
Probabilistic Logic Programming

Xin Zhang
Peking University

Recap of Last Lecture

• Learning in probabilistic programming
• Parameter learning, structure learning
• Still an active research area

Xin Zhang@PKU

2

This Lecture
• Probabilistic logic programming
• Motivation
• Syntax
• Semantics
• Inference

Xin Zhang@PKU

3

Classical AI: Logic
• Rich logic systems provide significant expressiveness power
• Concise and learnable models

• Example: first-order logic. Rules of chess occupy
• 10! pages of first-order logic
• 10" pages in propositional logic
• 10#$ pages in finite automata

Xin Zhang@PKU

4

Quick Recap on First-Order Logic
• Compared to propositional logic, introduces predicates and

quantifications for expressiveness

• Undecidable

Xin Zhang@PKU

5

∀ ℎ1, ℎ2, ℎ3. 𝑠𝑖𝑏𝑙𝑖𝑛𝑔 ℎ1, ℎ2 ∧ 𝑠𝑖𝑏𝑙𝑖𝑛𝑔 ℎ2, ℎ3 → 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(ℎ1, ℎ3)

Modern AI: Probability Theory for Uncertainty

• Bayesian network

• Fixed variables in fixed ranges
• Similar to propositional logic and Boolean logic

Xin Zhang@PKU

6

Probabilistic Logic Programming:
Unifying Logic and Probability
• Logic: the ability to describe complex domains concisely in terms of

objects and relations

• Probability: the ability to handle uncertainty

• Logic + probability = Probabilistic Logic Programming

Xin Zhang@PKU

7

Example Probabilistic Logic Languages
• Markov Logic Network. University of Washington

• Probabilistic Soft Logic. University of Maryland

• Problog. KU Leuven

• BLOG. UC Berkeley

• ….

Xin Zhang@PKU

8

https://dtai.cs.kuleuven.be/problog/index.html

Background: Logic Programming
• Declarative: specifies what rather than how

• Leverages powerful inference engine

Xin Zhang@PKU

9

Program in
Logic Rules

Inference Engine

Background: Prolog and Datalog
• Prolog: once popular in AI, still being used in pattern matching (NLP)
• Turning-complete

• Datalog: a subset of Prolog
• Can only express polynomial algorithms
• Originates from the Database community (SQL with recursions)
• Logic part of Problog

Xin Zhang@PKU

10

Background: Datalog
Input Relation:
Edge(e1, e2)

Output Relation:
Path(e1, e2)

Rules:
Path(e1, e2) :- edge(e1, e2)
Path(e1, e3) :- path(e1, e2), edge(e2, e3)

Xin Zhang@PKU

11

∀ 𝑒𝑑𝑔𝑒 𝑒%, 𝑒& ⇒ 𝑝𝑎𝑡ℎ(𝑒%, 𝑒&)

∀ 𝑝𝑎𝑡ℎ 𝑒%, 𝑒& ∧ 𝑒𝑑𝑔𝑒(𝑒&, 𝑒#) ⇒ 𝑝𝑎𝑡ℎ(𝑒%, 𝑒&)

Background: Datalog
Xin Zhang@PKU

12

1

2

3

Edge(1, 2) Edge(2, 3)

Path(1, 2) :- Edge(1, 2)
Path(2, 3) :- Edge(2, 3)

Path(1, 3) :- Path(1, 2), Edge(2, 3)

Adding Probabilities to Datalog
• If A is a friend of B, and B is a friend of C, then A is likely a friend of C.

Xin Zhang@PKU

13

Can you write a program for the above sentence?

Adding Probabilities to Datalog
• Suppose edges exist with probabilities (by observation), compute path

reachability.

Xin Zhang@PKU

14

Can you write a program for the above sentence?

Add probabilities to rules or facts?

What is the semantics?
Xin Zhang@PKU

15

Path(E1, E2) :- edge(E1, E2)
0.5: Path(E1, E3) :- path(E1, E2), edge(E2, E3)

Given a set of derived tuples/facts, assign a probability to them.

Problog: Introduction
• A language developed by the group led by Luc De Raedt at KU Leuven

• Extends Prolog with probabilities
• Actually closer to Datalog

Xin Zhang@PKU

16

Problog: Syntax
• Value: numbers, mixed numbers and letters starting with a letter in lower

cases

• Variable: starting with a capital letter

Xin Zhang@PKU

17

Problog: Syntax
Xin Zhang@PKU

18

From the documentation of Problog

Problog: Syntax
Xin Zhang@PKU

19

From the documentation of Problog

Queries: Evidence:

Example Program I
0.5 :: stayUp.
0.7 :: drinkCoffee :- stayUp.
0.5 :: drinkCoffee :- \+ stayUp.
0.9 :: fallSleep :- \+ drinkCoffee, stayUp.
0.3 :: fallSleep :- drinkCoffee, stayUp.
0.1 :: fallSleep :- \+stayUp.

evidence(fallSleep).

query(stayUp).

Xin Zhang@PKU

20

What does the following program compute?

0.5 :: stayUp.
0.7 :: drinkCoffee :- stayUp.
0.5 :: drinkCoffee :- \+ stayUp.
0.9 :: fallSleep :- \+ drinkCoffee, stayUp.
0.3 :: fallSleep :- drinkCoffee, stayUp.
0.1 :: fallSleep :- \+stayUp.

query(stayUp).

evidence(fallSleep).

Xin Zhang@PKU

21

What does the following program compute?

0.5::heads1.
0.5::heads2.

heads1 :- heads2.

query(heads1).
query(heads2).

Xin Zhang@PKU

22

What does the following program compute?

0.5::heads1.
0.5::heads2.

\+ heads1 :- heads2.

query(heads1).
query(heads2).

Xin Zhang@PKU

23

Example Program 2
0.9 :: edge(0,1).
0.8 :: edge(1,2).
0.7 :: edge(2,3).
0.8 :: edge(2,4).

1 :: path(A,B) :- edge(A,B).
0.8 :: path(A,C) :- path(A,B), edge(B,C).

evidence(\+ path(0,3)).

query(path(0,4)).

Xin Zhang@PKU

24

Semantics of Problog
• What is the semantics of the following program?
0.5 :: stayUp.
0.7 :: drinkCoffee :- stayUp.
0.3 :: fallSleep :- drinkCoffee, stayUp.

query(fallSleep).

Xin Zhang@PKU

25

Semantics of Problog
• For simplicity, we assume all probabilities are attached to facts

• First idea: we can convert the program into a Bayesian network, but how?

Xin Zhang@PKU

26

Semantics of Problog
• Converting into a Bayesian network is viable, but there are small catches

• We give another semantics that defines a distribution of Datalog
programs

Xin Zhang@PKU

27

Semantics of Problog
• From a Problog program, we can sample a Datalog program by sampling

the facts

Xin Zhang@PKU

28

0.5 :: stayUp.
0.7 :: drinkCoffee :- stayUp.
0.3 :: fallSleep :- drinkCoffee, stayUp.

0.5 :: stayUp.
0.7 :: r1.
0.3 :: r2.
drinkCoffee :- stayUp, r1.
fallSleep :- drinkCoffee, stayUp, r2.

= sample

stayUp.
r1.
r2.
drinkCoffee :- stayUp, r1.
fallSleep :- drinkCoffee, stayUp, r2.

Probability: 0.5*0.7*0.3

Semantics of Problog
• What about queries?

Xin Zhang@PKU

29

0.5 :: stayUp.
0.7 :: r1.
0.3 :: r2.
drinkCoffee :- stayUp, r1.
fallSleep :- drinkCoffee, stayUp, r2.

query(fallSleep)

A query calculates a marginal probability of a fact. Informally,

𝑝 𝑓 =
∑𝑝 𝑎𝑛𝑦 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑡ℎ𝑎𝑡 𝑑𝑒𝑟𝑖𝑣𝑒𝑠 𝑓

∑𝑝(𝑎𝑛𝑦 𝑝𝑟𝑜𝑔𝑟𝑎𝑚)

Semantics of Problog
• What about evidence?

Xin Zhang@PKU

30

0.5 :: stayUp.
0.7 :: r1.
0.3 :: r2.
drinkCoffee :- stayUp, r1.
fallSleep :- drinkCoffee, stayUp, r2.

evidence(\+ fallSleep)
query(stayUp)

Evidence filters out certain programs. Informally,

𝑝 𝑓 =
∑𝑝 𝑎𝑛𝑦 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑡ℎ𝑎𝑡 𝑑𝑒𝑟𝑖𝑣𝑒𝑠 𝑓|𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

∑𝑝(𝑎𝑛𝑦 𝑝𝑟𝑜𝑔𝑟𝑎𝑚|𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒)

Semantics of Problog
• What about relations and quantified variables?

Xin Zhang@PKU

31

0.9 :: edge(0,1).
0.8 :: edge(1,2).
0.7 :: edge(2,3).
0.8 :: edge(2,4).

path(A,B) :- edge(A,B).
0.8 :: path(A,C) :- path(A,B), edge(B,C).

evidence(\+ path(0,3)).

query(path(0,4)).

Semantics of Problog
• Move probabilities to facts

Xin Zhang@PKU

32

0.9 :: edge(0,1).
0.8 :: edge(1,2).
0.7 :: edge(2,3).
0.8 :: edge(2,4).
0.8 :: r(A,B,C).

path(A,B) :- edge(A,B).
path(A,C) :- path(A,B), edge(B,C), r(A,B,C).

evidence(\+ path(0,3)).

query(path(0,4)).

Semantics of Problog
• Ground

Xin Zhang@PKU

33

Constants: 0, 1, 2, 3 4

path(A,C) :- path(A,B), edge(B,C), r(A,B,C).
Generates
path(0,0) :- path(0,0), edge(0,0), r(0,0,0). A=0, B=0, C=0
path(0,1) :- path(0,0), edge(0,1), r(0,0,1). A=0, B=0, C=1
path(0,1) :- path(0,0), edge(0,1), r(0,0,1). A=0, B=0, C=1
…

Semantics of Problog
• After grounding, each ground term can be seen as a Boolean variable,

then the whole program can be solved using the semantics of the
Boolean case

Xin Zhang@PKU

34

path(0,0) -> t1, edge(0,0) -> t2, r(0,0,0) -> t3

path(0,0) :- path(0,0), edge(0,0), r(0,0,0).

t1 :- t1,t2,t3

Semantics of Problog
• First, ground the program into a Boolean program

• The Boolean program describes a distribution of Datalog program,
which in turn defines a distribution of outputs

Xin Zhang@PKU

35

Questions
• Can you use Problog to express uniform distributions?

• What about loops?

Xin Zhang@PKU

36

Logic Part in Problog is more than Datalog
:- use_module(library(aggregate)).

pull(0).
count(1).

pull(N+1) :- pull(N), N < 10.
0.1 :: pull_SSR(N) :- pull(N).

num_SSRs(sum<X>) :- pull_SSR(N),count(X).

query(num_SSRs(X)).

Xin Zhang@PKU

37

But It is also Not Prolog
• The following program terminates in Problog but not in Prolog
child(anne,bridget).
child(bridget,caroline).
child(caroline,donna).
child(donna,emily).
descend(X,Y) :- descend(Z,Y), child(X,Z).
descend(X,Y) :- child(X,Y).

query(descend(anne,emily))

Xin Zhang@PKU

38

Inference
• As described before, inference can be done in two steps:
• Grounding. Convert the program into a probabilistic program with only

Boolean variables (no quantifiers)

• Solving. Solve with the Boolean program produced above.

Xin Zhang@PKU

39

Optimization on Grounding
• Grounding replaces all variables with their values
• Number of grounded rules is proportional to cartesian product of the domain

sizes

• How to optimize?
• A simple idea: only ground the part that is relevant to the queries and evidence.
• Backtrack over the rules starting from the queries and evidence (SLD resolution).
• A further optimization: stop tracking if a rule body doesn’t hold according to the

evidence

Xin Zhang@PKU

40

Optimization on Grounding
• If the logic part is Datalog without negation, we can use a Datalog solver

to compute the grounding

• Datalog without negation is monotonic: the more rules or input facts, the
more output facts

• If negation is on the input, it is still fine

Xin Zhang@PKU

41

Negation in Problog
• Unfortunately, Problog allows the following program:
one(1).
odd(X) :- one(X).
even(X) :- \+ odd(X).
And
0.5::a.
0.5::b.

Xin Zhang@PKU

42

0.9 :: e:-a.
0.9 :: e:-b.
0.1 :: \+e:-a,b

If such negations are not
present, we can use a

Datalog solver to ground,
which is highly efficient.

Solving
• Once we have a grounded program, we can leverage existing techniques

• Idea 1: convert the program into a Bayesian network

• Idea 2: convert the program into a Boolean formula with weights
(MaxSAT)

Xin Zhang@PKU

43

Solving: Converting into a Bayesian Net
0.8 :: a.
0.7 :: b.

0.5 :: c:- a.
0.5 :: c:- b.

query(c).

Xin Zhang@PKU

44

Solving: Converting into a Bayesian Net
• We move all probabilities to input facts
• We add a root node whose prior distribution is P(r =1) = 1. Then we add

a rule p :: f:-r for each input fact p::f
• For each fact f, suppose it is derived using r1, …, rn, we add arcs from all

facts in the rule bodies to f.
• We set conditional probabilities:

𝑝 𝑓 ∨ 𝑏𝑜𝑑𝑦 𝑟! == 𝑇𝑟𝑢𝑒 = 1
𝑝 𝑓 ∨ 𝑏𝑜𝑑𝑦 𝑟! == 𝐹𝑎𝑙𝑠𝑒 = 0

Xin Zhang@PKU

45

Only works for program without cycles

Solving: Converting into a MaxSAT
• Finding the most likely solution becomes solving the MaxSAT

• Computing marginal probabilities becomes weighted model counting

Xin Zhang@PKU

46

Brief Introduction on MaxSAT
Xin Zhang@PKU

47

MaxSAT:

𝑎 ∧ (C1)
¬𝑎 ∨ 𝑏 ∧ (C2)

4 ¬𝑏 ∨ 𝑐 ∧ (C3)
2 ¬𝑐 ∨ 𝑑 ∧ (C4)
7 ¬𝑑 (C5)

Subject to C1
Subject to C2

Maximize 4×C3+2×C4+7×C5

=

Solution: a = true, b = true, c = true, d = false
(Objective = 11)

Brief Introduction on MaxSAT
• Popular MaxSAT solving techniques: converting the problem into a

series of SAT problem

• Brief idea: can any solution satisfy k clauses?
• Linear search
• Binary search
• (UNSAT) core guided

Xin Zhang@PKU

48

Core-Guided MaxSAT Solving
• UNSAT core: a set of clauses which are not unsatisfiable
• Minimum UNSAT core: removing any clause will make it satisfiable
• Modern SAT solvers come with the ability to return UNSAT cores

• [Fu & Malik]: Each time allow one and only one clause to be relaxed

Xin Zhang@PKU

49

Example using MaxSAT for Inference

0.6 :: rain.
0.5 :: sprinkle.
0.9 :: grass_wet :- rain, sprinkle.

Xin Zhang@PKU

50

0.6 rain
0.4 !rain
0.5 sprinkle
0.5 !sprinkle
0.9 r
0.1 !r
grass_wet or !rain or !sprinkle or !r
!grass_wet or rain
!grass_wet or sprinle
!grass_wet or r

grass_wet :- rain, sprinkle is translated into
𝑔𝑟𝑎𝑠𝑠ABC ↔ 𝑟𝑎𝑖𝑛 ∧ 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒 ∧ 𝑟

Example using MaxSAT for Inference
• When translating rules, we have to consider the least fixed point

semantics of Datalog

• Suppose the rules are acyclic, for a given fact f, we have to consider all
grounded rules that derive f

𝑓 ↔∨ 𝑏𝑜𝑑𝑦(𝑟!)

Xin Zhang@PKU

51

Example using MaxSAT for Inference
• When rules are cyclic, problems become complicated:

0.5::a. b:-a. b:-c. c:-b

• For reference:
• Janhunen, T. 2004. Representing normal programs with clauses. In In Proc. of

the 16th European Conference on Artificial Intelligence. IOS Press, 358–362.
• Mantadelis, T. and Janssens, G. 2010. Dedicated tabling for a probabilistic setting.

In Tech. Comm. of 26th International Conf. on Logic Programming. 124–133.

Xin Zhang@PKU

52

Brief Introduction on Weighted Model Counting

• Model counting: compute the number of assignments to a SAT
expression

a or b 3 assignments

• Weighted model counting
• Each variable has a weight for each assignment: w(v)
• The model weight is the the product of variable weights
• Now the count is a weighted sum

Xin Zhang@PKU

53

Example using WMC for Inference
Xin Zhang@PKU

54

0.6 rain
0.4 !rain
0.5 sprinkle
0.5 !sprinkle
0.9 r
0.1 !r
grass_wet or !rain or !sprinkle
!grass_wet or rain
!grass_wet or sprinle

w(rain =true) = 0.6
w(rain =false) = 0.4
w(sprinkle = true) = 0.5
w(sprinkle = false) = 0.5
w(r = true) = 0.9
w(r = false) = 0.1

P(grass_wet = true) = WMC(M∧grass_wet=true)

What if we want to evaluate
P(rain | grass_wet = true)?

Using WMC for Marginal Inference
• Let the constructed weighted formula be M, queries be Q, evidence be E,

then

𝑃 𝑄 =
𝑊𝑀𝐶 𝑀 ∧ 𝑄 ∧ 𝐸
𝑊𝑀𝐶(𝑀 ∧ 𝐸)

• For more, refer to
Sang, T., Beame, P. and Kautz, H., 2005. Solving Bayesian networks by
weighted model counting. In Proceedings of the Twentieth National
Conference on Artificial Intelligence (AAAI-05) (Vol. 1, pp. 475-482).
AAAI Press.

Xin Zhang@PKU

55

Further Reading on Problog
• https://dtai.cs.kuleuven.be/problog/index.html

Xin Zhang@PKU

56

Next Lecture
• Causality

Xin Zhang@PKU

57

