝐶 ∪𝐴⟧, where 𝐶 denotes the first two parts and 𝐴
denotes the last part. Throughout the paper, we assume that any abstraction 𝐴 is sound.

Example. Consider the example Datalog analysis in the overview. Figure 2b shows the general
analysis rules that hold across different programs. They represent how may-point-to tuples grow
with assignments and how the analysis handles context sensitivities based on the parameters.
Figure 2c shows the input tuples that represent program facts, and they are automatically extracted
from a given program. Here, they are may-point-to facts that are generated from new statements,
parameter passing, and so on. Figure 2d shows the parameters. Each represents whether a given
call site is handled context-insensitively or -sensitively (1-CFA). Here, contents in Figure 2b and
Figure 2c together constitute 𝐶 , while Figure 2d shows 𝐴. ⟦𝐶 ∪ 𝐴⟧ stands for the result of the
analysis under context insensitivity, which is shown as Figure 2e.

A query is a special tuple that represents a program property of interest:

𝑞 ∈ Q ⊆ T.

The set of queries varies according to analyses. For example, for a pointer analysis, queries can
be “variable v may point to null” and for typestate analysis, queries can be “file object f is never
closed”. When running an analysis on a program, we have a set of queries Q we want to answer.
We say a query 𝑞 is resolved using abstraction 𝐴 if 𝑞 ∉ ⟦𝐶 ∪ 𝐴⟧. We also say 𝐴 is a viable
abstraction to 𝑞. We use 𝑅(𝐴,𝐶,𝑄) to denote the set of queries that are resolved using abstraction
𝐴: 𝑅(𝐴,𝐶,𝑄) = 𝑄 \ ⟦𝐶 ∪𝐴⟧.

On a program, given a set of queries 𝑄 and a family of abstractions A, we now define a precision
preorder ⪯ and an efficiency (scalability) preorder ⊑. We say abstraction𝐴1 is not more precise than
𝐴2 iff the analysis can not resolve more queries with 𝐴1: 𝑅(𝐴1,𝐶,𝑄) ⊆ 𝑅(𝐴2,𝐶,𝑄) ⇔ 𝐴1 ⪯ 𝐴2.
Modeling scalability is more complex and we rely on domain knowledge to define the scalability
preorder for a given analysis. For example, in k-CFA, an abstraction is an array of natural numbers
with the fixed length, each of which represents the context depth for each call site and object. We
say 𝐴1 ⊑ 𝐴2 iff ∀𝑖 ∈ [0, |𝐴1 |] .𝐴1 [𝑖] ≥ 𝐴2 [𝑖], which means 𝐴1 is more context-sensitive.

Example. Consider the example in the overview section. MayPointTo(0:main:corgi3, Teddy)

is the only query (denoted as q). Abstraction 𝐴1 = {CI(9:id1), CI(10:id1), CI(11:id2)} cannot
resolve q while 𝐴2 = {CS(9:id1), CI(10:id1), CI(11:id2)} can. Therefore, 𝐴1 ⪯ 𝐴2. In terms of the
scalability preorder, we follow the aforementioned preorder for k-CFA. In particular, CS is considered
to have a context depth of 1 while CI is considered to have a context depth of 0. Therefore, 𝐴2 ⊑ 𝐴1.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:9

Algorithm 1 Iterative abstraction refinement with a graph neural network.
Require: Analysis𝐶 , abstraction family A, queries𝑄
Ensure: Resolved queries 𝑄𝑅 , final abstraction 𝐴

1: 𝐴← chooseInit(A)
2: 𝑄𝑅 ← ∅
3: repeat
4: (𝐷,𝑄𝑅) ← analyze(𝐶 , 𝐴, 𝑄) ▷

𝐷 is a derivation.

5: 𝑄𝑅 ← 𝑄𝑅 ∪𝑄𝑅

6: 𝐺 ← transform(𝐷 , 𝑄) ▷ 𝐺 is a graph.
7: scores← GNN(𝐺)
8: 𝐴, 𝑄𝐹 ←MaxSat(𝐷 , scores)
9: 𝑄 ← 𝑄 \𝑄𝑅 \𝑄𝐹

10: until Q = ∅
11: return (𝑄𝑅, 𝐴)

3.3 Problem Statement

The primary objective of our approach is to discover a cheap abstraction that can effectively resolve
a maximum number of queries.

Definition 3.1 (Cheapest Abstraction Problem.). Given an analysis 𝐶 , a set of queries 𝑄 , and a
sound abstraction family (A, ⪯, ⊑), let 𝑅(A,𝐶,𝑄) be a maximum set of queries that can be resolved
by an abstraction in A, that is

∃𝐴1 ∈ A.𝑅(𝐴1,𝐶,𝑄) = 𝑅(A,𝐶,𝑄) ∧ ∀𝐴 ∈ A.𝑅(A,𝐶,𝑄) ⊇ 𝑅(𝐴,𝐶,𝑄).
The cheapest abstraction problem is to find a cheapest 𝐴𝑚𝑖𝑛 that can resolve these many queries

|𝑅(𝐴𝑚𝑖𝑛,𝐶,𝑄) | = |𝑅(A,𝐶,𝑄) | ∧ ∀𝐴.|𝑅(𝐴,𝐶,𝑄) | = |𝑅(A,𝐶,𝑄) | ⇒ 𝐴 ⊑ 𝐴𝑚𝑖𝑛 .

4 Our Framework

Algorithm 1 shows our general framework to solve the cheapest abstraction problem approx-
imately. It starts with an abstraction by calling chooseInit at Line 1, whose implementation
depends on the specific analysis – usually it returns the cheapest abstraction in the family (for
example, fully context-insensitive for 𝑘-CFA). Then the framework enters the refinement loop (Line
3 - 10). During every iteration, it analyzes the program using the current abstraction (Line 4) and
returns the derivation graph and queries resolved in this iteration, updates the set of all queries
resolved (Line 5), and then transforms the derivation that is extracted from the Datalog solver into a
graph (Line 6). Then our framework feeds the graph into our neural network which assigns a score
to each parameter tuple (Line 7). Using the scores and the derivation, our framework formulates a
MaxSat problem which modifies the one introduced by Zhang et al. [2014]. By solving the MaxSat
problem, the framework gets the next abstraction to try and a set of queries that our framework
gives up upon (Line 8). These queries either cannot be resolved with any abstraction in A or its
viable abstractions are pruned by our graph neural networks. Our experiment shows that the latter
case happens rarely in practice. Then our framework updates the query set 𝑄 by excluding the
resolved queries and the queries that it gives up upon (Line 9). The iteration continues until 𝑄
becomes empty or the overall process exceeds a given time limit. It is obvious that our approach is
always sound as long as abstractions in the family are sound.

4.1 From Derivation Graphs to GNN Inputs

We first explain how to extract derivations from Datalog solvers (the analyze function in Algo-
rithm 1) and build an input graph to our GNN (the transform function in Algorithm 1).

A derivation is the set of instance constraints in the least fixpoint computation of Datalog:

𝐷 (𝐶) = {𝜎 (𝑙0) : −𝜎 (𝑙1), ..., 𝜎 (𝑙𝑘) | 𝑙0 : −𝑙1, ..., 𝑙𝑘 ∈ 𝐶∧∀𝑖 ∈ [1, 𝑘] .𝜎 (𝑙𝑘) ∈ ⟦𝐶⟧∧𝑘 ≥ 0∧𝜎 ∈ V ↦→ D}.
While some Datalog solvers have built-in support to return such derivations, we propose an

extraction approach independent of solvers by modifying the given Datalog program. Briefly, for

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

325:10 Zhenyu Yan, Xin Zhang, and Peng Di

each constraint 𝑙0 : −𝑙1, ..., 𝑙𝑛 , we add a constraint in the following form:

𝑟𝑐𝑛 (𝑣1, ..., 𝑣𝑘) : −𝑙1, ..., 𝑙𝑛, where 𝑣1, ..., 𝑣𝑘 are the variables that appeared in the original constraint.

Here 𝑟𝑐𝑛 is a new relation that is unique for each constraint. By inspecting 𝑟𝑐𝑛 , we can obtain
all instances of the corresponding constraint that are triggered in the least fixpoint compu-
tation. For example, given the rule A(y):-B(x,y),C(y,z)., an additional rule is introduced as
A0(x,y,z):-B(x,y),C(y,z).. Therefore, by inspecting elements of relation A0, we know not only
on what elements y the relation A holds, but also how they are derived. For example, if A0(0,1,2)
holds, then A(1) can be derived from B(0,1) and C(1,2).

The derivation naturally forms a hypergraph, where each hyperedge corresponds to an instance
constraint. For example, the instance constraint deriving MayPointTo(0:id1:dog, Corgi) in fig-
ure 2b corresponds to a directed hyperedge from

{
MayPointTo(0:main:corgi1, Corgi), Assignment(

0:id1:dog, 0:main:corgi1)
}
to

{
MayPointTo(0:id1:dog, Corgi)

}
. Thus, the part of the derivation

that derives MayPointTo(0:main:corgi2, Corgi) can be modeled as a hypergraph in Figure 4a.
Next, our framework translates a derivation hypergraph into a graph that can be consumed by

our graph neural network. In particular, it converts the graph into a simple graph and removes
information that cannot be generalized across programs to avoid over-fitting. More concretely,
for each vertex, which is a tuple, we only keep the relation name as its information because the
constants are specific to given programs. We represent the relation name using a one-hot encoding
scheme, so that the vertex with the 𝑖-th relation name will be assigned a tuple (0, . . . , 0, 1, 0, . . . , 0)
where the only 1 is in the 𝑖-th position. Additionally, we assign two binary flags to present more
information, one indicating whether the tuple is a query and the other indicating whether the
tuple is a parameter. The query flag is important for identifying the goal of our analysis, while
the parameter flag is important as it identifies the tuples that the neural network will evaluate.
Consequently, the complete vertex information is encoded in a binary format using 0-1 values.
For each hyperedge, we add a directed edge from each of its source vertexes to its destination

vertex. We also assign it a label (𝑓 𝑜𝑟𝑤𝑎𝑟𝑑, 𝑐, 𝑖) where 𝑐 is the original (template) constraint, and
𝑖 is the index of the source vertex in the constraint. In addition, a reverse edge is added for each
directed edge with a label (𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑, 𝑐, 𝑖). This design allows bi-directional message passing in
our network. So every tuple gets information from the tuples it derives and the tuples derive it.
Example. The derivation hypergraph in Figure 4a is converted into a simple graph shown in

Figure 4b. Each vertex is labeled with its relation name, whether it is a parameter, and whether
it is a query. The figure also shows the 0-1 encoding for each vertex. Since there are 3 relations
in the graph, the first 3 bits stand for the relation name for every vertex: 𝑣2 and 𝑣4 belong to
Assignment, so their first entries are 1; 𝑣5 belongs to CI, so its second entry is 1. Other vertexes
belong to MayPointTo, so their third entries are 1. Different colors or line styles (solid or dashed)
stand for different edge labels. Following this, the hypergraph with 6 vertexes and 4 hyperedges is
transformed into a graph with 6 vertexes in 3 vertex labels and 12 edges in 6 edge labels.

4.2 Graph Neural Network Architecture

We use a classical message-passing-style graph neural network workflow. First, we transform
the discrete 0-1 encoding of vertexes into real vectors. Then, a process called message passing is
repeated for a predefined number of iterations. During its execution, each vertexes’ feature vector
is updated based on the feature vectors of its neighbors and itself. We next explain the process in
detail.
First, each vertex is assigned to a feature vector of reals. These vectors are initially calculated

from the aforementioned 0-1 encodings. More concretely, we use a learnable matrix 𝐸 ∈ R𝑇×𝐻 to
transform encodings of size𝑇 into real vectors of size 𝐻 . For every vertex 𝑖 , ℎ𝑡𝑖 represents its feature

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:11

𝑣1 : MayPointTo
(0:main:corgi1, Corgi)

𝑣2 : Assignment
(0:id1:dog, 0:main:corgi1)

𝑣3 : MayPointTo
(0:id1:dog, Corgi)

𝑣4 : Assignment
(0:main:corgi2, 0:id1:dog)

𝑣5 : CI(10:id1)

𝑣6 : MayPointTo
(0:main:corgi2, Corgi)

(a) Part of the hypergraph of program in Figure 2a.

𝑣1 : MayPointTo
is_parameter=F
is_query=F

𝑣2 : Assignment
is_parameter=F
is_query=F

𝑣3 : MayPointTo
is_parameter=F
is_query=F

𝑣4 : Assignment
is_parameter=F
is_query=F

𝑣5 : CI
is_parameter=T
is_query=F

𝑣6 : MayPointTo
is_parameter=F
is_query=F

(0, 0, 1, 0, 0)

(1, 0, 0, 0, 0)

(0, 0, 1, 0, 0)

(1, 0, 0, 0, 0)(0, 1, 0, 1, 0)

(0, 0, 1, 0, 0)

(b) Transformed graph of the hypergraph in Figure 4a.

Fig. 4. Converting a derivation hypergraph into an input graph to our graph neural network.

vector in the 𝑡-th message passing (ℎ0
𝑖 represents the initial feature vector), and 𝑡𝑖 represents the

0-1 encoding of the vertex 𝑡 . Then we have:

ℎ0
𝑖 = 𝐸 × 𝑡𝑖 .

Then, the algorithm enters message passing. In each iteration, the feature vector of each vertex
is updated by combining its feature vector and information aggregated from its neighbors. To take
edge labels into account, we apply the network architecture of R-GCN[Schlichtkrull et al. 2018],
where each edge label 𝑙 has its own learnable weight matrix𝑀𝑡

𝑙
for the 𝑡-th iteration. We use | | to

denote the concatenation of two vectors,𝑚𝑡
𝑖 to denote the aggregated message that is passed to

vertex 𝑖 in the 𝑡-th iteration, 𝑒𝑑𝑔𝑒 (𝑖) to denote the set of edges that end with 𝑖 . Each edge is a triple
(𝑗, 𝑖, 𝑙), where 𝑗 is the source vertex and 𝑙 is the label. Since our network has many layers, we add a
residual connection to avoid the vanishing gradient problem [He et al. 2016]. Formally, we have:

ℎ𝑡+1𝑖 = tanh
(
Θ𝑡 × (ℎ𝑡𝑖 | |𝑚𝑡

𝑖)
)
+ ℎ𝑡𝑖 where 𝑚𝑡

𝑖 =
∑︁

(𝑗,𝑖,𝑙) ∈𝑒𝑑𝑔𝑒 (𝑖)
𝑀𝑡

𝑙
× ℎ𝑡𝑗 .

Here, tanh is the Tanh activation function; Θ𝑡 and𝑀𝑡
𝑙
are learnable matrices of shape 2𝐻 ×𝐻 and

𝐻 × 𝐻 , respectively. And they are different across iterations (as the superscripts suggest).
The message passing process terminates after a specified number of iterations, 𝑁 . Let ℎ𝑖 = ℎ𝑁𝑖

denote the final feature vector for vertex 𝑖 . To compute the score for each parameter vertex 𝑖 , we
first process ℎ𝑖 through a two-layer perceptron to map it from a vector into a real number. We
then apply a sigmoid function to scale this real number into the range [0, 1], following common
practice in classification tasks. The higher the resulting score 𝑠𝑖 , the more helpful the neural network
considers refining the corresponding parameter would be. The formal definition is as follows:

𝑠𝑖 = sigmoid
(
𝑆2 × LeakyReLU(𝑆1 × ℎ𝑖)

)
∈ [0, 1]

where LeakyReLU(𝑥) =
{
𝑥 if 𝑥 ≥ 0
0.01𝑥 otherwise

is a classical activation function [Maas et al. 2013],

𝑆1 and 𝑆2 are learnable matrices of the perceptron.

Finally, a parameter 𝑖 is classified as unhelpful if 𝑠𝑖 < 0.5.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

325:12 Zhenyu Yan, Xin Zhang, and Peng Di

4.3 Formulating Refinement as MaxSat

We adopt the MaxSat formulation from Zhang et al. [2014] and prune parameter tuples that
are considered unhelpful by our graph neural network. MaxSat problems contain two kinds
of constraints: hard constraints (i.e., conventional SAT constraints) and soft constraints. A soft
constraint, denoted by𝑤 𝑞, means that if 𝑞 is satisfied, the solution gains weight𝑤 . MaxSat solvers
aim to find a solution that preserves all hard constraints while maximizing the sum of weights
from satisfied soft constraints.
Let the Datalog analysis be 𝐶 , the current abstraction be 𝐴, and the unresolved queries be 𝑄 .

The original MaxSat problem formulation consists of three parts. All three parts are in disjunctive
normal forms. Each tuple is translated into a boolean variable. First, a set of hard constraints
Ω𝐶 encodes the derivation. Second, there is a set of soft constraints {𝑤𝑎 𝑎 | 𝑎 ∈ 𝐴} such that∑

𝑎∈𝐴′⊆𝐴𝑤𝑎 represents the incurred cost by refining parameters in 𝐴′. Finally, there is a set of soft
constraints {𝑤 ¬𝑞 | 𝑞 ∈ 𝑄} where 𝑤 >

∑
𝑎∈𝐴𝑤𝑎 . This constraint indicates the goal is to resolve

each query but can only give up queries when even refining all parameters cannot help.
If our graph neural network considers a parameter tuple 𝑎 unhelpful, its corresponding soft

constraint will be replaced with a hard constraint, so that parameter 𝑎 will not be refined in this
refinement. In the original framework, queries given up are irresolvable under the given abstraction
family, which means that those queries cannot be eliminated with any abstraction in that abstraction
family. But in our settings, MaxSat solver may give up queries earlier when all parameters related
to them are considered unhelpful, which can be both advantageous and disadvantageous. There
exist queries that are irresolvable, which are real bugs or false positives that cannot be resolved
using the given abstraction family. Giving up on them earlier avoids over-refinement, which is
beneficial in terms of the analysis efficiency. On the other side, giving up resolvable queries affects
the performance of our approach. Therefore, we inspect how this affects the performance of our
approach in § 5.4 and the result shows that by giving up queries earlier, our approach observably
decreases the number of iterations and the size of the final abstraction with little precision loss.

4.4 Training Data Generation

Directly using refinement traces from the prior work[Zhang et al. 2014] as training data is a
possibility. However, as aforementioned, their approach of using MaxSat to produce refinement
candidates is a greedy algorithm and may lead to unnecessary refinement. And even when all
refinements are helpful, some viable parameters may be unexplored. To further improve the quality
of training data, we want to filter out unhelpful parameter tuples from the refinement traces and
add unexplored helpful parameter tuples. To have a solid foundation, we give a formal definition of
helpful parameters.

Definition 4.1 (helpful parameters.). Given a sound abstraction family (A, ⪯, ⊑), a set of queries
𝑄 , an abstraction parameter 𝑝 is helpful if

∃𝐴1 ∈ A. ∃𝑞 ∈ 𝑄. 𝑞 ∉ 𝑅(𝐴1,𝐶,𝑄) ∧ 𝑞 ∈ 𝑅(update(𝐴1, 𝑝),𝐶,𝑄)
where update(𝐴1, 𝑝) updates the corresponding part of 𝐴1 by the abstraction parameter 𝑝 .

Determining whether a parameter is helpful is generally an NP-hard problem because it is a
combinational problem. Therefore, it is impractical to iterate all abstractions and identify all helpful
parameters. Our approach provides an estimation that performs well practically.

Our algorithm is shown as Algorithm 3. We first run a vanilla CEGAR algorithm (Line 1), detailed
in Algorithm 2. This algorithm is similar to Algorithm 1 but includes additional data collections
in each iteration. Specifically, for each iteration, we collect the derivation graph, the current
abstraction, the refined parameters. We also collect all resolvable queries.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:13

Algorithm 2 Generating the Refinement Trace (GeneratingRefinementTrace)
Require: Analysis 𝐶 , abstraction family A, queries 𝑄 .
Ensure: Refinement Trace 𝑇 , resolvable queries 𝑄𝑅

1: 𝐴← chooseInit(A)
2: 𝑇 ← [] ▷ 𝑇 collects the trace of the refinement.
3: 𝑄𝑅 ← [] ▷ Resolved queries.
4: repeat
5: (𝐷,𝑄𝑅) ← analyze(𝐶 , 𝐴, 𝑄)
6: 𝑄𝑅 ← 𝑄𝑅 ∪𝑄𝑅

7: 𝐴′, 𝑄𝐹 ←MaxSat(𝐷)
8: 𝑄 ← 𝑄 \ (𝑄𝑅 ∪𝑄𝐹)
9: 𝑃 ← 𝐴′ −𝐴 ▷ Get parameters get refined in this round.
10: 𝑇 .append({𝐴, 𝑃, 𝐷})
11: 𝐴← 𝐴′
12: until 𝑄 = ∅
13: return (𝑇,𝑄𝑅)

Algorithm 3 Generating the Training Dataset
Require: Analysis 𝐶 , abstraction family A, queries 𝑄 .
Ensure: Training set 𝑇 .
1: 𝑇,𝑄𝑅 ←GeneratingRefinementTrace(𝐶,A, 𝑄)
2: 𝑇 ← [] ▷ 𝑇 is the training set.
3: 𝑃1 ← ∅ ▷ 𝑃1 is the set of helpful parameter.
4: 𝑃3 ← ∅ ▷ 𝑃3 is the set of parameters alternative to helpful parameters seen so far.
5: for {𝐴, 𝑃, 𝐷} ∈reversed(𝑇) do
6: 𝑃2 ← ∅ ▷ 𝑃2 is the set of likely unhelpful parameters seen so far.
7: for 𝑝 ∈ 𝑃 do
8: 𝐴′ ← (𝐴 ∪ 𝑃1) \ 𝑃2 \ {𝑝}
9: (_, 𝑄′) ← analyze(𝐶,𝐴′, 𝑄𝑅)
10: if 𝑄′ = 𝑄𝑅 then
11: 𝑃2 ← 𝑃2 ∪ {𝑝} ▷ 𝑄′ = 𝑄𝑅 means that removing 𝑎 does not affect precision.
12: else
13: 𝑃1 ← 𝑃1 ∪ {𝑝}
14: for 𝑝 ∈ Parameters(𝐴′) do
15: (_, 𝑄̂) ← analyze(𝐶,𝐴′ ∪ 𝑝,𝑄𝑅)
16: if 𝑄̂ = 𝑄𝑅 then
17: 𝑃3 ← 𝑃3 ∪ {𝑝} ▷ Replacing 𝑝 with 𝑝 does not affect precision.
18: 𝑇 .append

(
𝑃3 ∪ 𝑃1, 𝐷

)
▷ Helpful parameters and the derivation graph.

19: return 𝑇

Then, we enter the process of filtering out likely unhelpful parameter tuples (stored in 𝑃2) and
looking for unexplored viable parameters (stored in 𝑃3). We perform a backward iteration through
the refinement trace to simplify the helpfulness test of parameters, since we will collect helpful
parameters into 𝑃1 so that 𝐴 ∪ 𝑃1 is always precise enough to resolve all resolvable queries and
starting from the last iteration naturally satisfies this condition because 𝐴 alone is precise enough.
We start from the last iteration and cancel parameters refined in this refinement (𝑃) one by one

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

325:14 Zhenyu Yan, Xin Zhang, and Peng Di

(Line 7 – Line 17). If the number of resolved queries remains unchanged, the canceled parameter
is considered likely unhelpful. We add the parameter to the set of likely unhelpful parameters
(Line 11). Therefore, it will be ignored in later iterations of 𝑃 . Otherwise, we mark it as helpful
and add it back to the abstraction (Line 13). Then, to look for other helpful parameters, we try to
replace the helpful parameter 𝑝 with another parameter 𝑝 (Line 14 – Line 17). If the number of
resolved queries equals 𝑄𝑅 , 𝑝 will also be marked as helpful.

Example. Suppose there are 5 parameters: 𝑎1, 𝑎2, . . . , 𝑎5 and a query that can be resolved if
and only if (𝑎2 ∨ 𝑎3 ∨ 𝑎4) ∧ 𝑎5 is satisfied. Given a trace that contains two refinements that
refine the abstraction from ∅ to {𝑎5} and then {𝑎1, 𝑎3, 𝑎4, 𝑎5}. Our algorithm first focus on the
refinement that refines {𝑎5} to {𝑎1, 𝑎3, 𝑎4, 𝑎5}. Parameters refined in this refinement are {𝑎1, 𝑎3, 𝑎4}.
Our algorithm first tries to remove 𝑎1, resulting in the abstraction {𝑎3, 𝑎4, 𝑎5}, which satisfies the
condition (𝑎2 ∨ 𝑎3 ∨ 𝑎4) ∧ 𝑎5; therefore the number of resolved queries stays unchanged, and we
mark 𝑎1 as likely unhelpful. Then we try to remove 𝑎3, results in the abstraction {𝑎4, 𝑎5}. Since the
condition is still satisfied, we also mark 𝑎3 as likely unhelpful. Next, we try to remove 𝑎4, resulting
in the abstraction {𝑎5} that cannot resolve the query. Therefore, 𝑎4 will be marked helpful. Then we
try {𝑎5, 𝑝} where 𝑝 ∈ {𝑎1, 𝑎2, 𝑎3}. We will find that when 𝑝 = 𝑎2 or 𝑝 = 𝑎3, the query can be resolved
again. Therefore, 𝑎2 and 𝑎3 will be added to 𝑃3. So, for this refinement, we mark {𝑎2, 𝑎3, 𝑎4} as
helpful, exactly what the condition implies (𝑎5 is already refined at the beginning of this refinement
step so it is not a candidate of parameters. Therefore, it does not need to be labeled helpful or
unhelpful). Last, we focus on the refinement step that refines ∅ to {𝑎5}. Since 𝑎4 is added to 𝑃1 in
the last iteration,𝐴∪𝑃1 = {𝑎4, 𝑎5} here is precise enough to resolve the query, making it possible to
test the helpfulness of 𝑎5 by removing 𝑎5. This removal results in the abstraction {𝑎4} that cannot
resolve the query. Therefore 𝑎5 will be marked helpful. So, for this refinement, we mark 𝑎2, 𝑎3, 𝑎4
and 𝑎5 as helpful, exactly what the condition implies.

4.5 Training

We apply classical supervised learning to train our networks to judge whether a parameter is
helpful or not. To get a binary classification, we classify parameters with scores greater than 0.5 as
helpful parameters, and classify other parameters as unhelpful parameters.

One issue we encountered is that the training data is highly imbalanced in terms of positive and
negative samples. The reason is that, due to locality, an analysis usually only needs to apply high
precision for a very small fraction of parameter tuples to resolve a query. Thus, in the training
data, the number of negative samples are overwhelming to that of positive samples. To address
this challenge, we apply importance sampling. In the loss function, we use (the number of negative

samples)/(the number of positive samples) as the weight of each positive sample, and 1 as the weight
of each negative sample. So the weights of positive samples add up to the same value as those of
negative samples. Let 𝑆 (𝑥) ∈ [0, 1] be the score of 𝑥 calculated by our neural network, D+ and D−
be the set of positive and negative samples, respectively. Then the loss function is defined as:

|D− |
|D+ | ·

∑︁
𝑥∈D+

(
𝑆 (𝑥) − 1

)2 +
∑︁

𝑥∈D−

(
𝑆 (𝑥) − 0

)2

5 Experiments

We evaluate our approach by comparing it with the CEGAR framework proposed by Zhang et al.
[2014] using a pointer analysis and a typestate analysis, which are exactly the same settings
as Zhang et al. [2014] use. Since pointer analysis is a popular field in programming languages and
there are many works focus on improving the scalability of pointer analyses [Jeon et al. 2020; Li et al.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:15

2018a,b; Ma et al. 2023; Tan et al. 2016, 2017], we also compare our approach to a state-of-the-art
pointer analysis, Cut-Shortcut [Ma et al. 2023]. Due to space limits, we mainly use the pointer
analysis to illustrate the effectiveness of our approach and use the typestate analysis to illustrate
the generality of our approach. In particular, we aim to answer the following research questions:

RQ1. Can our approach help resolve more queries on large programs?
RQ2. How effective is our approach in reducing the sizes of constraint problems?
RQ3. How often does our approach make a resolvable query end up being unresolved?
RQ4. Is our “GNN +MaxSat” architecture necessary? Will graph neural networks alone suffice?
RQ5. Do our networks learn meaningful heuristics? What kind of heuristics do they learn?
RQ6. Is our approach general enough to boost different analyses?

5.1 Experimental Setup

Implementation. We have built our system upon the system proposed by Zhang et al. [2014]. In
particular, we use JChord [Naik 2011] as the analysis frontend for Java programs and the MiFuMaX
MaxSat solver [Janota 2014] as the underlying constraint solver. In JChord, we also reimplement
Cut-Shortcut [Ma et al. 2023] to enable a fair comparison with our approach by eliminating the
difference in the underlying analysis infrastructure. We use the Deep Graph Library [Wang 2019]
with PyTorch [Paszke et al. 2019] to build our neural networks. We use scikit-learn[Pedregosa et al.
2011] to implement decision trees for explaining our neural networks.

Client Analyses. Following the previous work [Zhang et al. 2014], we apply our approach to a
context-sensitive, flow-insensitive pointer analysis and a context-/flow-sensitive typestate analysis.
The diverse features of these two analyses highlight the generability of our approach.

The pointer analysis is based on k-object-sensitivity [Milanova et al. 2002]. It is similar to the
aforementioned k-CFA analysis except that it replaces call sites in k-CFA with abstract objects.
Briefly, it uses contexts in the form of ℎ1, ..., ℎ𝑛 to differentiate calling contexts. Here, ℎ𝑖 is an
abstract object that the method receiver object this in a language like Java may point to. Like other
call-string-based context-sensitive analyses, the contexts are truncated to some length 𝑘 . Here,
we allow different 𝑘 values for different allocation sites and 𝑘 ∈ {0, 10}. These 𝑘 values form the
abstraction for the pointer analysis. In this way, it gives a more fine-grained way to control the
context sensitivity compared to the standard k-object-sensitivity analysis. The efficiency preorder
is defined as follows:

𝐴1 ⊑ 𝐴2 ⇔ ∀ ℎ.𝐴1 (ℎ) ≥ 𝐴2 (ℎ).

As for the queries, we use the analysis to check whether a virtual method call is a polymorphic call
(that is, it can call different methods at runtime).

The typestate analysis is adapted from that by Fink et al. [2008]. It is fully flow- and context-
sensitive. But its context sensitivity is implemented in a different style: using the tabulation
algorithm [Reps et al. 1995]. Moreover, it not only tracks may-alias information like the pointer
analysis does, but also tracks must-alias information. More concretely, at each program point, it
computes a set of abstract states of the form (ℎ, 𝑡, 𝑎) that overapproximate the typestates of all
objects at that program point. Here, ℎ is an allocation site in the program, 𝑡 is the typestate in which
a certain object that is allocated at ℎ might be, and 𝑎 is a finite set of accesspaths that must point to
an object in ℎ. The abstraction we use is the set of variables allowed to track in must sets. Tracking
relevant variables allows the analysis to perform strong updates to avoid spurious typestates, and
thus is crucial to the precision and scalability of the analysis. The efficiency preorder is defined as

𝐴1 ⊆ 𝐴2 ⇔ 𝐴2 ⊑ 𝐴1

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

325:16 Zhenyu Yan, Xin Zhang, and Peng Di

Table 1. Benchmark characteristics. All numbers are computed using a 0-CFA call-graph analysis.

benchmark description # classes # methods bytecode (KB)
app total app total app total

hsqldb relational database engine 189 1,341 2,441 10,223 190 670
batik SVG graphics library 1,391 3,170 8,178 18,919 590 1,290
bloat Java bytecode analysis/optimization tool 277 1,269 2,651 9,133 195 586
pmd Java source code analyzer 348 1,357 2,590 9,105 186 578
xalan XML to HTML transforming tool 42 1,036 372 6,772 28 417
rhino-a Javascript engine 66 1,142 687 7,136 64 452
sablecc-j parser generator for jimple 294 2,011 1,743 12,538 74 754
sablecc-w parser generator for Wig 294 2,011 1,743 12,538 75 754
soot-c Java program analyzer 561 1638 2,273 8,627 114 500
soot-j Java program analyzer 1,638 1,638 8,627 8,627 114 500
antlr parser/translator generator 111 350 1,150 2,370 128 186
luindex document indexing tool based on lucene 206 619 1,390 3,732 102 235
lusearch text search tool over a corpus of data based on lucene 219 640 1,399 3,923 94 250
sunflow photo-realistic image rendering system ETH 165 1894 1,328 13,356 117 934
schroeder-s sampled audio editing tool with small input 109 936 617 6,435 37 352
schroeder-m sampled audio editing tool with medium input 109 936 617 6,435 37 352

GNNHyperparameters.We set the number of message passing to 12. The dimensions of feature
vectors at every iteration of message passing are all set to 64. We use the Adam optimizer [Kingma
and Ba 2014], where the learning rate is set to 10−4 and the decay ratio is set to 0.9995.

Benchmarks. We consider the benchmarks from the DaCapo suite [Blackburn et al. 2006] and
the Ashes suite [ash 2000]. Table 1 shows the characteristics of these benchmarks. The top half
contains large benchmarks that Zhang et al. [2014] has trouble scaling to. We conduct our main
scalability and efficiency study on these benchmarks to answer RQ1. The bottom half contains
small benchmarks all of whose queries can be resolved by Zhang et al. [2014]. They are also used
to answer RQ3. For other RQs, all these benchmarks are used.
Training Dataset.We use Zhang et al. [2014] to generate refinement traces and then use the

algorithm described in § 4.4 to generate training data. Since our algorithm focuses on refining
resolvable queries faster, we filter out benchmarks without resolvable queries. To reduce memory
costs during training and illustrate the generability of our approach, we use the smallest benchmarks
(by the sizes of the largest derivation graphs during their refinements) as our training dataset. For
the pointer analysis, the four smallest benchmarks in order are lusearch, luindex, antlr and sunflow.
Considering lusearch and luindex share the library lucene, we ignore luindex and only consider
the three remaining benchmarks. Algorithm 3 takes 8 to 14 hours to transform the refinement
traces into a training dataset. Since using full traces of all these benchmarks exceeds the 256 GB
memory limit, we train 3 models by using each pair of these 3 benchmarks. Training each model
takes approximately 10 hours per epoch, with a total of 20 epochs. For the typestate analysis, since
only a few benchmarks contain resolvable queries, we only use the smallest benchmark antlr to
make sure that there are enough test benchmarks to illustrate the effectiveness of our method.
Experiment Environment.We run all experiments on a Ubuntu 18.04 machine with 2 Intel

Xeon Gold 6240 CPUs (2.6 GHZ) and set the memory limit to 256 GB memory. The Java runtime
environment is the Oracle HotSpot JVM 1.6. The graph neural works run on the DGL library 0.8.2
with PyTorch 1.8.1 as the backend and the Python version is 3.8.5. The decision trees are trained
using sk-learn 1.2.0. For the pointer analysis, we set the timeout limit to 12 hours. For the typestate
analysis, we set the timeout limit to 24 hours.

Baselines. As aforementioned, the CEGAR framework proposed by Zhang et al. [2014] is used as
a baseline for the two analyses and Cut-Shortcut [Ma et al. 2023] is used for the pointer analysis.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:17

Table 2. Results on the pointer analysis using different training sets. Timeout > 12 hours.

benchmark Zhang et al. [2014] Cut-Shortcut [Ma et al. 2023] lusearch + antlr lusearch + sunflow antlr + sunflow

res. # its runtime |A| # res. runtime # res. # its runtime |A| # res. # its runtime |A| # res. # its runtime |A|
avrora 70 12 Timeout 1320 0 0h03m 74 20 1h48m 1690 71 13 Timeout 1350 74 12 0h55m 2480
batik 60 10 Timeout 1940 29 1h09m 42 12 Timeout 1750 15 7 Timeout 1370 16 10 Timeout 1450
bloat 0 4 Timeout 420 42 0h05m 243 10 2h19m 1360 178 6 Timeout 1290 234 5 Timeout 2020
pmd 77 9 Timeout 1010 15 0h09m 144 19 3h55m 1780 129 18 3h17m 1720 104 23 Timeout 2640

sablecc-j 25 5 Timeout 590 22 0h04m 105 7 0h30m 590 98 6 0h25m 530 96 7 0h28m 630
sablecc-w 25 5 Timeout 590 22 0h04m 105 7 0h28m 590 98 7 0h27m 520 96 7 0h28m 630
soot-c 31 5 Timeout 470 0 0h01m 98 11 0h57m 1900 77 14 1h06m 2250 13 7 0h26m 1020
soot-j 31 5 Timeout 470 0 0h01m 109 11 1h00m 2080 77 14 1h06m 2250 13 7 0h27m 1020
xalan 10 14 Timeout 630 14 0h04m 61 18 2h10m 1850 14 18 2h45m 2050 60 15 Timeout 1800
antlr 5 15 0h34m 920 0 0h01m N/A 5 12 0h42m 820 N/A

luindex 68 28 1h12m 1210 0 0h02m 68 13 0h37m 740 68 17 0h50m 900 57 8 0h21m 420
lusearch 30 21 0h56m 1580 0 0h02m N/A N/A 23 12 0h33m 1110

schroeder-m 25 10 3h21m 270 0 0h08m 25 5 0h37m 160 25 9 1h04m 220 20 5 0h32m 220
schroeder-s 25 10 2h28m 280 0 0h08m 25 5 0h34m 160 25 9 1h02m 220 20 5 0h32m 220
sunflow 10 17 1h11m 1030 0 0h08m 10 9 0h52m 300 N/A N/A

Cut-Shortcut [Ma et al. 2023] applies a novel pointer analysis strategy which is different from
classical cloning-based context sensitivity: It cuts off dataflow edges that reduce precision and adds
shortcut edges to maintain soundness by recognizing patterns that are common in object-oriented
programming. Therefore, their approach is able to analyze Java programs fast with relatively high
precision.

5.2 Scalability and Precision Results

The top half of Table 2 summarizes the scalability results of the baselines and our approach using
all three models mentioned above on pointer analysis. The “# res.” columns show the number of
queries resolved by our approach and the two baselines. Numbers in bold belong to the approach
superior to the other approaches on the same benchmark. For “# res.”, the largest number on each
benchmark will be bold. Numbers of other columns will be bold if they are the smallest on the same
benchmark and the corresponding “# res.” is also the largest. Since Cut-Shortcut [Ma et al. 2023]
is not refinement-based, we only list the overall runtime and the number of queries it resolves.

Compared to Zhang et al. [2014], our approach can resolve more queries for 22 out of 27 (model,
benchmark) pairs. Compared to Cut-Shortcut [Ma et al. 2023], our approach resolves fewer
queries only on batik. Another noteworthy result is that Cut-Shortcut runs notably faster than
our approach and Zhang et al. [2014]. This conclusion is reasonable as recent pointer analysis works
focus more on scalability, while refinement-based approaches focus more on precision, especially
in resolving hard queries. The two styles of approaches are complementary to each other and
can be combined for better scalability and precision: One can first apply faster approaches (for
example, Cut-Shortcut [Ma et al. 2023]) to resolve as many queries as possible, and then apply our
approach to resolve the remaining queries by leveraging the query-driven nature of our approach.
For a high-level understanding of the performance of all those approaches, we calculate the

number of queries resolved by each approach among all benchmarks. Since the Ashes Suite Collec-
tion contains multiple running configurations for some programs 2 (sablecc-j and sablecc-w for
SableCC, soot-c and soot-j for Soot), we take the average number of resolved queries for them.
Under this criteria, for all benchmarks, our models resolve 772.5, 582, and 557 queries, respectively,
while Zhang et al. [2014] only resolves 273 queries and Cut-Shortcut [Ma et al. 2023] only resolves
144 queries. Since Zhang et al. [2014] resolves more queries than Cut-Shortcut [Ma et al. 2023]
on benchmarks except bloat, we compare our performance mainly to Zhang et al. [2014] later. Our
improvement over Zhang et al. [2014] is about 183%, 113%, and 104%, respectively. On average,

2Configurations will affect the dynamic execution of programs, which is used by JChord to estimate hard-to-analyze
language properties like reflection.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

325:18 Zhenyu Yan, Xin Zhang, and Peng Di

0 2500 5000 7500 10000 12500 15000 17500
Time cost (seconds)

0

10

20

30

40

50

60

70

Qu
er

ie
s r

es
ol

ve
d

70
7474

71

0

avrora

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

0 1000 2000 3000 4000
Time cost (seconds)

0

15

30

45

60

75

90

105

Qu
er

ie
s r

es
ol

ve
d

25

105
9698

22

sablecc-j

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

Fig. 5. Number of resolved queries and time consumption on avrora and sablecc-j.

our approach achieves an improvement of 133%. On bloat, the number of resolved queries even
achieves a breakthrough of zero. Such results demonstrate the ability of our approach to resolve
more queries on large benchmarks and the robustness of our approach to different training datasets.
However, on batik, all of our models resolve less queries than Zhang et al. [2014], and two of them
even resolve less queries than Cut-Shortcut[Ma et al. 2023]. We speculate the reason is that our
training dataset is not diverse enough, so there are some unseen patterns that our models do not
know how to deal with.

To further illustrate our effectiveness, we shall analyze the data presented in the “# its” columns
and the “|A|” columns. The former denotes the number of refinement iterations completed before
either terminating or reaching the twelve-hour time limit. The latter represents the sizes of the final
abstractions achieved by each approach. These sizes are computed by summing all the 𝑘 values
(as described in § 5.1). On some benchmarks, Our approach demonstrates an ability to run for
more iterations and therefore resolves more queries. For example, on both soot benchmarks and
both sablecc benchmarks, the numbers of iterations have grown from 5 to 7 ∼ 14 and 5 to 6 ∼ 7,
respectively. Moreover, the final abstractions of soot programs have grown five times in size. This
shows that our approach empowers the refinement framework to explore more refined abstractions
without incurring excessive time costs.

To look at the refinement process more closely, Figure 5 shows the number of resolved queries
and time consumption per iteration for all approaches on avrora and sablecc-j, two of the larger
benchmarks. (Other benchmarks are shown in Figure 6. As depicted in Figure 6 shows, most
approaches either successfully finish the analysis or reach a stalemate before 4 hours. Setting the
time limit to 12 hours provides those approaches with ample time to illustrate their inefficiency.)
Dashed lines indicate that the approach does not terminate until the twelve-hour time limit is
reached. For our approach, each iteration time consists of the running time of the analysis, the
inference time of our graph neural network, and the constraint-solving time, while the iteration
time of Zhang et al. [2014] only consists of the running time of the analysis and the constraint-
solving time. As we can see, for avrora, our approach iterates much faster than Zhang et al. [2014].
Since our approach contains the overhead of a graph neural network, this boost indicates that our
approach can quickly prune out useless parameters and provide better abstractions, so that the
overhead of GNN can be reduced by the program analyzer and MaxSat solver. Furthermore, Zhang
et al. [2014] gets stuck after only 12 iterations because its MaxSat solver gets stuck. However, Our
approach is capable of completing up to 20 iterations, and with two of the models it terminates

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:19

Table 3. Parameter reduction using our graph neural network.

benchmark Minimum number of parameter tuples Maximum number of parameter tuples average
Before pruning After pruning Before pruning After pruning pruning rate

avrora 5186 390(92.5%) 5738 326(94.3%) 93.8%
batik 9584 1145(88.1%) 10193 1143(88.8%) 88.3%
bloat 4235 310(92.7%) 4939 330(93.3%) 93.2%
pmd 4211 439(89.6%) 4915 392(92.0%) 91.3%

sablecc-j 4253 297(93.0%) 4669 336(92.8%) 93.2%
sablecc-w 4253 297(93.0%) 4669 336(92.8%) 93.2%
soot-c 2379 221(90.7%) 3035 202(93.3%) 91.4%
soot-j 2379 221(90.7%) 3030 207(93.2%) 91.4%
xalan 4103 476(88.4%) 5021 460(90.8%) 89.8%
luindex 3023 296(90.2%) 3614 332(90.8%) 90.3%

schroeder-m 4335 500(88.5%) 4461 487(89.1%) 88.7%
schroeder-s 4335 500(88.5%) 4461 487(89.1%) 88.7%
sunflow 4876 420(91.4%) 5059 411(91.9%) 91.6%

within 2 hours. The termination shows that giving up queries is beneficial for scalability and
our neural networks learn good strategies for giving up queries. Also, the iteration time of our
approach does not grow significantly across iterations, unlike that of Zhang et al. [2014], where
each of the last two iterations takes more than an hour. On sablecc-j, our advantage is even
clearer, all our models terminate in half an hour, while Zhang et al. [2014] gets stuck after 15
minutes. Furthermore, the size of final abstractions of avrora and sablecc-j are of the same order
of magnitude. This shows that our approach finds abstractions that are just precise enough and do
not lead to much over-refinement. Cut-Shortcut [Ma et al. 2023] resolves 22 queries in 5 minutes,
which reinforces our prior conclusion that recent pointer analysis works focus more on scalability
while refinement-based approaches focus more on precision.

Answer to RQ1: by effectively pruning away unhelpful parameters, our approach enables the iterative

refinement framework to resolve more queries on large benchmarks by trying more precise abstractions.

Also, it does not lead to expensive over-refinement. Models trained with different training sets show

that our approach is robust to different training sets.

5.3 Constraint Problem Simplification Results

Table 3 shows the number of parameters that can be refined (those without hard constraints) in the
MaxSat problems before and after applying our graph neural network trained with lusearch and
antlr during every step of refinement loops. As the table shows, our neural network drastically
decreases the number of parameters that the MaxSat solver needs to consider to refine. Our
method achieves an average reduction rate of around 90%, highlighting its effectiveness and the
presence of many unnecessary abstraction tuples. This result explains why our approach iterates
faster than Zhang et al. [2014]. Additionally, the average pruning ratios remain consistent across
different benchmarks and abstractions, demonstrating the generalizability of our approach to
unseen benchmarks of varying sizes and abstraction settings. These findings align with our earlier
observation that our method resolves more queries and explores more expensive abstractions
compared to Zhang et al. [2014].

Answer to RQ2: our graph neural network can significantly reduce the number of parameters that a

MaxSat solver needs to consider, which is the key to making iterative abstraction refinements scale.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

325:20 Zhenyu Yan, Xin Zhang, and Peng Di

0 500 1000 1500 2000 2500
Time cost (seconds)

0

1

2

3

4

5

Qu
er

ie
s r

es
ol

ve
d

5 55 5

0

antlr

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

0 10000 20000 30000 40000 50000
Time cost (seconds)

0

8

16

24

32

40

48

56

Qu
er

ie
s r

es
ol

ve
d

60

42

1615

29

batik

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

0 2000 4000 6000 8000
Time cost (seconds)

0

30

60

90

120

150

180

210

240

Qu
er

ie
s r

es
ol

ve
d

0

243
234

178

42

bloat

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

0 1000 2000 3000 4000
Time cost (seconds)

0

8

16

24

32

40

48

56

64

Qu
er

ie
s r

es
ol

ve
d

6868

57

68

0

luindex

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

0 500 1000 1500 2000 2500 3000 3500
Time cost (seconds)

0

4

8

12

16

20

24

28
Qu

er
ie

s r
es

ol
ve

d
3030

23

27

0

lusearch

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

0 10000 20000 30000 40000 50000 60000
Time cost (seconds)

0

20

40

60

80

100

120

140

Qu
er

ie
s r

es
ol

ve
d

77

144

104

129

15

pmd

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

0 1000 2000 3000 4000
Time cost (seconds)

0

15

30

45

60

75

90

105

Qu
er

ie
s r

es
ol

ve
d

25

105
9698

22

sablecc-w

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

0 1000 2000 3000 4000
Time cost (seconds)

0

15

30

45

60

75

90

Qu
er

ie
s r

es
ol

ve
d

31

98

13

77

0

soot-c

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

0 1000 2000 3000 4000
Time cost (seconds)

0

15

30

45

60

75

90

105

Qu
er

ie
s r

es
ol

ve
d

31

109

13

77

0

soot-j

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

0 2000 4000 6000 8000
Time cost (seconds)

0

3

6

9

12

15

18

21

24

Qu
er

ie
s r

es
ol

ve
d

2525

20

25

0

schroeder-s

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

0 10000 20000 30000 40000 50000 60000
Time cost (seconds)

0

8

16

24

32

40

48

56

64

Qu
er

ie
s r

es
ol

ve
d

10

61 60

1414

xalan

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

Fig. 6. Numbers of resolved queries and time consumptions across all benchmarks (in alphabetic order).

5.4 Controlled Precision Loss Study

As aforementioned, our approachmay potentially hinder the precision of the analysis by accidentally
pruning away helpful parameters. That is, the refinement process might give up some resolvable
queries if all viable parameters are pruned by our approach. To estimate its potential effect, we
inspect how often this happens by performing a controlled study using smaller benchmarks. On
these benchmarks, Zhang et al. [2014] can successfully terminate so we know exactly which queries
are resolvable.
The results3 summarized in the bottom half of Table 2 indicate that our approach successfully

resolves nearly all resolvable queries with minimal precision loss incurrred by parameter pruning.
It also performs fewer iterations and consumes less time compared to Zhang et al. [2014]. This
is illustrated by the examples of lusearch and sunflow, where our method achieves faster query
resolution by pruning unhelpful abstraction tuples, as shown in Figure 7. Overall, our approach

3As a convention of machine learning, we ignore results on the training sets and mark the corresponding cells with N/A.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:21

0 1000 2000 3000 4000
Time cost (seconds)

0

2

4

6

8

10

Qu
er

ie
s r

es
ol

ve
d

101010 10

0

sunflow

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

0 2000 4000 6000 8000 10000 12000
Time cost (seconds)

0

3

6

9

12

15

18

21

24

Qu
er

ie
s r

es
ol

ve
d

2525

20

25

0

schroeder-m

Zhang et al.
antlr + lusearch
antlr + sunflow
sunflow + lusearch
cut-shortcut

Fig. 7. Number of resolved queries and
time consumption on sunflow and
schroeder-m.

recall 98.55% 98.69% 98.47% 98.26% 98.64%
precision 98.55% 98.95% 98.86% 98.66% 98.67%

Fig. 8. Recall and precision of trained decision trees.
of MputInstFldInst within 6 hops ≤ 2.5

(205643 samples)

· · ·
True

of CFC_37_0 within 6 hops ≤ 115.5
(38027 samples)

. . .

of CM within 2 hops ≤ 10
(9293 samples)

. . .

of CFC_37_0 within 5 hops ≤ 1.5
(1380 samples)

False (14 samples)

True

True (1366 samples)

False

. . .

True

. . .

of kobjSenICM within 4 hops ≤ 2625.5
(4747 samples)

True (4729 samples)

True

False (18 samples)

False

. . .

False

. . .

True

· · ·
False

False

Fig. 9. Part of the learned decision tree.

demonstrates effective query resolution with improved analysis time. On schroeder-m, two of our
models finish the abstraction refinement within a time frame of 37 minutes to 64 minutes, whereas
it takes Zhang et al. [2014] 201 minutes.
The precision losses all happen on the model trained with antlr and sunflow. This suggests

that the absence of lusearch in the training dataset may lead to overly aggressive parameter
pruning by the model. This indicates that larger training datasets with a more diverse range of
benchmarks could further enhance the effectiveness of our approach. Overall, our approach boosts
the refinement process with minimal risk of pruning out resolvable queries. In addition, it is effective
on small benchmarks as well as large benchmarks.

Answer to RQ3: Though our approach can hinder the precision of the overall analysis theoretically,

it has a limited impact in practice. Furthermore, a larger amount of training data may alleviate or

even solve this problem.

5.5 Ablation Study

To study the effectiveness and necessity of our "GNN+MaxSat" architecture, we try to refine
abstractions directly according to the output of our graph neural network, instead of using the
output to filter out unhelpful parameters. We run the pointer analysis using only the GNN on the
same benchmarks.
Table 4 presents the statistics for using only the GNN in the refinement process. The results

show that the refinement process gets stuck quickly even on some smaller benchmarks, as the new
architecture can only complete 2 iterations on most benchmarks. Those runtimes in red indicate
that the memory limit is reached, which has never happened on other approaches. Additionally,
the sizes of abstractions are much higher than those from other approaches. This conclusion is
in agreement with the prior conclusion that some helpful parameters are interchangeable, which
means that refining a part of those helpful parameters is enough to resolve desired queries. Given a

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

325:22 Zhenyu Yan, Xin Zhang, and Peng Di

Table 4. Results of using graph neural network only. Timeout > 12 hours.

benchmark Zhang et al. [2014] lusearch + antlr lusearch + antlr without MaxSat
res. # its runtime |A| # res. # its runtime |A| # res. # its runtime |A|

avrora 70 12 Timeout 1320 74 20 1h48m 1690 72 6 1h18m 5120
batik 60 10 Timeout 1940 42 12 Timeout 1750 0 2 Timeout 11450
bloat 0 4 Timeout 420 243 10 2h19m 1360 0 2 2h53m 3100
pmd 77 9 Timeout 1010 144 19 3h55m 1780 0 2 Timeout 4390

sablecc-j 25 5 Timeout 590 105 7 0h30m 590 105 5 0h44m 4140
sablecc-w 25 5 Timeout 590 105 7 0h28m 590 105 5 0h44m 4140
soot-c 31 5 Timeout 470 98 11 0h57m 1900 43 7 0h55m 3470
soot-j 31 5 Timeout 470 109 11 1h00m 2080 43 7 0h56m 3470
xalan 10 14 Timeout 630 61 18 2h10m 1850 0 2 2h10m 4760

luindex 68 28 1h12m 1210 68 13 0h37m 740 48 7 0h48m 3950
schroeder-m 25 10 4h50m 270 25 5 0h37m 160 0 2 3h35m 5000
schroeder-s 25 10 2h28m 280 25 5 0h34m 160 0 2 4h36m 5000

sunflow 10 17 1h11m 1030 10 9 0h52m 300 9 3 1h14m 5110

set of parameters that are considered helpful by the neural network, using GNN with MaxSat will
only refine a part of those parameters while using GNN alone will refine them all. Despite those
over-refined abstractions, some benchmarks can still be resolved within the time limit. However,
these findings highlight the limitations of relying solely on the GNN for abstraction refinement, as
it hinders the scalability and efficiency.

Answer to RQ4: Though graph neural networks can filter out unhelpful parameter tuples, they cannot

capture exactly what parameter tuples to refine. Because some parameters are interchangeable, refining

part of them is enough. As a result, they tend to make the abstraction too large to analyze. So, the

combination of GNN and MaxSat solver is necessary.

5.6 Explaining Our Graph Neural Network

To explain what our neural network has learned and analyze whether it has learned reasonable
patterns of parameter tuples, as well as to determine its ability to provide useful intuitions for
selecting abstractions in program analysis, we train several decision trees to mimic our neural
network. Since the rules of decision trees are transparent, we can analyze the behavior of our
neural networks by analyzing nodes of the decision tree.

Feature Selection and Decision Tree Learning. Since we assign feature vectors for vertexes accord-
ing to their relations, those feature vectors are just used to distinguish different types of nodes by
the graph neural network and do not contain meaningful information. Therefore, we speculate
that our graph neural network learns patterns more about graph structure. By randomly removing
edges in the graphs, we observe that the neural network alters its output when the connectivity
of certain nodes is disrupted. According to this observation, we speculate the patterns our neural
network learns can be explained using numbers of vertices of some specific relations within specific
hops. Therefore, we use the numbers of tuples of each relation in 𝑘 hops (𝑘 ≤ 10) from every vertex
as our features. We denoted 𝑥𝑡, 𝑗,𝑢 as the number of vertices of kind t in 𝑗 hops from vertex 𝑢, where
𝑡 ∈ 𝑇, 𝑗 ∈ {1, . . . , 10}. Thus, the dimension of every feature vector is |𝑇 | × 10, which is 760 for the
pointer analysis.
To learn and test those decision trees, we generate derivation graphs by running the pointer

analysis on the benchmarks, and run a BFS (breadth-first search) for every parameter tuple 𝑢 to
get its 𝑥𝑡, 𝑗,𝑢 as the input feature of decision trees. Then we run our graph neural network on those
graphs to generate the network’s scores of those parameter tuples as the labels for decision trees to

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:23

learn. Since it takes a huge amount of time to run such BFS on large graphs, we only take derivation
graphs from four small benchmarks: antlr, lusearch, luindex and sunflow. Then, we train decision
trees to fit this data. To avoid over-fitting and better test how our decision trees imitate the neural
network, we split the data into training sets and test sets using 5-fold cross-validation to train five
decision trees without limiting their maximum depth (Our splitting is conducted at the level of
abstract parameters. Therefore, approximately 80% of abstract parameters of each program are
included in the training set). Table 8 displays the recall and precision of the trained decision trees.
The results show that all decision trees achieve nearly 100% recall and precision, demonstrating
their effective imitation of the neural network.

Running abstraction refinement with decision trees. To evaluate how well these decision trees
learn and how well they perform, we replace our graph neural networks with decision trees to
filter out unhelpful parameters in abstraction refinements. Results are shown in Table 5. For the
decision trees, we provide their averages followed by standard errors in parentheses. For example,
a cell entry of 5 (1.0) indicates an average of 5 with a standard error of 1.0. For benchmarks where
only a subset of decision trees experience timeouts, we provide the number of trees that timed
out and the completion time for those that either finished execution or reached the memory limit
(indicated in red). Those 5 decision trees resolve 571, 490, 308, 392, 290 queries, respectively. The
average 410.2 is much smaller than that of the model they try to fit (772.5), but still 50% higher than
that ofZhang et al. [2014](273). This demonstrates that decision trees have the ability to partially fit
the neural network.
For small benchmarks except two schroeder benchmarks, the decision trees resolve nearly all

the queries. However, it takes significantly longer time compared to both Zhang et al. [2014] and
our graph neural networks. This is largely attributed to our implementation. The extraction of
input features (DFS) is implemented in Python. So even we use 64 cores parallelly to accelerate the
process, it is still slower. Conversely, DGL uses a backend of C, so the overhead of graph neural
networks is small. Despite the long runtime, the final sizes of abstractions quite close to those of
our graph neural networks, and still smaller than Zhang et al. [2014]. All these results suggests that
those decision trees capture most of the patterns learned by our graph neural networks, though
some rules may be challenging to encapsulate in this feature representation. For the two schroeder

benchmarks, only 1 of the 5 decision trees success to resolve those queries. This may be because
those benchmarks are relatively different from those in the training data. However, the training
data of those decision trees are already larger than those graph neural networks (4 benchmarks v.s.
2 benchmarks), implying that decision trees may not generalize as effectively as our graph neural
networks.

For large benchmarks, the behavior of those decision trees aligns with our graph neural networks:
they resolve more or about the same number of queries compared to Zhang et al. [2014] on most
benchmarks except batik. The consistent underperformance of both learning-based approaches on
this benchmark suggests that the diversity of the training set is important: There may be some
rare patterns unseen in our training sets. It will be an interesting topic to generate training sets
coverring more patterns. Despite the inefficiencies in our implementation, decision trees are able
to successfully terminate on sablecc benchmarks, while the baseline cannot.

Inspecting a decision tree. We randomly select a trained decision tree from the 5-fold cross-
validation and analyze its structure to see if we could gain any intuition from it. Because we care
more about abstract parameters that are considered useful by the graph neural network, and they
only account for 10% of the total, which are easier to classify, we only analyze leaves corresponding
to True. The structure is shown in Figure 9, Related Datalog relations and domains are explained in
Table 6 and Table 7. We mark two leaves that most positive samples go to in yellow; other paths

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

325:24 Zhenyu Yan, Xin Zhang, and Peng Di

Table 5. Statistics about abstraction refinements with decision trees. Timeout > 12 hours.

benchmark Zhang et al. [2014] lusearch + antlr decision trees
res. # its runtime |𝐴| # res. # its runtime |𝐴| # res. # its runtime |𝐴|

avrora 70 12 Timeout 1320 74 20 1h48m 1690 60.6 (9.97) 11.2 (4.12) Timeout 1760 (702.14)
batik 60 10 Timeout 1940 42 12 Timeout 1750 7.8 (5.04) 5.2 (0.40) Timeout 948 (373.81)
bloat 0 4 Timeout 420 243 10 2h19m 1360 73.2 (87.96) 5.0 (2.61) 3 Timeouts,1h35m,1h49m 1368 (981.64)
pmd 77 9 Timeout 1010 144 19 3h55m 1780 72.8 (16.62) 5.6 (1.96) 4 Timeouts,3h38m 1224 (806.89)

sablecc-j 25 5 Timeout 590 105 7 0h30m 590 111.8 (12.61) 11.2 (1.47) 2ℎ1.2𝑚 (20.95𝑚) 1326 (380.14)
sablecc-w 25 5 Timeout 590 105 7 0h28m 590 111.8 (12.61) 11.6 (1.85) 2ℎ10.2𝑚 (37.17𝑚) 1350 (395.17)
soot-c 31 5 Timeout 470 98 11 0h57m 1900 63.0 (26.80) 10.2 (1.94) 2 Timeouts,1h54m,2h31m,3h59m 2032 (487.01)
soot-j 31 5 Timeout 470 109 11 1h00m 2080 63.0 (26.80) 9.8 (1.60) 2 Timeouts,2h37m,2h19m,3h10m 2024 (512.51)
xalan 10 14 Timeout 630 61 18 2h10m 1850 21.0 (21.55) 7.8 (1.94) Timeout 1122 (893.38)
antlr 5 15 0h34m 920 5 12 0h42m 710 4.8 (0.40) 12.2 (0.75) 2ℎ5.8𝑚 (10.23𝑚) 782 (42.61)

lusearch 30 21 0h56m 1580 30 12 0h38m 1270 28.0 (1.79) 12.2 (1.33) 1ℎ23.6𝑚 (11.74𝑚) 1346 (57.83)
luindex 68 28 1h12m 1210 68 13 0h37m 740 63.8 (7.91) 15.2 (1.17) 1ℎ54.8𝑚 (9.56𝑚) 862 (59.80)

schroeder-m 25 10 3h21m 270 25 5 0h37m 160 5 (10.00) 7.8 (1.72) 3ℎ51.0𝑚 (99.72𝑚) 290 (72.94)
schroeder-s 25 10 2h28m 280 25 5 0h34m 160 5.0 (10.00) 7.2 (1.72) 3ℎ39.0𝑚 (88.52𝑚) 254 (84.99)

sunflow 10 17 1h11m 1030 10 9 0h52m 300 9.6 (0.49) 13.6 (2.50) 4ℎ15.8𝑚 (58.57𝑚) 506 (124.84)

Table 6. Relations in decision trees and their meanings

Relation Meaning

MputInstFldInst(m:M, b:V, f:F, r:V)
There is a field-put operation that put r into
the field f of base variable b in method m.

CFC(c1:C, f:F, c2:C) The field f of object c1 may point to object c2.
CM(c:C, m:M) Method m is reachable under context c.

kobjSenICM(i:I, c:C, m:M)
There is a context-sensitive invocation i

in method m using c as the receiver object.

Table 7. Related domains in decision trees and their meanings

Domain Meaning
V local variables of reference type.
I Invocation quads.
M Methods.
F Fields.
C Contexts, also used to represent objects.

are ignored for simplicity (since there are 1351 nodes in the decision tree). The two leaves cover
6094 positive samples out of 19143, which is about 31.8%. Other leaves are ignored since each of
them covers less than 1000 positive samples.

4729 positive samples go to the rightmost yellow leaf, while 1366 positive samples go to the
leftmost yellow leaf. Their paths share heuristics like “there are more than 2 field store operations
for this object in the function that allocates this object” and “contexts ending with this object will
not be used to call static methods”. Except for these rules, those leaves disagree on some conditions.
The leftmost yellow leaf contains heuristics like “there will be less than 10 (context, function) pairs
such that the context ends with this object”, while the rightmost yellow leaf is on a path where
this condition is not satisfied. This rule stands for an elaborate consideration in the heuristics that
consider parameter tuples by different patterns.
Answer to RQ5: The results show that decision trees learnt can learn most of the strategies of the

graph neural network. And our graph neural networks learned meaningful (though complex) heuristics,

and there are some elaborate conditions to classify different kinds of patterns.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:25

Table 8. Results on the typestate analysis. Timeout > 24 hours.

benchmark Zhang et al. [2014] our method
res. # its runtime |A| # res. # its runtime |A|

batik 2 2 Timeout 87 3 6 Timeout 149
bloat 0 14 Timeout 227 0 17 11h39m 115
antlr 11 13 0h46m 66 11 13 0h59m 45
rhino-a 3 11 0h26m 35 3 8 0h26m 25

sablecc-j 22 11 1h45m 47 22 6 1h12m 38
sablecc-w 22 11 1h48m 47 22 6 1h09m 38

5.7 Generality over Different Analyses

To demonstrate the versatility of our method, we train another neural network for the typestate
analysis. Since most benchmarks lack resolvable queries, we use only the javasrc-p dataset as the
training set to ensure sufficient benchmarks for testing. The statistics are shown in Table 8.
Our method achieves a complete resolution of resolvable queries in small benchmarks and

improves performance in terms of iteration count and tracking set size. In larger benchmarks,
our method outperforms the baseline by resolving 3 queries instead of 2 on batik. Although the
improvement is not as substantial as in the pointer analysis, it serves as evidence of the effectiveness
of our method. The moderate improvement may be attributed to the limited abstraction family
used in our typestate analysis.
Answer to RQ6: By running on a typestate analysis, we show that our approach can successfully

generalize to different analyses.

6 Related Work

Our work is most related to CEGAR techniques that are based on constraint solving, program
analyses that are augmented with learning, and constraint-solving techniques that are augmented
with learning.

Constraint-based CEGAR. Originally, CEGAR was proposed to scale model checkers to handle
larger spaces compared to existing symbolic approaches (i.e., those based on BDDs) [Clarke et al.
2003]. Constraint solvers have been heavily applied for different purposes. Notably, SAT solvers
have been applied to perform model checking itself [Clarke et al. 2002; McMillan 2002], and decide
whether a concrete counterexample is valid [Biere et al. 1999; Chaki et al. 2004]. Other solvers
include integer-linear-programming solvers [Clarke et al. 2002] and SMT solvers [Komuravelli et al.
2016, 2013]. Our approach cannot be directly applied to these works. However, following the same
spirit, it would be interesting to apply learing-based techniques to scale up the solving process.

Later on, CEGAR is broadly applied to tune parametric program analyses. Notably, Zhang et al.
[2014] proposed a framework that applies a MaxSat solver to refine abstractions of Datalog-based
program analyses. Our work is built upon this framework. Grigore and Yang [2016] proposes an
approach that also extends this framework with a learning component. However, their focus is how
to reduce the number of iterations in CEGAR by adding learned biases to the MaxSat formulation.
In that sense, our approach and their approach are orthogonal and complimentary .

Scaling Pointer Analysis. It has been an active field to select abstractions that balance precision
and scalability for pointer analysis [Jeon et al. 2019, 2020; Li et al. 2018a,b; Ma et al. 2023; Tan
et al. 2016, 2017]. These works all propose techniques based on domain knowledges that are
specified to the problem. On the other hand, our work works with any parametric program
analysis that is expressed in Datalog. Furthermore, most recent works focus more on scalability

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

325:26 Zhenyu Yan, Xin Zhang, and Peng Di

like Cut-Shortcut [Ma et al. 2023] does, while our approach focuses more on precision. Some
works try to generalize to a broader range of analyses using cleverer algorithms and system-level
optimizations [Shi et al. 2018; Zuo et al. 2021]. These works are orthogonal to ours and can be
combined with ours to scale an analysis even better.
Learning-Based Program Analysis. Before our paper, there has been significant interest in

applying learning to tune abstractions or knobs of program analyses [Chae et al. 2017; Heo et al.
2018; Jeong et al. 2017; Oh et al. 2015]. However, they differ from our approach in two aspects.
First, the input to our approach is the derivation graph of an analysis which can be automatically
extracted without feature engineering. On the other hand, existing approaches rely on manually
selected syntax features and therefore need more work to apply to a new analysis. Second, these
works aim to find a good abstraction in one step while our approach is integrated with CEGAR.
While their approaches typically run faster, our approach can scale to resolve harder queries on
large programs. There are also works in learning loop invariants [Sharma et al. 2013; Yao et al. 2020;
Zhu et al. 2018]. Obviously, the targeted problems are different. Moreover, while our approach uses
abstract executions of the analysis as input features, these approaches use concrete executions of the
program. Finally, one extreme is to use a learning component to completely replace a conventional
analysis [Galassi et al. 2018; Wang et al. 2020]. These approaches do not guarantee soundness.

Learning-Aided Constraint Solving. Our work can be viewed as a preprocessor for a MaxSat
solver in a particular domain. There has been a growing interest in applying deep learning to
accelerate constraint solving or even replace conventional constraint solvers. Popescu et al. [2022]
gives a comprehensive survey on this topic. Our work is tailored to the program analysis domain
and therefore more effective in solving related problems.

7 Conclusion

We have proposed a framework to scale counterexample-guided abstraction refinement for Datalog-
based program analysis using graph neural networks. Our networks can effectively identify part
of a given abstraction, refining which will not likely help resolve the target queries. Compared to
existing learning-based techniques, our network takes the execution of the program analysis as
input, which can be automatically extracted from a Datalog solver. Our experiment shows that our
approach scales significantly better than existing approaches on two representative analyses.

Data-Availability Statement

The software that supports section 5 is available on Zenodo [Yan et al. 2024].

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant
No. 62172017, the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang
(Grant No. TD2019001), and Ant Group Research Fund.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:27

References

2000. Ashes Suite Collection.
Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. 1999. Symbolic Model Checking without BDDs. In

Tools and Algorithms for Construction and Analysis of Systems, 5th International Conference, TACAS ’99, Held as Part of the

European Joint Conferences on the Theory and Practice of Software, ETAPS’99, Amsterdam, The Netherlands, March 22-28,

1999, Proceedings (Lecture Notes in Computer Science, Vol. 1579), Rance Cleaveland (Ed.). Springer, 193–207.
Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,

Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann.
2006. The DaCapo benchmarks: java benchmarking development and analysis. In Proceedings of the 21th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26,

2006, Portland, Oregon, USA, Peri L. Tarr and William R. Cook (Eds.). ACM, 169–190.
Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses. In

Proceedings of the 24th ACM SIGPLAN conference on Object oriented programming systems languages and applications.
243–262.

Kwonsoo Chae, Hakjoo Oh, Kihong Heo, and Hongseok Yang. 2017. Automatically generating features for learning program
analysis heuristics for C-like languages. Proc. ACM Program. Lang. 1, OOPSLA (2017), 101:1–101:25.

Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith. 2004. Modular Verification of Software
Components in C. IEEE Trans. Software Eng. 30, 6 (2004), 388–402.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000. Counterexample-guided abstraction
refinement. Springer, 154–169.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2003. Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50, 5 (2003), 752–794.

Edmund M. Clarke, Anubhav Gupta, James H. Kukula, and Ofer Strichman. 2002. SAT Based Abstraction-Refinement Using
ILP andMachine Learning Techniques. InComputer Aided Verification, 14th International Conference, CAV 2002,Copenhagen,

Denmark, July 27-31, 2002, Proceedings (Lecture Notes in Computer Science, Vol. 2404), Ed Brinksma and Kim Guldstrand
Larsen (Eds.). Springer, 265–279.

Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel Geay. 2008. Effective typestate verification in the
presence of aliasing. ACM Transactions on Software Engineering and Methodology (TOSEM) 17, 2 (2008), 1–34.

Andrea Galassi, Michele Lombardi, Paola Mello, and Michela Milano. 2018. Model Agnostic Solution of CSPs via Deep
Learning: A Preliminary Study. In Integration of Constraint Programming, Artificial Intelligence, and Operations Research

- 15th International Conference, CPAIOR 2018, Delft, The Netherlands, June 26-29, 2018, Proceedings (Lecture Notes in

Computer Science, Vol. 10848), Willem Jan van Hoeve (Ed.). Springer, 254–262.
Radu Grigore and Hongseok Yang. 2016. Abstraction refinement guided by a learnt probabilistic model. In Proceedings of the

43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 485–498.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV, USA, 2016-06). IEEE, 770–778.
https://doi.org/10.1109/CVPR.2016.90

Kihong Heo, Hakjoo Oh, and Hongseok Yang. 2018. Learning analysis strategies for octagon and context sensitivity from
labeled data generated by static analyses. Formal Methods Syst. Des. 53, 2 (2018), 189–220.

Mikoláš Janota. 2014. MiFuMax—a literate MaxSat solver. , 83–88 pages.
Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2019. A machine-learning algorithm with disjunctive model for

data-driven program analysis. ACM Transactions on Programming Languages and Systems (TOPLAS) 41, 2 (2019), 1–41.
Publisher: ACM New York, NY, USA.

Minseok Jeon,Myungho Lee, andHakjoo Oh. 2020. Learning graph-based heuristics for pointer analysis without handcrafting
application-specific features. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–30.

Sehun Jeong, Minseok Jeon, Sung Deok Cha, and Hakjoo Oh. 2017. Data-driven context-sensitivity for points-to analysis.
Proc. ACM Program. Lang. 1, OOPSLA (2017), 100:1–100:28.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool,
Russ Bates, Augustin Žídek, and Anna Potapenko. 2021. Highly accurate protein structure prediction with AlphaFold.
Nature 596, 7873 (2021), 583–589. Publisher: Nature Publishing Group.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2016. SMT-based model checking for recursive programs. Formal

Methods Syst. Des. 48, 3 (2016), 175–205.
Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki, and Edmund M. Clarke. 2013. Automatic Abstraction in SMT-Based

Unbounded Software Model Checking. In Computer Aided Verification - 25th International Conference, CAV 2013, Saint

Petersburg, Russia, July 13-19, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

https://doi.org/10.1109/CVPR.2016.90

325:28 Zhenyu Yan, Xin Zhang, and Peng Di

Helmut Veith (Eds.). Springer, 846–862.
Gil Lederman. 2021. Neural Guidance in Constraint Solvers. (2021).
Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). 2021. MaxSAT, Hard and Soft Constraints. Frontiers in

Artificial Intelligence and Applications, Vol. 336. IOS Press. https://doi.org/10.3233/FAIA201007
Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018a. Precision-guided context sensitivity for pointer analysis.

Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1–29. Publisher: ACM New York, NY, USA.
Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018b. Scalability-first pointer analysis with self-tuning context-

sensitivity. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering. 129–140.
Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2020. A Principled Approach to Selective Context Sensitivity for

Pointer Analysis. ACM Transactions on Programming Languages and Systems (TOPLAS) 42, 2 (2020), 1–40.
Wenjie Ma, Shengyuan Yang, Tian Tan, Xiaoxing Ma, Chang Xu, and Yue Li. 2023. Context Sensitivity without Contexts:

A Cut-Shortcut Approach to Fast and Precise Pointer Analysis. Proc. ACM Program. Lang. 7, PLDI (2023), 539–564.
https://doi.org/10.1145/3591242

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. 2013. Rectifier nonlinearities improve neural network acoustic
models. In Proc. icml, Vol. 30. Atlanta, Georgia, USA, 3.

Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016. From datalog to flix: A declarative language for fixed points on
lattices. ACM SIGPLAN Notices 51, 6 (2016), 194–208. Publisher: ACM New York, NY, USA.

Kenneth L. McMillan. 2002. Applying SATMethods in Unbounded Symbolic Model Checking. In Computer Aided Verification,

14th International Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings (Lecture Notes in Computer

Science, Vol. 2404), Ed Brinksma and Kim Guldstrand Larsen (Eds.). Springer, 250–264. https://doi.org/10.1007/3-540-
45657-0_19

Kenneth L. McMillan. 2003. Interpolation and SAT-based model checking. In International Conference on Computer Aided

Verification. Springer, 1–13.
Ana Milanova, Atanas Rountev, and Barbara G Ryder. 2002. Parameterized object sensitivity for points-to and side-effect

analyses for Java. In Proceedings of the 2002 ACM SIGSOFT international symposium on Software testing and analysis.
1–11.

Mayur Naik. 2011. Chord: A versatile platform for program analysis. In Tutorial at ACM Conference on Programming

Language Design and Implementation.
Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. 2015. Learning a strategy for adapting a program analysis via bayesian

optimisation. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, Jonathan
Aldrich and Patrick Eugster (Eds.). ACM, 572–588.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32 (2019).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

Andrei Popescu, Seda Polat Erdeniz, Alexander Felfernig, Mathias Uta, Müslüm Atas, Viet-Man Le, Klaus Pilsl, Martin
Enzelsberger, and Thi Ngoc Trang Tran. 2022. An overview of machine learning techniques in constraint solving. J.
Intell. Inf. Syst. 58, 1 (2022), 91–118. https://doi.org/10.1007/s10844-021-00666-5

Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph Reachability.
In Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San

Francisco, California, USA, January 23-25, 1995, Ron K. Cytron and Peter Lee (Eds.). ACM Press, 49–61.
Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. 2018. Modeling

relational data with graph convolutional networks. Springer, 593–607.
Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V. Nori. 2013. A Data Driven

Approach for Algebraic Loop Invariants. In Programming Languages and Systems - 22nd European Symposium on

Programming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,

Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa
Gardner (Eds.). Springer, 574–592.

Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang. 2018. Pinpoint: Fast and Precise Sparse
Value Flow Analysis for Million Lines of Code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation. 693–706.
Olin Grigsby Shivers. 1991. Control-flow analysis of higher-order languages or taming lambda. Carnegie Mellon University.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

https://doi.org/10.3233/FAIA201007
https://doi.org/10.1145/3591242
https://doi.org/10.1007/3-540-45657-0_19
https://doi.org/10.1007/3-540-45657-0_19
https://doi.org/10.1007/s10844-021-00666-5

Scaling Abstraction Refinement for Program Analyses in Datalog using Graph Neural Networks 325:29

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam, and Marc Lanctot. 2016. Mastering the game of Go with deep neural networks
and tree search. nature 529, 7587 (2016), 484–489.

Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective analysis: context-sensitivity, across
the board. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation.
485–495.

Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-object-sensitive pointer analysis more precise with still k-limiting. In
International Static Analysis Symposium. Springer, 489–510.

Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and precise points-to analysis: modeling the heap by merging equivalent
automata. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation.
278–291.

Minjie Yu Wang. 2019. Deep graph library: Towards efficient and scalable deep learning on graphs. In ICLR workshop on

representation learning on graphs and manifolds.
Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang. 2020. Learning semantic program embeddings with graph interval

neural network. Proc. ACM Program. Lang. 4, OOPSLA (2020), 137:1–137:27.
Zhenyu Yan, Xin Zhang, and Peng Di. 2024. Scaling Abstraction Refinement for Program Analyses in Datalog Using Graph

Neural Networks (Artifact). https://doi.org/10.5281/zenodo.12663344 Zenodo.
Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu. 2020. Learning nonlinear loop invariants with gated

continuous logic networks. In Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language

Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM,
106–120.

Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang. 2021. Program Analysis via Efficient Symbolic Abstraction.
Proc. ACM Program. Lang. 5, OOPSLA, Article 118 (oct 2021), 32 pages. https://doi.org/10.1145/3485495

Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong, and Lu Zhang. 2020. NLocalSAT: Boosting local
search with solution prediction. arXiv preprint arXiv:2001.09398 (2020).

Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014. On abstraction refinement for program
analyses in Datalog. 239–248.

He Zhu, Stephen Magill, and Suresh Jagannathan. 2018. A data-driven CHC solver. In Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018,
Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 707–721.

Zhiqiang Zuo, Yiyu Zhang, Qiuhong Pan, Shenming Lu, Yue Li, Linzhang Wang, Xuandong Li, and Guoqing Harry Xu. 2021.
Chianina: An Evolving Graph System for Flow-and Context-Sensitive Analyses of Million Lines of C Code. In Proceedings

of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. 914–929.

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 325. Publication date: October 2024.

https://doi.org/10.5281/zenodo.12663344
https://doi.org/10.1145/3485495

	Abstract
	1 Introduction
	2 Overview
	3 Preliminaries
	3.1 Datalog Syntax and Semantics
	3.2 Parametric Program Analysis
	3.3 Problem Statement

	4 Our Framework
	4.1 From Derivation Graphs to GNN Inputs
	4.2 Graph Neural Network Architecture
	4.3 Formulating Refinement as MaxSat
	4.4 Training Data Generation
	4.5 Training

	5 Experiments
	5.1 Experimental Setup
	5.2 Scalability and Precision Results
	5.3 Constraint Problem Simplification Results
	5.4 Controlled Precision Loss Study
	5.5 Ablation Study
	5.6 Explaining Our Graph Neural Network
	5.7 Generality over Different Analyses

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

