# Probabilistic Logic Programming

Xin Zhang Peking University

### **Recap of Last Lecture**

- Learning in probabilistic programming
  - Parameter learning, structure learning
  - Still an active research area

### This Lecture

- Probabilistic logic programming
  - Motivation
  - Syntax
  - Semantics
  - Inference

## **Classical AI: Logic**

- Rich logic systems provide significant expressiveness power
  - Concise and learnable models
- Example: first-order logic. Rules of chess occupy
  - 10<sup>0</sup> pages of first-order logic
  - $10^5$  pages in propositional logic
  - 10<sup>38</sup> pages in finite automata

### Quick Recap on First-Order Logic

• Compared to propositional logic, introduces predicates and quantifications for expressiveness

 $\forall h1, h2, h3. sibling(h1, h2) \land sibling(h2, h3) \rightarrow sibling(h1, h3)$ 

• Undecidable

### Modern AI: Probability Theory for Uncertainty

• Bayesian network

- Fixed variables in fixed ranges
  - Similar to propositional logic and Boolean logic

### Probabilistic Logic Programming: Unifying Logic and Probability

- Logic: the ability to describe complex domains concisely in terms of objects and relations
- Probability: the ability to handle uncertainty
- Logic + probability = Probabilistic Logic Programming

### Example Probabilistic Logic Languages

- Markov Logic Network. University of Washington
- Probabilistic Soft Logic. University of Maryland
- **Problog.** KU Leuven https://dtai.cs.kuleuven.be/problog/index.html
- BLOG. UC Berkeley



## Background: Logic Programming

• Declarative: specifies what rather than how

• Leverages powerful inference engine



## Background: Prolog and Datalog

- Prolog: once popular in AI, still being used in pattern matching (NLP)
  - Turning-complete

- Datalog: a subset of Prolog
  - Can only express polynomial algorithms
  - Originates from the Database community (SQL with recursions)
  - Logic part of Problog

### Background: Datalog

### **Input Relation:** Edge(e1, e2)

### **Output Relation:**

Path(e1, e2)

### **Rules:**

 $\begin{aligned} \text{Path}(\text{e1}, \text{e2}) &:= \text{edge}(\text{e1}, \text{e2}) \\ \text{Path}(\text{e1}, \text{e3}) &:= \text{path}(\text{e1}, \text{e2}), \text{edge}(\text{e2}, \text{e3}) & \forall path(e_1, e_2) \land edge(e_2, e_3) \Rightarrow path(e_1, e_2) \end{aligned}$ 

### Background: Datalog

Edge(1, 2) Edge(2, 3)

Path(1, 2) :- Edge(1, 2) Path(2, 3) :- Edge(2, 3)

Path(1, 3) :- Path(1, 2), Edge(2, 3)



### Adding Probabilities to Datalog

• If A is a friend of B, and B is a friend of C, then A is likely a friend of C.

Can you write a program for the above sentence?

### Adding Probabilities to Datalog

• Suppose edges exist with probabilities (by observation), compute path reachability.

Can you write a program for the above sentence?

Add probabilities to rules or facts?

### What is the semantics?

### Path(E1, E2) :- edge(E1, E2) 0.5: Path(E1, E3) :- path(E1, E2), edge(E2, E3)

Given a set of derived tuples/facts, assign a probability to them.

### Problog: Introduction

• A language developed by the group led by Luc De Raedt at KU Leuven

- Extends Prolog with probabilities
  - Actually closer to Datalog

### Problog: Syntax

• Value: numbers, mixed numbers and letters starting with a letter in lower cases

• Variable: starting with a capital letter

### Problog: Syntax

| Definition            | Example              |
|-----------------------|----------------------|
| fact                  | a.                   |
| probabilistic fact    | 0.5::a.              |
| clause                | a :- x.              |
| probabilistic clause  | 0.5::a :- x.         |
| annotated disjunction | 0.5::a; 0.5::b.      |
| annotated disjunction | 0.5::a; 0.5::b :- x. |

From the documentation of Problog

### Problog: Syntax

#### Queries:

```
0.5::heads(C).
two_heads :- heads(c1), heads(c2).
query(two_heads).
```

```
0.5::heads(C) :- between(1, 4, C).
query(heads(C)).
```

```
0.5::heads(C) :- between(1, 4, C).
query(heads(C)).
```

#### Evidence:

```
0.5::heads(C).
two_heads :- heads(c1), heads(c2).
evidence(\+ two_heads).
query(heads(c1)).
```

From the documentation of Problog

### Example Program I

0.5 :: stayUp.

0.7 :: drinkCoffee :- stayUp.

0.5 :: drinkCoffee :- \+ stayUp.

0.9 :: fallSleep :- \+ drinkCoffee, stayUp.

0.3 :: fallSleep :- drinkCoffee, stayUp.

 $0.1 :: fallSleep :- \+stayUp.$ 

evidence(fallSleep).

query(stayUp).

### What does the following program compute?

```
0.5 :: stayUp.
0.7 :: drinkCoffee :- stayUp.
0.5 :: drinkCoffee :- \+ stayUp.
0.9 :: fallSleep :- \+ drinkCoffee, stayUp.
0.3 :: fallSleep :- drinkCoffee, stayUp.
0.1 :: fallSleep :- \+stayUp.
```

query(stayUp).

evidence(fallSleep).

### What does the following program compute?

0.5::heads1.

0.5::heads2.

heads1 :- heads2.

query(heads1). query(heads2).

### What does the following program compute?

0.5::heads1.

0.5::heads2.

 $\ + heads1 :- heads2.$ 

query(heads1). query(heads2).

### Example Program 2

0.9 :: edge(0,1). 0.8 :: edge(1,2). 0.7 :: edge(2,3). 0.8 :: edge(2,4).

```
1 :: path(A,B) :- edge(A,B).
0.8 :: path(A,C) :- path(A,B), edge(B,C).
```

evidence( $\pm path(0,3)$ ).

query(path(0,4)).

• What is the semantics of the following program?

0.5 :: stayUp.

0.7 :: drinkCoffee :- stayUp.

0.3 :: fallSleep :- drinkCoffee, stayUp.

query(fallSleep).

• For simplicity, we assume all probabilities are attached to facts

• First idea: we can convert the program into a Bayesian network, but how?

• Converting into a Bayesian network is viable, but there are small catches

• We give another semantics that defines a distribution of Datalog programs

• From a Problog program, we can sample a Datalog program by sampling the facts

0.5 :: stayUp.0.7 :: drinkCoffee :- stayUp.0.3 :: fallSleep :- drinkCoffee, stayUp.

0.7 :: r1. **=** 0.3 :: r2. drinkCoffee :- stayUp, r1. fallSleep :- drinkCoffee, stayUp, r2.

0.5 :: stayUp.

stayUp. r1. r2. drinkCoffee :- stayUp, r1.

fallSleep :- drinkCoffee, stayUp, r2.

Probability: 0.5\*0.7\*0.3

• What about queries?

0.5 :: stayUp. 0.7 :: r1. 0.3 :: r2. drinkCoffee :- stayUp, r1. fallSleep :- drinkCoffee, stayUp, r2.

query(fallSleep)

A query calculates a marginal probability of a fact. Informally,  $p(f) = \frac{\sum p(any \ program \ that \ derives \ f)}{\sum p(any \ program)}$ 

• What about evidence?

0.5 :: stayUp. 0.7 :: r1. 0.3 :: r2. drinkCoffee :- stayUp, r1. fallSleep :- drinkCoffee, stayUp, r2.

evidence(\+ fallSleep) query(stayUp)

Evidence filters out certain programs. Informally,  $p(f) = \frac{\sum p(any \ program \ that \ derives \ f|evidence)}{\sum p(any \ program|evidence)}$ 

• What about relations and quantified variables?

0.9 :: edge(0,1). 0.8 :: edge(1,2). 0.7 :: edge(2,3). 0.8 :: edge(2,4).

```
path(A,B) :- edge(A,B).
0.8 :: path(A,C) :- path(A,B), edge(B,C).
```

```
evidence(\pm path(0,3)).
```

```
query(path(0,4)).
```

- Move probabilities to facts 0.9 :: edge(0,1).
  - 0.8 :: edge(1,2).
  - 0.7 :: edge(2,3).
  - 0.8 :: edge(2,4).

```
0.8 :: r(A,B,C).
```

```
path(A,B) := edge(A,B).
path(A,C) := path(A,B), edge(B,C), r(A,B,C).
```

```
evidence(\pm path(0,3)).
```

query(path(0,4)).

• Ground

. . .

Constants: 0, 1, 2, 3 4

path(A,C) :- path(A,B), edge(B,C), r(A,B,C). Generates

path(0,0) := path(0,0), edge(0,0), r(0,0,0).A=0, B=0, C=0path(0,1) := path(0,0), edge(0,1), r(0,0,1).A=0, B=0, C=1path(0,1) := path(0,0), edge(0,1), r(0,0,1).A=0, B=0, C=1

• After grounding, each ground term can be seen as a Boolean variable, then the whole program can be solved using the semantics of the Boolean case

```
path(0,0) -> t1, edge(0,0) -> t2, r(0,0,0) -> t3
```

```
path(0,0) :- path(0,0), edge(0,0), r(0,0,0).
```

• First, ground the program into a Boolean program

• The Boolean program describes a distribution of Datalog program, which in turn defines a distribution of outputs

### Questions

• Can you use Problog to express uniform distributions?

• What about loops?

## Logic Part in Problog is more than Datalog

:- use\_module(library(aggregate)).

pull(0).
count(1).

pull(N+1) :- pull(N), N < 10. 0.1 :: pull\_SSR(N) :- pull(N).

num\_SSRs(sum<X>) :- pull\_SSR(N),count(X).

query(num\_SSRs(X)).

## But It is also Not Prolog

The following program terminates in Problog but not in Prolog child(anne,bridget).
child(bridget,caroline).
child(caroline,donna).
child(donna,emily).
descend(X,Y) :- descend(Z,Y), child(X,Z).
descend(X,Y) :- child(X,Y).

```
query(descend(anne,emily))
```

## Inference

- As described before, inference can be done in two steps:
  - **Grounding**. Convert the program into a probabilistic program with only Boolean variables (no quantifiers)

• Solving. Solve with the Boolean program produced above.

# **Optimization on Grounding**

- Grounding replaces all variables with their values
  - Number of grounded rules is proportional to cartesian product of the domain sizes

- How to optimize?
  - A simple idea: only ground the part that is relevant to the queries and evidence.
  - Backtrack over the rules starting from the queries and evidence (SLD resolution).
  - A further optimization: stop tracking if a rule body doesn't hold according to the evidence

## **Optimization on Grounding**

- If the logic part is Datalog without negation, we can use a Datalog solver to compute the grounding
- Datalog without negation is monotonic: the more rules or input facts, the more output facts
- If negation is on the input, it is still fine

# Negation in Problog

• Unfortunately, Problog allows the following program: one(1).

odd(X) := one(X).even(X) := + odd(X).And

0.5::a. 0.9 :: e:-a. 0.5::b. 0.9 :: e:-b. 0.1 :: \+e:-a,b If such negations are not present, we can use a Datalog solver to ground, which is highly efficient.

# Solving

• Once we have a grounded program, we can leverage existing techniques

• Idea 1: convert the program into a Bayesian network

• Idea 2: convert the program into a Boolean formula with weights (MaxSAT)

# Solving: Converting into a Bayesian Net

0.8 :: a.

0.7 :: b.

0.5 :: c:- a. 0.5 :: c:- b.

query(c).

# Solving: Converting into a Bayesian Net

- We move all probabilities to input facts
- We add a root node whose prior distribution is P(r =1) = 1. Then we add a rule p :: f:-r for each input fact p::f
- For each fact f, suppose it is derived using r1, ..., rn, we add arcs from all facts in the rule bodies to f.
- We set conditional probabilities:

$$p(f | \lor body(r_i) == True) = 1$$
  
 $p(f | \lor body(r_i) == False) = 0$ 

Only works for program without cycles

# Solving: Converting into a MaxSAT

• Finding the most likely solution becomes solving the MaxSAT

• Computing marginal probabilities becomes weighted model counting

## Brief Introduction on MaxSAT

#### MaxSAT:



Solution: a = true, b = true, c = true, d = false
 (Objective = 11)

## Brief Introduction on MaxSAT

• Popular MaxSAT solving techniques: converting the problem into a series of SAT problem

- Brief idea: can any solution satisfy k clauses?
  - Linear search
  - Binary search
  - (UNSAT) core guided

# Core-Guided MaxSAT Solving

- UNSAT core: a set of clauses which are not unsatisfiable
  - Minimum UNSAT core: removing any clause will make it satisfiable
  - Modern SAT solvers come with the ability to return UNSAT cores

• [Fu & Malik]: Each time allow one and only one clause to be relaxed

## Example using MaxSAT for Inference

0.6 :: rain. 0.5 :: sprinkle. 0.9 :: grass\_wet :- rain, sprinkle.

grass\_wet :- rain, sprinkle is translated into  $grass_{wet} \leftrightarrow rain \wedge sprinkle \wedge r$  0.6 rain

0.4 !rain

0.5 sprinkle

0.5 !sprinkle

0.9 r

0.1 !r

grass\_wet or !rain or !sprinkle or !r !grass\_wet or rain !grass\_wet or sprinle !grass\_wet or r 50

# Example using MaxSAT for Inference

• When translating rules, we have to consider the least fixed point semantics of Datalog

• Suppose the rules are acyclic, for a given fact f, we have to consider all grounded rules that derive f

 $f \leftrightarrow \lor body(r_i)$ 

## Example using MaxSAT for Inference

• When rules are cyclic, problems become complicated:

0.5::a. b:-a. b:-c. c:-b

- For reference:
  - Janhunen, T. 2004. Representing normal programs with clauses. In In Proc. of the 16th European Conference on Artificial Intelligence. IOS Press, 358–362.
  - Mantadelis, T. and Janssens, G. 2010. Dedicated tabling for a probabilistic setting. In Tech. Comm. of 26th International Conf. on Logic Programming. 124–133.

#### Brief Introduction on Weighted Model Counting

• Model counting: compute the number of assignments to a SAT expression

#### a or b 3 assignments

- Weighted model counting
  - Each variable has a weight for each assignment: w(v)
  - The model weight is the the product of variable weights
  - Now the count is a weighted sum

## Example using WMC for Inference

 $0.6 \operatorname{rain}$ w(rain = true) = 0.6w(rain = false) = 0.40.4 !rain w(sprinkle = true) = 0.5w(sprinkle = false) = 0.50.5 sprinkle w(r = true) = 0.90.5 !sprinkle w(r = false) = 0.10.9 r  $P(grass\_wet = true) = WMC(M \land grass\_wet=true)$ 0.1 !r grass\_wet or !rain or !sprinkle What if we want to evaluate !grass\_wet or rain  $P(rain | grass_wet = true)?$ !grass\_wet or sprinle

# Using WMC for Marginal Inference

• Let the constructed weighted formula be M, queries be Q, evidence be E, then

$$P(Q) = \frac{WMC(M \land Q \land E)}{WMC(M \land E)}$$

• For more, refer to

Sang, T., Beame, P. and Kautz, H., 2005. Solving Bayesian networks by weighted model counting. In Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05) (Vol. 1, pp. 475-482). AAAI Press.

# Further Reading on Problog

• https://dtai.cs.kuleuven.be/problog/index.html

Xin Zhang@PKU

## Next Lecture

• Causality