Probabilistic Logic Programming

Xin Zhang Peking University

Recap of Last Lecture

- Learning in probabilistic programming
 - Parameter learning, structure learning
 - Still an active research area

This Lecture

- Probabilistic logic programming
 - Motivation
 - Syntax
 - Semantics
 - Inference

Classical AI: Logic

- Rich logic systems provide significant expressiveness power
 - Concise and learnable models
- Example: first-order logic. Rules of chess occupy
 - 10⁰ pages of first-order logic
 - 10^5 pages in propositional logic
 - 10³⁸ pages in finite automata

Quick Recap on First-Order Logic

• Compared to propositional logic, introduces predicates and quantifications for expressiveness

 $\forall h1, h2, h3. sibling(h1, h2) \land sibling(h2, h3) \rightarrow sibling(h1, h3)$

• Undecidable

Modern AI: Probability Theory for Uncertainty

• Bayesian network

- Fixed variables in fixed ranges
 - Similar to propositional logic and Boolean logic

Probabilistic Logic Programming: Unifying Logic and Probability

- Logic: the ability to describe complex domains concisely in terms of objects and relations
- Probability: the ability to handle uncertainty
- Logic + probability = Probabilistic Logic Programming

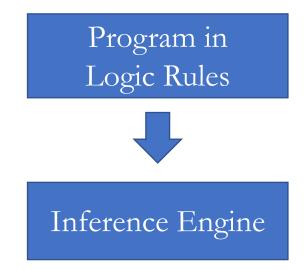
Example Probabilistic Logic Languages

- Markov Logic Network. University of Washington
- Probabilistic Soft Logic. University of Maryland
- **Problog.** KU Leuven https://dtai.cs.kuleuven.be/problog/index.html
- BLOG. UC Berkeley

Background: Logic Programming

• Declarative: specifies what rather than how

• Leverages powerful inference engine



Background: Prolog and Datalog

- Prolog: once popular in AI, still being used in pattern matching (NLP)
 - Turning-complete

- Datalog: a subset of Prolog
 - Can only express polynomial algorithms
 - Originates from the Database community (SQL with recursions)
 - Logic part of Problog

Background: Datalog

Input Relation: Edge(e1, e2)

Output Relation:

Path(e1, e2)

Rules:

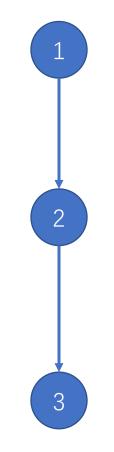
 $\begin{aligned} \text{Path}(\text{e1}, \text{e2}) &:= \text{edge}(\text{e1}, \text{e2}) \\ \text{Path}(\text{e1}, \text{e3}) &:= \text{path}(\text{e1}, \text{e2}), \text{edge}(\text{e2}, \text{e3}) & \forall path(e_1, e_2) \land edge(e_2, e_3) \Rightarrow path(e_1, e_2) \end{aligned}$

Background: Datalog

Edge(1, 2) Edge(2, 3)

Path(1, 2) :- Edge(1, 2) Path(2, 3) :- Edge(2, 3)

Path(1, 3) :- Path(1, 2), Edge(2, 3)



Adding Probabilities to Datalog

• If A is a friend of B, and B is a friend of C, then A is likely a friend of C.

Can you write a program for the above sentence?

Adding Probabilities to Datalog

• Suppose edges exist with probabilities (by observation), compute path reachability.

Can you write a program for the above sentence?

Add probabilities to rules or facts?

What is the semantics?

Path(E1, E2) :- edge(E1, E2) 0.5: Path(E1, E3) :- path(E1, E2), edge(E2, E3)

Given a set of derived tuples/facts, assign a probability to them.

Problog: Introduction

• A language developed by the group led by Luc De Raedt at KU Leuven

- Extends Prolog with probabilities
 - Actually closer to Datalog

Problog: Syntax

• Value: numbers, mixed numbers and letters starting with a letter in lower cases

• Variable: starting with a capital letter

Problog: Syntax

Definition	Example
fact	a.
probabilistic fact	0.5::a.
clause	a :- x.
probabilistic clause	0.5::a :- x.
annotated disjunction	0.5::a; 0.5::b.
annotated disjunction	0.5::a; 0.5::b :- x.

From the documentation of Problog

Problog: Syntax

Queries:

```
0.5::heads(C).
two_heads :- heads(c1), heads(c2).
query(two_heads).
```

```
0.5::heads(C) :- between(1, 4, C).
query(heads(C)).
```

```
0.5::heads(C) :- between(1, 4, C).
query(heads(C)).
```

Evidence:

```
0.5::heads(C).
two_heads :- heads(c1), heads(c2).
evidence(\+ two_heads).
query(heads(c1)).
```

From the documentation of Problog

Example Program I

0.5 :: stayUp.

0.7 :: drinkCoffee :- stayUp.

0.5 :: drinkCoffee :- \+ stayUp.

0.9 :: fallSleep :- \+ drinkCoffee, stayUp.

0.3 :: fallSleep :- drinkCoffee, stayUp.

 $0.1 :: fallSleep :- \+stayUp.$

evidence(fallSleep).

query(stayUp).

What does the following program compute?

```
0.5 :: stayUp.
0.7 :: drinkCoffee :- stayUp.
0.5 :: drinkCoffee :- \+ stayUp.
0.9 :: fallSleep :- \+ drinkCoffee, stayUp.
0.3 :: fallSleep :- drinkCoffee, stayUp.
0.1 :: fallSleep :- \+stayUp.
```

query(stayUp).

evidence(fallSleep).

What does the following program compute?

0.5::heads1.

0.5::heads2.

heads1 :- heads2.

query(heads1). query(heads2).

What does the following program compute?

0.5::heads1.

0.5::heads2.

 $\ + heads1 :- heads2.$

query(heads1). query(heads2).

Example Program 2

0.9 :: edge(0,1). 0.8 :: edge(1,2). 0.7 :: edge(2,3). 0.8 :: edge(2,4).

```
1 :: path(A,B) :- edge(A,B).
0.8 :: path(A,C) :- path(A,B), edge(B,C).
```

evidence($\pm path(0,3)$).

query(path(0,4)).

• What is the semantics of the following program?

0.5 :: stayUp.

0.7 :: drinkCoffee :- stayUp.

0.3 :: fallSleep :- drinkCoffee, stayUp.

query(fallSleep).

• For simplicity, we assume all probabilities are attached to facts

• First idea: we can convert the program into a Bayesian network, but how?

• Converting into a Bayesian network is viable, but there are small catches

• We give another semantics that defines a distribution of Datalog programs

• From a Problog program, we can sample a Datalog program by sampling the facts

0.5 :: stayUp.0.7 :: drinkCoffee :- stayUp.0.3 :: fallSleep :- drinkCoffee, stayUp.

0.7 :: r1. **=** 0.3 :: r2. drinkCoffee :- stayUp, r1. fallSleep :- drinkCoffee, stayUp, r2.

0.5 :: stayUp.

stayUp. r1. r2. drinkCoffee :- stayUp, r1.

fallSleep :- drinkCoffee, stayUp, r2.

Probability: 0.5*0.7*0.3

• What about queries?

0.5 :: stayUp. 0.7 :: r1. 0.3 :: r2. drinkCoffee :- stayUp, r1. fallSleep :- drinkCoffee, stayUp, r2.

query(fallSleep)

A query calculates a marginal probability of a fact. Informally, $p(f) = \frac{\sum p(any \ program \ that \ derives \ f)}{\sum p(any \ program)}$

• What about evidence?

0.5 :: stayUp. 0.7 :: r1. 0.3 :: r2. drinkCoffee :- stayUp, r1. fallSleep :- drinkCoffee, stayUp, r2.

evidence(\+ fallSleep) query(stayUp)

Evidence filters out certain programs. Informally, $p(f) = \frac{\sum p(any \ program \ that \ derives \ f|evidence)}{\sum p(any \ program|evidence)}$

• What about relations and quantified variables?

0.9 :: edge(0,1). 0.8 :: edge(1,2). 0.7 :: edge(2,3). 0.8 :: edge(2,4).

```
path(A,B) :- edge(A,B).
0.8 :: path(A,C) :- path(A,B), edge(B,C).
```

```
evidence(\pm path(0,3)).
```

```
query(path(0,4)).
```

- Move probabilities to facts 0.9 :: edge(0,1).
 - 0.8 :: edge(1,2).
 - 0.7 :: edge(2,3).
 - 0.8 :: edge(2,4).

```
0.8 :: r(A,B,C).
```

```
path(A,B) := edge(A,B).
path(A,C) := path(A,B), edge(B,C), r(A,B,C).
```

```
evidence(\pm path(0,3)).
```

query(path(0,4)).

• Ground

. . .

Constants: 0, 1, 2, 3 4

path(A,C) :- path(A,B), edge(B,C), r(A,B,C). Generates

path(0,0) := path(0,0), edge(0,0), r(0,0,0).A=0, B=0, C=0path(0,1) := path(0,0), edge(0,1), r(0,0,1).A=0, B=0, C=1path(0,1) := path(0,0), edge(0,1), r(0,0,1).A=0, B=0, C=1

• After grounding, each ground term can be seen as a Boolean variable, then the whole program can be solved using the semantics of the Boolean case

```
path(0,0) -> t1, edge(0,0) -> t2, r(0,0,0) -> t3
```

```
path(0,0) :- path(0,0), edge(0,0), r(0,0,0).
```

• First, ground the program into a Boolean program

• The Boolean program describes a distribution of Datalog program, which in turn defines a distribution of outputs

Questions

• Can you use Problog to express uniform distributions?

• What about loops?

Logic Part in Problog is more than Datalog

:- use_module(library(aggregate)).

pull(0).
count(1).

pull(N+1) :- pull(N), N < 10. 0.1 :: pull_SSR(N) :- pull(N).

num_SSRs(sum<X>) :- pull_SSR(N),count(X).

query(num_SSRs(X)).

But It is also Not Prolog

The following program terminates in Problog but not in Prolog child(anne,bridget).
child(bridget,caroline).
child(caroline,donna).
child(donna,emily).
descend(X,Y) :- descend(Z,Y), child(X,Z).
descend(X,Y) :- child(X,Y).

```
query(descend(anne,emily))
```

Inference

- As described before, inference can be done in two steps:
 - **Grounding**. Convert the program into a probabilistic program with only Boolean variables (no quantifiers)

• Solving. Solve with the Boolean program produced above.

Optimization on Grounding

- Grounding replaces all variables with their values
 - Number of grounded rules is proportional to cartesian product of the domain sizes

- How to optimize?
 - A simple idea: only ground the part that is relevant to the queries and evidence.
 - Backtrack over the rules starting from the queries and evidence (SLD resolution).
 - A further optimization: stop tracking if a rule body doesn't hold according to the evidence

Optimization on Grounding

- If the logic part is Datalog without negation, we can use a Datalog solver to compute the grounding
- Datalog without negation is monotonic: the more rules or input facts, the more output facts
- If negation is on the input, it is still fine

Negation in Problog

• Unfortunately, Problog allows the following program: one(1).

odd(X) := one(X).even(X) := + odd(X).And

0.5::a. 0.9 :: e:-a. 0.5::b. 0.9 :: e:-b. 0.1 :: \+e:-a,b If such negations are not present, we can use a Datalog solver to ground, which is highly efficient.

Solving

• Once we have a grounded program, we can leverage existing techniques

• Idea 1: convert the program into a Bayesian network

• Idea 2: convert the program into a Boolean formula with weights (MaxSAT)

Solving: Converting into a Bayesian Net

0.8 :: a.

0.7 :: b.

0.5 :: c:- a. 0.5 :: c:- b.

query(c).

Solving: Converting into a Bayesian Net

- We move all probabilities to input facts
- We add a root node whose prior distribution is P(r =1) = 1. Then we add a rule p :: f:-r for each input fact p::f
- For each fact f, suppose it is derived using r1, ..., rn, we add arcs from all facts in the rule bodies to f.
- We set conditional probabilities:

$$p(f | \lor body(r_i) == True) = 1$$

 $p(f | \lor body(r_i) == False) = 0$

Only works for program without cycles

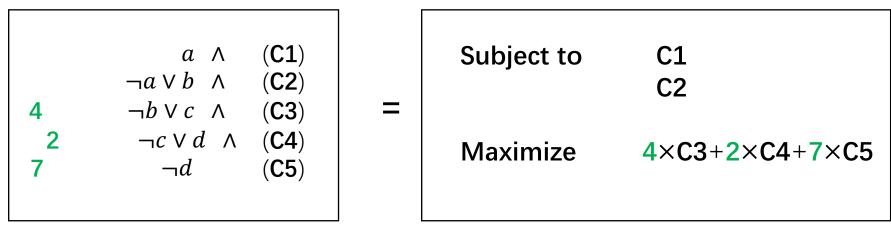
Solving: Converting into a MaxSAT

• Finding the most likely solution becomes solving the MaxSAT

• Computing marginal probabilities becomes weighted model counting

Brief Introduction on MaxSAT

MaxSAT:



Solution: a = true, b = true, c = true, d = false
 (Objective = 11)

Brief Introduction on MaxSAT

• Popular MaxSAT solving techniques: converting the problem into a series of SAT problem

- Brief idea: can any solution satisfy k clauses?
 - Linear search
 - Binary search
 - (UNSAT) core guided

Core-Guided MaxSAT Solving

- UNSAT core: a set of clauses which are not unsatisfiable
 - Minimum UNSAT core: removing any clause will make it satisfiable
 - Modern SAT solvers come with the ability to return UNSAT cores

• [Fu & Malik]: Each time allow one and only one clause to be relaxed

Example using MaxSAT for Inference

0.6 :: rain. 0.5 :: sprinkle. 0.9 :: grass_wet :- rain, sprinkle.

grass_wet :- rain, sprinkle is translated into $grass_{wet} \leftrightarrow rain \wedge sprinkle \wedge r$ 0.6 rain

0.4 !rain

0.5 sprinkle

0.5 !sprinkle

0.9 r

0.1 !r

grass_wet or !rain or !sprinkle or !r !grass_wet or rain !grass_wet or sprinle !grass_wet or r 50

Example using MaxSAT for Inference

• When translating rules, we have to consider the least fixed point semantics of Datalog

• Suppose the rules are acyclic, for a given fact f, we have to consider all grounded rules that derive f

 $f \leftrightarrow \lor body(r_i)$

Example using MaxSAT for Inference

• When rules are cyclic, problems become complicated:

0.5::a. b:-a. b:-c. c:-b

- For reference:
 - Janhunen, T. 2004. Representing normal programs with clauses. In In Proc. of the 16th European Conference on Artificial Intelligence. IOS Press, 358–362.
 - Mantadelis, T. and Janssens, G. 2010. Dedicated tabling for a probabilistic setting. In Tech. Comm. of 26th International Conf. on Logic Programming. 124–133.

Brief Introduction on Weighted Model Counting

• Model counting: compute the number of assignments to a SAT expression

a or b 3 assignments

- Weighted model counting
 - Each variable has a weight for each assignment: w(v)
 - The model weight is the the product of variable weights
 - Now the count is a weighted sum

Example using WMC for Inference

 $0.6 \operatorname{rain}$ w(rain = true) = 0.6w(rain = false) = 0.40.4 !rain w(sprinkle = true) = 0.5w(sprinkle = false) = 0.50.5 sprinkle w(r = true) = 0.90.5 !sprinkle w(r = false) = 0.10.9 r $P(grass_wet = true) = WMC(M \land grass_wet=true)$ 0.1 !r grass_wet or !rain or !sprinkle What if we want to evaluate !grass_wet or rain $P(rain | grass_wet = true)?$!grass_wet or sprinle

Using WMC for Marginal Inference

• Let the constructed weighted formula be M, queries be Q, evidence be E, then

$$P(Q) = \frac{WMC(M \land Q \land E)}{WMC(M \land E)}$$

• For more, refer to

Sang, T., Beame, P. and Kautz, H., 2005. Solving Bayesian networks by weighted model counting. In Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05) (Vol. 1, pp. 475-482). AAAI Press.

Further Reading on Problog

• https://dtai.cs.kuleuven.be/problog/index.html

Xin Zhang@PKU

Next Lecture

• Causality