
Probabilistic Programming
Using WebPPL

Xin Zhang
Peking University

Xin Zhang@PKU 1

Recap
• Probabilistic programming = Bayesian learning using a general-purpose

programming language
• Express your beliefs and uncertainties to generate data in programs
• Adjust the model based on observed data using general algorithms

• Compared to existing Bayesian approaches
• far more expressive

• Compared to existing programming languages
• define distributions rather than values

Xin Zhang@PKU

2

Recap
Xin Zhang@PKU

3

WebPPL

Subset of Javascript

Probabilistic Constructs

Distributions: Bernoulli, Categorical, Gaussian ...

sample

condition

Process

State

Is the following statement right?

Probabilistic programs can express
applications that can not be expressed in
conventional graphical models.

Yes.

Xin Zhang@PKU

4

Is the following statement right?

A Probabilistic programming language can
express programs that cannot be expressed
in a conventional Turing-complete language.

No.

Xin Zhang@PKU

5

Is the following statement right?

Suppose the output distribution of a
program is discrete, then the probabilities
of all its outputs add up to 1.

No. There are non-terminating executions.

Xin Zhang@PKU

6

Which Distribution the Program Computes?
Xin Zhang@PKU

7

function(A){
var dist = function(){

var B = binomial(0.5, A+1)
return B

}

return Infer(dist)
}

1. B 2. A | B 3. B | A 4. B, A

A ~ Binomial(0.5, 3), B~ Binomial(0.5, A+1)

Which Distribution the Program Computes?
Xin Zhang@PKU

8

function(){
var A = binomial (0.5, 3) // sample(Binomial(0.5, 3))
var dist = function(){

var B = binomial(0.5, A+1)
condition(A == B)
return B

}

return Infer(dist)
}

1. B | A = B 2. B | A 3. B 4. B | B = some constant

A ~ Binomial(0.5, 3), B~ Binomial(0.5, A+1)

Which Distribution the Program Computes?
Xin Zhang@PKU

9

function(){
var dist = function(){

var A = binomial (0.5, 3)
var B = binomial(0.5, A+1)
condition(A == B)
return B

}

return Infer(dist)
}

1. B | A = B 2. B | A 3. A 4. B | B = some constant

A ~ Binomial(0.5, 3), B~ Binomial(0.5, A+1)

This Class
• Finish introduction to WebPPL

• Some representative applications

Xin Zhang@PKU

10

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th pull

guarantees an SSR.
• 20% of players believe the rate is not as

advertised, but only 8%.
• To test if the assumption is true,

Xiaoming pulled 20 times, and got 4
SSRs.

What is the chance of the rate
being 8%?

var gacha = function(){
var cheated = sample(Bernoulli({p:0.2}));
var pull = function(){
if (cheated){
return Bernoulli({p:0.08});

}
else
return Bernoulli({p:0.1});

}
var num_pull_inst = 20;

var performPull = function(c, num_no_ssr){
…

}
var num_ssrs = performPull(num_pull_inst, 0)
condition(num_ssrs == 4)
return cheated;

};

var gacha_model = Infer({model: gacha})
display(Math.exp(gacha_model.score(1)))
viz(gacha_model)

Xin Zhang@PKU

11

var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c, num_no_ssr){
if(c == 0){
return 0;

}
if (num_no_ssr == 5){

return 1 + performPull(c-1, 0);
}
else{
var cp = sample(pull);
if (cp)
return 1 + performPull(c-1, 0);

else
return 0 + performPull(c-1, num_no_ssr+1);

}
}
return performPull(num_pull_inst)

};

• 1% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th pull

guarantees an SSR.
• Xiaoming usually pulls 0-9 times a day

Xin Zhang@PKU

12

var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c, num_no_ssr){
if(c == 0){
return 0;

}
if (num_no_ssr == 5){

return 1 + performPull(c-1, 0);
}
else{
var cp = sample(pull);
if (cp)
return 1 + performPull(c-1, 0);

else
return 0 + performPull(c-1, num_no_ssr+1);

}
}
return performPull(num_pull_inst)

};

• 1% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th pull

guarantees an SSR.
• Xiaoming usually pulls 0-9 times a day, and

because of the pity system, it is more
likely he does 6 pulls.

Xin Zhang@PKU

13

var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
if (num_pull_inst == 6){

factor(1);
}
var performPull = function(c, num_no_ssr){
if(c == 0){
return 0;

}
if (num_no_ssr == 5){

return 1 + performPull(c-1, 0);
}
else{
var cp = sample(pull);
if (cp)
return 1 + performPull(c-1, 0);

else
return 0 + performPull(c-1, num_no_ssr+1);

...

• 1% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th pull

guarantees an SSR.
• Xiaoming usually pulls 0-9 times a day, and

because of the pity system, it is more
likely he does 6 pulls.

Xin Zhang@PKU

14

var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
if (num_pull_inst == 6){

factor(1);
}
var performPull = function(c, num_no_ssr){
if(c == 0){
return 0;

}
if (num_no_ssr == 5){

return 1 + performPull(c-1, 0);
}
else{
var cp = sample(pull);
if (cp)
return 1 + performPull(c-1, 0);

else
return 0 + performPull(c-1, num_no_ssr+1);

...

• 1% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th pull

guarantees an SSR.
• Xiaoming usually pulls 0-9 times a day, and

because of the pity system, it is more
likely he does 6 pulls.

Xin Zhang@PKU

15

Increase the probability of
executions that reach here.

factor(score)
Add score to the log probability
of the current execution.

More on factor

var num_pull = Categorical({vs: [0,..,9]});
var num_pull_inst = sample(num_pull)

num_pull = 0

num_pull = 1

num_pull = 6

…

…

Weight Probability

1 1/10

1 1/10

1 1/10

Xin Zhang@PKU

16

More on factor

var num_pull = Categorical({vs: [0,..,9]});
var num_pull_inst = sample(num_pull)

if (num_pull_inst == 6){
factor(1);

}

num_pull = 0

num_pull = 1

num_pull = 6

…

…

Weight Probability

1 1/(9+e)

1 1/(9+e)

1*e e/(9+e)

Xin Zhang@PKU

17

More on Factor
• Factor is
• A “soft” version of condition

• A more fine-grained way to modify the output distribution

• Harder to reason with than condition

• Not included in every probabilistic language

Xin Zhang@PKU

18

var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c, num_no_ssr){
...
};

}

var gacha1 = function(){
var num_ssrs1 = gacha();
if(num_ssrs1 == 2)

factor(1);
if(num_ssrs1 == 1){

factor(Math.log(X));
}
return num_ssrs1;

}

var num_ssrs = Infer({model: gacha1})
viz(num_ssrs)

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th pull

guarantees an SSR.
• Xiaoming usually pulls 0-9 times a day.
• It is more likely that Xiaoming pulls 2

SSR than 0 SSR, and the chance that he
pulls 1 SSR is twice of him pulling 2
SSRs.

Xin Zhang@PKU

Need some work to
get this number

What is the relationship between these two programs?

Xin Zhang@PKU

20

var a = Gaussian({mu:0, sigma:1})

var model = function(){
var num = categorical({vs:_.range(1,11)})
var sim = binomial(0.5, num) - 2
factor(-Math.abs(num+sim - sample(a)))
return {n:num, s:sim}

}

var m = Infer(model)

viz(marginalize(m,function(x){return x.s}))

var a = Gaussian({mu:0, sigma:1})

var model = function(){
var num = categorical({vs:_.range(1,11)})
var sim = binomial(0.5, num) - 2
condition(num+sim == sample(a))
return {n:num, s:sim}

}

var m = Infer(model)

viz(marginalize(m,function(x){return x.s}))

Complete Syntax of WebPPL
• We finish off WebPPL by introducing its complete syntax

• Deterministic part: subset of Javascript
• Doesn’t allow general assignments (i.e., you cannot redefine a variable)
• Doesn’t allow loops (but recursions)
• Can invoke Javascript functions (must have no side effects)

Xin Zhang@PKU

21

Deterministic Constructs in WebPPL
• https://webppl.readthedocs.io/en/master/language.html

Xin Zhang@PKU

22

Probabilistic Constructs in WebPPL
• Distributions
• https://webppl.readthedocs.io/en/master/distributions.html

• sample(dist)
• Draw a sample from dist, which is a built-in distribution or a distribution

constructed using Infer

• Infer(f)
• f is a stochastic function which samples a value from a given distribution
• It computes the marginal distribution of f

Xin Zhang@PKU

23

https://webppl.readthedocs.io/en/master/distributions.html
https://webppl.readthedocs.io/en/master/distributions.html

Probabilistic Constructs in WebPPL
• Conditioning
• condition(bool): conditions the marginal distribution on a proposition (bool)
• observe(dist, value)

• Conceptually it is the same as

• In many cases, especially for continuous distributions, using observe is more efficient than
using condition (see a simple example using Gaussian)

• factor(score)
• Adds score to the log probability of the current execution

Xin Zhang@PKU

24

var x = sample(dist)
condition(x == value)
return x

This Class
• Finish introduction to WebPPL

• Some representative applications

Xin Zhang@PKU

25

This Class
• Finish introduction to WebPPL

• Some representative applications

Xin Zhang@PKU

26

Linear Regression

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3

y = a*x + b, a =? b=?

Xin Zhang@PKU

27

Linear Regression: Conventional Method
• Data = {(1, 1.5), (2, 2), (3, 3)}
• Find a and b in f(x) = a*x + b, such that

!
(",$)∈'

𝑓 𝑥 − 𝑦 (

is minimized.

• In this example, a = 0.75, b = 0.67

Xin Zhang@PKU

28

Why using a
square error

makes sense?

Linear Regression: Conventional Method
• There is a probabilistic explanation!
• Assume that the function is actually written as

f ’(x) = a*x + b + N(0, 𝜎)

Xin Zhang@PKU

29

Gaussian noise

Linear Regression: Conventional Method
f ’(x) = a*x + b + N(0, 𝜎)

• We have a*x1 + b + NV1 = y1
a*x2 + b + NV2 = y2
…
a*xn + b + NVn = yn

NVk can be any value, but we want to find assignments to a and b such
that their values (NVk) are more likely.

Xin Zhang@PKU

30

Linear Regression: Conventional Method
• In other words, we want to maximize

L (N(0, 𝜎) = NV1) * L (N(0, 𝜎) = NV2) * … L (N(0, 𝜎) = NVn)
= L (N(0, 𝜎) = y1- a*x1 - b) * … L (N(0, 𝜎) = yn- a*xn – b)

=)
* (+

𝑒,
y1− a∗x1 – b "

"#" * …)
* (+

𝑒,
yn− a∗xn – b "

"#"

Which is equivalent to maximizing

−! yk− a∗xk – b (

Or minimizing ∑ yk− a∗xk – b (= ∑ yk− 𝑓(𝑥𝑘) (

Xin Zhang@PKU

31

Problems with Conventional Method
• Overfit – regularization term

• One explanation

• Confidence is unknown

Xin Zhang@PKU

32

Linear Regression: Bayesian Way
• Model uncertainties in parameters explicitly

• Make parameters random variables, for example

𝑦 = 𝑓(𝑥) = 𝑎 ∗ 𝑥 + 𝑏
𝑎~𝑢𝑛𝑖𝑓𝑜𝑟𝑚 −10,10
𝑏~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−10,10)

Xin Zhang@PKU

33

What Can We do With the Model?
Xin Zhang@PKU

34

What Can We do With the Model?
• Infer the most likely parameter conditioning on the data

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃(𝜔|𝐷)
= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝜔 𝐷

= 𝑎𝑟𝑔𝑚𝑎𝑥-
. '|- ∗.(-)

.(')

= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)

Xin Zhang@PKU

35

Maximum Likelihood Inference

What Can We do With the Model?
• Infer the most likely parameter conditioning on the data

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃(𝜔|𝐷)
= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝜔 𝐷

= 𝑎𝑟𝑔𝑚𝑎𝑥-
. '|- ∗.(-)

.(')

= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)

Xin Zhang@PKU

36

Maximum a posteriori (MAP) Inference = Maximum
likelihood + Prior distribution

What Can We do With the Model?
• Infer the most likely parameter conditioning on the data

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃(𝜔|𝐷)
= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝜔 𝐷

= 𝑎𝑟𝑔𝑚𝑎𝑥-
. '|- ∗.(-)

.(')

= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)

Xin Zhang@PKU

37

Maximum a posteriori (MAP) Inference = Maximum
likelihood + Prior distribution

1. What if 𝑃(𝜔) is a uniform distribution?
2. How about Gaussian?

MAP Inference with Uniform Prior
• Assume 𝜔 ～𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−∞,+∞)

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)
= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔

Xin Zhang@PKU

38

When the prior distribution of parameter is uniform, MAP
inference is the same as maximum likelihood inference. And this
achieves the same effect as the conventional linear regression.

MAP Inference with Gaussian Prior
• Assume 𝜔 ～𝑁 (0, 𝜎)

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)
= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ exp(−𝜔()

Xin Zhang@PKU

39

L2 regularization

Prior distribution on the parameters helps prevent overfitting.

MAP Inference with Other Priors

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)

• What if 𝜔~)
(1
𝑒,

|%|
& (Laplace distribution)?

• Extended reading: A Probabilistic Interpretation of Regularization
(https://bjlkeng.github.io/posts/probabilistic-interpretation-of-
regularization/)

Xin Zhang@PKU

40

Xin Zhang@PKU

41

/* Training Data */
var data = [[1,1.5], [2,2], [3,3]];

/* Linear Regression Model. */
var lr = function() {

/* Prior beliefs. */
var posterior_a = uniform(-10, 10);
var posterior_b = uniform(-10, 10);

/* Condition on training data. */
mapData({data: data}, function(d){
var y_pred = posterior_a * d[0] + posterior_b;
observe(Gaussian({mu:y_pred, sigma:1}), d[1])

});

return {a: posterior_a, b: posterior_b,};
};

/* Joint distribution. */
let dist = Infer({method: 'MCMC', samples: 100000, model:lr});

WebPPL does not have an
adequate support for MAP
inference. You can draw
many samples and calculate
the most frequent values.

In this case, we can calculate
the expectations, which is
actually more robust.

Linking between Conventional & Bayesian

Xin Zhang@PKU

42

Conventional with Mean Square Loss
=

MAP(Bayesian+ uniform priors on the parameters + gaussian noise)

Conventional with Mean Square Loss + L2 Regularization
=

MAP(Bayesian + gaussian priors on the parameters + gaussian noise)

Linear Regression

The Bayesian method is at least as expressive as the conventional method!

There is More Bayesian Can Do!
Xin Zhang@PKU

43

• Seeing the the full distribution
lets us know how well the
model fits the data.

• Assigns a confidence to each
parameter value.

• Smooth out the possible
parameters using expectations

The Full Bayesian Approach
• Instead of evaluating

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)
• Giving a input 𝑥, we can estimate

𝑃 𝑦 𝐷, 𝑥) = F𝑃 𝜔 𝐷 𝑃 𝑦 𝑥,𝜔 𝑑𝜔

Xin Zhang@PKU

44

Now the prediction is a distribution!

Xin Zhang@PKU

45

/* Training Data */
var data = [[1,1.5], [2,2], [3,3]];

var x = 1.5

/* Linear Regression Model. */
var lr = function() {

/* Prior beliefs. */
var posterior_a = uniform(-10, 10);
var posterior_b = uniform(-10, 10);

/* Condition on training data. */
mapData({data: data}, function(d){
observe(Gaussian({mu:y_pred, sigma:1}), d[1]) });

var pred = posterior_a * x + posterior_b;
return pred;

};

/* Joint distribution. */
var dist = Infer({method: 'MCMC', samples: 100000, model:lr});

We now have a confidence in
the prediction!

Basic Ideas of Making a Model Bayesian
• Make parameters random variables

• Add random noises to fit the model to the training data

• Make predictions by conditioning on the data

Xin Zhang@PKU

46

Basic Ideas of Making a Model Bayesian
• You can make really complex models Bayesian

• A recent popular model is Bayesian Neural Networks

Xin Zhang@PKU

47

“I don’t know.” instead of “Frog!”

More on Bayesian Neural Networks
• People have thought hard on how to assign confidences to predictions
• Previous: by looking at final layers (i.e., softmax)
• Bayesian neural nets offer a much more principled way!

• But inferences on Bayesian Neural Network are really challenging
• Variational Inference

Xin Zhang@PKU

48

Extended reading: https://towardsdatascience.com/making-your-neural-network-say-i-
dont-know-bayesian-nns-using-pyro-and-pytorch-b1c24e6ab8cd

More on Bayesian Models
• Exploration based on uncertainties

Xin Zhang@PKU

49

Label Data

Train Model
Find Most
Uncertain

Points

Optimal Experiment Design
Xin Zhang@PKU

50
Reference: Long Ouyang, Michael Henry Tessler, Daniel Ly, Noah D. Goodman:
webppl-oed: A practical optimal experiment design system. CogSci 2018

• Coin flipping

• There is a user. They either assume the coin has an unknown bias or
the coin is unbiased

• We want to know the user’s mental model by
• Showing them the results of 4 flips (i.e., HHHH, HTHT, …)
• Asking them to predict the next flip

• Is HHHH or HHTT better?

Optimal Experiment Design
• HHHH is better because when the user answers T, we know likely they

believe the coin is unbiased

• We want to choose an experiment that gives us most information
• How do we measure information gain?

Xin Zhang@PKU

51

Optimal Experiment Design
• We can measure information gain by looking at how much the

distribution of the hypotheses has changed

Xin Zhang@PKU

52

Kullback–Leibler divergence

How much information is gained by going from Q to P

Optimal Experiment Design
• Suppose the random variable of hypotheses is m, the experiment is x,

the user’s answer is y, we want to find an experiment X, such that

• The above expectation is a random variable, we can use WebPPL to
compute its distribution

Xin Zhang@PKU

53

𝑋 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥!𝑬" !,$ (𝐷%& 𝑚 𝑥 = 𝑋, 𝑦 = 𝑌 ||𝑚))

Xin Zhang@PKU

54

Reference: Ouyang et al, CogSci 2018

The Models
Xin Zhang@PKU

55

Given the observation of
seq, what is the prediction
of the next flip?

Prior and Calculating OED
Xin Zhang@PKU

56

More on Optimal Experiment Design
• Very useful in designing experiments to test theories. Used in Psychology

and other fields.

• You can make our simple experiments more complex by adding more
models and more participants

• See more at
• Long Ouyang, Michael Henry Tessler, Daniel Ly, Noah D. Goodman:
webppl-oed: A practical optimal experiment design system. CogSci 2018

• https://github.com/mhtess/webppl-oed

Xin Zhang@PKU

57

Inverse Graphics
• More application oriented

• One of the killer applications that made probabilistic programming popular

• Applications:
• Scene understanding
• Generating data
• …

Xin Zhang@PKU

58

Inverse Graphics
Xin Zhang@PKU

59

Model Image
Render

Inverse Graphics
Xin Zhang@PKU

60

Model(x) Image
Render(k)

x ~ Distribution k ~ Distribution
e.g., lightning, angles

Given an observed image, we can
• Infer x
• Generating different images by changing k

Inverse Graphics
Xin Zhang@PKU

61

Model(x) Image
Render(k)

x ~ Distribution k ~ Distribution
e.g., lightning, angles

P(x | Image = Observed)
P(Image’ | Image = Observed), Image’ = Render(k = K, Model)

Inverse Graphics
Xin Zhang@PKU

62

Model(x) Image
Render(k)

x ~ Distribution k ~ Distribution
e.g., lightning, angles

P(x | Image = Observed)
P(Image’ | Image = Observed), Image’ = Render(k = K, Model)

Render(k= K) Image’

condition(Image = Observed)

Inverse Graphics
Xin Zhang@PKU

63

Inverse Graphics – 3D faces rendered from 2D images using only 50 lines of PPL code.
Reference: http://news.mit.edu/2015/better-probabilistic-programming-0413

http://news.mit.edu/2015/better-probabilistic-programming-0413
http://news.mit.edu/2015/better-probabilistic-programming-0413

Inverse Graphics
Xin Zhang@PKU

64

Mansinghka, Vikash K., et al. "Approximate bayesian image interpretation using
generative probabilistic graphics programs." Advances in Neural Information
Processing Systems 26 (2013): 1520-1528.

Inverse Graphics-Simple Example
Xin Zhang@PKU

65

One of“+”, “-”, “|”
Render(location offset)

See inverse_graphics.js.

Summary
• WebPPL
• Subset of Javascript
• Probabilistic constructs: distributions, sample, condition, observe, factor

• Applications
• Bayesian learning models
• Optimal experiment design
• Inverse graphics
• More

Xin Zhang@PKU

66

Next Lecture
• You have got an idea of how probabilistic programming looks and what

they can do

• We will get into its theory, algorithms, implementation now, starting with
its predecessor: probabilistic graphical models

Xin Zhang@PKU

67

