Causal Inference

Xin Zhang Peking University

> Most of the content is from Chapter 1 of "Causality" second edition by Judea Pearl and "Actual Causality: A Survey" by Joseph Halpern

Recap of Last Lecture

- Probabilistic Logic Programming
	- Logic programming + probabilities
	- Unifying logic and probabilities
		- Logic: Expressiveness
		- Probabilities: Handling uncertainty

Recap of Last Lecture

- Representative language: Problog
	- Problog = Datalog + Probabilities + Additional features

Problog: Example Program

 0.5 :: stayUp. 0.7 :: drinkCoffee :- stayUp. 0.5 : drinkCoffee :- \ + stayUp. 0.9 :: fallSleep :- \setminus + drinkCoffee, stayUp. 0.3 :: fallSleep :- drinkCoffee, stayUp. 0.1 :: fallSleep :- \ + stayUp.

evidence(fallSleep).

query(stayUp).

Problog: Semantics

• First, ground the program into a Boolean program

• The Boolean program describes a distribution of Datalog program, which in turn defines a distribution of outputs

Semantics of Problog

• Ground

…

Constants: 0, 1, 2, 3 4

path (A, C) :- path (A, B) , edge (B, C) , r (A, B, C) . **Generates**

 $path(0,0) : path(0,0), edge(0,0), r(0,0,0).$ A=0, B=0, C=0 path $(0,1)$: path $(0,0)$, edge $(0,1)$, r $(0,0,1)$. A=0, B=0, C=1 path $(0,1)$: path $(0,0)$, edge $(0,1)$, r $(0,0,1)$. $A=0$, B=0, C=1

Semantics of Problog

• From a Problog program, we can sample a Datalog program by sampling the facts

 0.5 :: stayUp. 0.7 :: drinkCoffee :- stayUp. 0.3 :: fallSleep :- drinkCoffee, stayUp.

 $0.7 :: r1.$ 0.3 :: r2. **=** sample drinkCoffee :- stayUp, r1. fallSleep :- drinkCoffee, stayUp, r2.

 0.5 :: stayUp.

stayUp. r1. r2. drinkCoffee :- stayUp, r1. fallSleep :- drinkCoffee, stayUp, r2.

Probability: 0.5*0.7*0.3

Solving

• Once we have a grounded program, we can leverage existing techniques

• Idea 1: convert the program into a Bayesian network

• Idea 2: convert the program into a Boolean formula with weights (MaxSAT)

Solving: Converting into a MaxSAT

• Finding the most likely solution becomes solving the MaxSAT

• Computing marginal probabilities becomes weighted model counting

This Class

- Causal inference
	- Structural equation model (Pearl)
	- Causal inference in probabilistic programming
	- Actual causality
- Not causal discovery
	- Assume we have a model
	- How to use the model to represent causality
	- How to reason with the model

Motivating Example

• If a person has long hair, they are likely to be a girl

• If we change a boy from short hair to long air, would he become a girl?

Intervention

Question

•Can we separate causality from correlation without intervention?

Motivating Example

• Xiaoming was late for the lecture. Would he still be late for the lecture if he had got up at 6am?

Counterfactual

Pearl's Causal Hierarchy

• L1: Predictions: What if I observe ...?

• L2: Interventions: What if I change ...?

What models can be used to answer these questions?

• L3: Counterfactuals: What if we did … given … ?

What is the joined probability distribution if we observe the sprinkler is on?

What is the joint probability if we intervene on the sprinkler by turning it on?

 $do(X_3=On)$

$$
P_{X_3} = o_n(x_1, x_2, x_4, x_5) = P(x_1) P(x_2 | x_1) P(x_4 | x_2, X_3) = O_n(P(x_5 | x_4),
$$

Definition 1.3.1 (Causal Bayesian Network) Let $P(v)$ be a probability distribution on a set V of variables, and let $P_x(v)$ denote the distribution resulting from the intervention $do(X = x)$ that sets a subset X of variables to constants x. Denote by P_* the set of all interventional distributions $P_x(v)$, $X \subseteq V$, including $P(v)$, which represents no intervention (i.e., $X = \emptyset$). A DAG G is said to be a causal Bayesian network compatible with P_* if and only if the following three conditions hold for every $P_x \in \mathcal{P}_*$:

(i) $P_x(v)$ is Markov relative to G_v Conditional Independence

(ii) $P_x(v_i) = 1$ for all $V_i \in X$ whenever v_i is consistent with $X = x$;

(iii) $P_x(v_i|pa_i) = P(v_i|pa_i)$ for all $V_i \notin X$ whenever pa_i is consistent with $X = x$.

Defining Effects of Interventions

The distribution $P_x(v)$ resulting from the intervention $do(X = x)$ is given as a **truncated**factorization

 $P_x(v) =$ | $P(v_i|pa_i)$ for all v consistent with x, $\{i|V_i\not\in X\}$

 (1.37)

Defining Effects of Interventions

- On the graph:
	- •Cut the connections from the parents to the intervened nodes
	- Set the intervened nodes to the corresponding values

Advantages of Using a Graphical Model

• Modular

• Can use tools like d-separation to reason about the impact of interventions

What About Counterfactuals?

Structural Equation (Functional) Model

- Functional causal model
	- Can answer all three questions
- Expressed using deterministic functional equations
	- Probabilities are introduced by assuming certain variables are unobserved
	- Follows Laplace's conception of natural phenomena
- Advantages over stochastic representations
	- More general
	- More in tune with human intuition
	- Counterfactuals

Structural Equations

• A functional causal model consists a set of equations:

$$
x_i = f_i \underbrace{(pa_i, u_i)}_{\text{parents}}, \quad i = 1, \ldots, n,
$$
\n
$$
\underbrace{\qquad \qquad}_{\text{errors due to} \qquad \qquad}_{\text{mitted factors.} \qquad \qquad}_{\text{Random.}}
$$

Structural Equations: Example I

Figure 1.5: Causal diagram illustrating the relationship between price (P) , demand (Q) , income (Z) , and wages (W) .

$$
q = b_1 p + d_1 i + u_1,
$$
 (1.42)

$$
p = b_2 q + d_2 w + u_2,
$$
 (1.43)

Structural Equations: Example II Explicitly separate

deterministic parts from the stochastic parts

$$
x_2 = [(X_1 = \text{winter}) \vee (X_1 = \text{fall}) \vee u_2] \wedge \neg u'_2,
$$

\n
$$
x_3 = [(X_1 = \text{summer}) \vee (X_1 = \text{spring}) \vee u_3] \wedge \neg u'_3,
$$

\n
$$
x_4 = (x_2 \vee x_3 \vee u_4) \wedge \neg u'_4,
$$

\n
$$
x_5 = (x_4 \vee u_5) \wedge \neg u'_5,
$$

\n(1.45)

Goal: Handle the Whole Pearl's Causal Hierarchy

• L1: Predictions: What if I observe ...?

• L2: Interventions: What if I change ...?

What models can be used to answer these questions?

• L3: Counterfactuals: What if we did ... given ...?

Probabilistic Predictions in Causal Models

• Causal diagram:

- Semi-Markovian model: the diagram is acyclic
- Markovian model: the diagram is acyclic and the errors are independent

The Causal Markov Condition

Theorem 1.4.1 (Causal Markov Condition) Every Markovian causal model M induces a distribution $P(x_1, \ldots, x_n)$ that satisfies the parental Markov condition relative the causal diagram G associated with M ; that is, each variable X_i is independent on all its non-descendants, given its parents PA_i in G (Pearl and Verma 1991)

The Causal Markov Condition Follows two Causal Assumptions

• Include every variable that is the cause of two or more variables in the model (not in the background)

- Reichenbach's common-cause assumption
	- No correlation without causation
	- If any two variables are dependent, then one is the cause of the other or there is a third variable causing both (confounder)

Interventions and Causal Effects in Functional Models

• Simply modify the corresponding equations

 $x_3 = f(x_1, u_3) \rightarrow x_3 = 0n$

- More formally: fix the intervened variables to their specified values, and removing equations defining them
- Intervening on a causal Markovian model is the same as intervening on a causal Bayesian network

Advantages Over Causal Bayesian Networks

- Extensions to feedback systems and non-Markovian models
- Modifications of parameters are meaningful
	- Functions generate the joint distribution, conditional probabilities are then inferred
- Simplifying the analysis of causal effects
- Permit the analysis of context-specific actions and policies

Last Point Explained

- Interventions affect contexts
	- Example: the patient has been examined by the doctor and he has some symptoms, but now the new intervention will affect these symptoms

• We will see that counterfactuals are similar

Counterfactuals in Functional Models

- Causal Bayesian networks have trouble dealing with counterfactuals
	- The simplest example:
		- Consider two independent boolean variables x and y, we have $p(x|y) = 0.5$, given $y = 1$, what is $P(y = 1 | do(x) = 0, y = 1)$?

Understand Counterfactuals Better

- Counterfactuals can be seen as the combination of conditioning and interventions:
	- Use observations to infer the posterior distributions of the hidden variables
	- Based on the posterior distributions, predict under interventions

Three Steps for Computing

For computing $P(Y=y | do(X = x), e)$:

1. (abduction): Update the probability $P(u)$ to obtain $P(u|e)$

2. (action): Perform intervention $do(X) = x$

3. (prediction) Use the modified model to compute $P(Y=y)$

More on Computing Counterfactuals

• A major difficulty of the previous approach is the need to compute and store $p(u|e)$

• Can we overcome this problem by leveraging algorithms in graphical models?

• Consider the following example

•
$$
X = u_1, Y = X + u_2, Z = Y + u_3
$$

• $P(Z|do(X) = x, Z=z)$ becomes $P(Z'|do(X')$ $=$ x, $Z=z$)

 U_1

- Duplicate all the equations and observed variables
- Perform intervention on the copied part
- Keep observations on the original part

Can you apply the twin network approach to causal Bayesian networks?

Two Mainstream Causal Models

- Structural equation model (Pearl)
	- This class
- Potential outcomes (Neyman-Rubin)

• Two models are theoretically equivalent, but have their own advantages in practice

Causal inference in probabilistic programming

- A Language for Counterfactual Generative Models. Zenna Tavares, James Koppel, Xin Zhang, Ria Das, Armando Solar-Lezama. ICML 2021
- Implicitly implements the twin network approach
	- Lazy evaluation
	- Stores the program piece that computes a given variable

Actual Causality

- Interventions and counterfactuals basically tells how a things changes in response how another thing changes
- But it doesn't define what is the cause/reason of something.
- Causality answers this

Some Heads-Up

- Two notions of causality
	- Type (general) causality: smoking causes lung cancer
	- Actual causality: the fact that David smoked like a chimney for 30 years cased him to get cancer last year
- Actual causality is a long-debated problem in philosophy, math, and computer science
- We are not going to include philosophical discussions
	- No chicken-or-egg problems
- We assume there is a known model of the world and discuss how to define actual causalities according to it
	- Causes can be different if the modeling is different

The Big Picture on Actual Causalities

• The definition has changed many times

• No satisfying answers

• The new definitions are usually invented in response to counterexample

The Big Picture on Actual Causalities

- Attempts to define causality goes back to Aristotle
- Relatively recent trend (Lewis 1973) is to use counterfactuals
- More recent: capture counterfactuals using structural equations
- Pearl & Halpern definitions:
	- UAI 2001
	- BJPS 2005

But-For Causes

- Jimmy threw a ball to shatter the bottle
	- JimmyThrows $= u_1$
	- BottleShatters = JimmyThrows
- If Jimmy doesn't throw the ball, the bottle won't shatter
	- Therefore Jimmy throwing the ball is the cause for the bottle to shatter

But-For Causes

- Counter-example (preemption): Suzy and Jimmy both pick up rocks and throw them at a bottle. Suzy's rock gets there first, shattering the bottle. Since both throws are perfectly accurate, Billy's would have shattered the bottle if Suzy's throw had not preempted it
- JimmyThrows $= u1$, SuzyThrows $= u2$, $SuzzyShatters = SuzzyThrows,$ JimmyShatters = JimmyThrows & !SuzyShatters, BottleShatters = SuzyShatters | JimmyShatters

Pearl and Halpern's: Problem Setting

- Represent the model using structural equations
- Remove all randomness by fixing the unobserved variables
	- In other words, the causes are defined for specific contexts
- The cause can be any conjunction of primitive events
- Arbitrary Boolean combinations of primitive events can be caused

Pearl and Halpern's Definition

- $\vec{X} = \vec{x}$ is an actual cause of ϕ in situation (M, \vec{u}) if
- AC1. $(M, \vec{u}) \models (\vec{X} = \vec{x}) \land \phi$ • Both $(X = \vec{x})$ and ϕ are true in the actual world
- AC2. Complicated. Captures counterfactuals
- AC3. \vec{X} is minimal; no subset of \vec{X} satisfies AC1 and AC2.
	- No irrelevant conjuncts

Pearl and Halpern's Definition

• AC2. There is a set of W of variables in V and a setting \vec{x}' of the variables in \vec{X} such that if $(M, \vec{u}) \vDash (\overrightarrow{W} = \vec{w})$, then $(M, \vec{u}) \models (\vec{X} \leftarrow \vec{x'}, \vec{W} \rightarrow \vec{w}) \land \neg \phi$

In words: keeping the variables in \overrightarrow{W} fixed at their actual values, changing \vec{X} can change the outcome ϕ

Example

• JimmyThrows $= u1$, SuzyThrows $= u2$, $SuzzyShatters = SuzzyThrows,$ JimmyShatters = JimmyThrows & !SuzyShatters, BottleShatters = SuzyShatters | JimmyShatters

Let $\vec{X} = \{SuzyThrows\}$, $\vec{W} = \{\text{jimmyShatters}\}$, $\phi = BottleShatters$, then $(M, \vec{u}) \models (\vec{X} \leftarrow \vec{x}, \vec{W} \rightarrow \vec{w}) \land \neg \phi$

Another Example

- Suppose in an election, Jim will be elected if two of the three voters vote for him.
- None of the voters voted for Jim. What is a cause of Jim not being elected?
- For more, watch https://www.youtube.com/watch?v=hXnCX2pJ0sg