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Recap
• Probabilistic programming = Bayesian learning using a general-purpose 

programming language
• Express your beliefs and uncertainties to generate data in programs
• Adjust the model based on observed data using general algorithms

• Compared to existing Bayesian approaches
• far more expressive

• Compared to existing programming languages
• define distributions rather than values
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Recap
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WebPPL

Subset of Javascript

Probabilistic Constructs

Distributions: Bernoulli, Categorical, Gaussian ... 

sample

condition

Process

State



Is the following statement right?

Probabilistic programs can express 
applications that can not be expressed in 
conventional graphical models.

Yes.

Xin Zhang@PKU
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Is the following statement right?

A Probabilistic programming language can 
express programs that cannot be expressed 
in a conventional Turing-complete language.

No.
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Is the following statement right?

Suppose the output distribution of  a 
program is discrete, then the probabilities 
of  all its outputs add up to 1.

No. There are non-terminating executions.
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Which Distribution the Program Computes?
Xin Zhang@PKU
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function(A){
var dist = function(){

var B = binomial(0.5, A+1)
return B

}

return Infer(dist)
}

1. B 2. A | B     3. B | A  4. B, A

A ~ Binomial(0.5, 3), B~ Binomial(0.5, A+1)



Which Distribution the Program Computes?
Xin Zhang@PKU

8

function(){
var A = binomial (0.5, 3) // sample(Binomial(0.5, 3))
var dist = function(){

var B = binomial(0.5, A+1) 
condition(A == B)
return B

}

return Infer(dist)
}

1. B | A = B 2. B | A     3. B 4. B | B = some constant

A ~ Binomial(0.5, 3), B~ Binomial(0.5, A+1)



Which Distribution the Program Computes?
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function(){
var dist = function(){

var A = binomial (0.5, 3)
var B = binomial(0.5, A+1) 
condition(A == B)
return B

}

return Infer(dist)
}

1. B | A = B 2. B | A     3. A 4. B | B = some constant

A ~ Binomial(0.5, 3), B~ Binomial(0.5, A+1)



This Class
• Finish introduction to WebPPL

• Some representative applications

Xin Zhang@PKU
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• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If  5 continuous pulls yield 0 SSR, the 6th pull 

guarantees an SSR. 
• 20% of  players believe the rate is not as 

advertised, but only 8%.
• To test if  the assumption is true, 

Xiaoming pulled 20 times, and got 4 
SSRs.

What is the chance of the rate 
being 8%?

var gacha = function(){
var cheated = sample(Bernoulli({p:0.2}));
var pull = function(){ 
if (cheated){
return Bernoulli({p:0.08});

}
else
return Bernoulli({p:0.1});

}
var num_pull_inst = 20;

var performPull = function(c, num_no_ssr){
…

}
var num_ssrs = performPull(num_pull_inst, 0)
condition(num_ssrs == 4)
return cheated;

};

var gacha_model = Infer({model: gacha})
display(Math.exp(gacha_model.score(1)))
viz(gacha_model)

Xin Zhang@PKU
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var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c, num_no_ssr){
if( c == 0){
return 0;

}
if (num_no_ssr == 5){

return 1 + performPull(c-1, 0);
}
else{
var cp = sample(pull);
if (cp)
return 1 + performPull(c-1, 0);

else
return 0 + performPull(c-1, num_no_ssr+1);

}
}    
return performPull(num_pull_inst)

};

• 1% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If  5 continuous pulls yield 0 SSR, the 6th pull 

guarantees an SSR. 
• Xiaoming usually pulls 0-9 times a day

Xin Zhang@PKU

12



var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c, num_no_ssr){
if( c == 0){
return 0;

}
if (num_no_ssr == 5){

return 1 + performPull(c-1, 0);
}
else{
var cp = sample(pull);
if (cp)
return 1 + performPull(c-1, 0);

else
return 0 + performPull(c-1, num_no_ssr+1);

}
}    
return performPull(num_pull_inst)

};

• 1% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If  5 continuous pulls yield 0 SSR, the 6th pull 

guarantees an SSR. 
• Xiaoming usually pulls 0-9 times a day,  and 

because of  the pity system, it is more 
likely he does 6 pulls.

Xin Zhang@PKU
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var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
if (num_pull_inst == 6){

factor(1);
}
var performPull = function(c, num_no_ssr){
if( c == 0){
return 0;

}
if (num_no_ssr == 5){

return 1 + performPull(c-1, 0);
}
else{
var cp = sample(pull);
if (cp)
return 1 + performPull(c-1, 0);

else
return 0 + performPull(c-1, num_no_ssr+1);

...

• 1% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If  5 continuous pulls yield 0 SSR, the 6th pull 

guarantees an SSR. 
• Xiaoming usually pulls 0-9 times a day,  and 

because of  the pity system, it is more 
likely he does 6 pulls.

Xin Zhang@PKU
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var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
if (num_pull_inst == 6){

factor(1);
}
var performPull = function(c, num_no_ssr){
if( c == 0){
return 0;

}
if (num_no_ssr == 5){

return 1 + performPull(c-1, 0);
}
else{
var cp = sample(pull);
if (cp)
return 1 + performPull(c-1, 0);

else
return 0 + performPull(c-1, num_no_ssr+1);

...

• 1% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If  5 continuous pulls yield 0 SSR, the 6th pull 

guarantees an SSR. 
• Xiaoming usually pulls 0-9 times a day,  and 

because of  the pity system, it is more 
likely he does 6 pulls.
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Increase the probability of 
executions that reach here.

factor(score)
Add score to the log probability 
of the current execution.



More on factor

var num_pull = Categorical({vs: [0,..,9]});
var num_pull_inst = sample(num_pull)

num_pull = 0

num_pull = 1

num_pull = 6

…

…

Weight Probability

1 1/10

1 1/10

1 1/10

Xin Zhang@PKU
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More on factor

var num_pull = Categorical({vs: [0,..,9]});
var num_pull_inst = sample(num_pull)

if (num_pull_inst == 6){
factor(1);

}

num_pull = 0

num_pull = 1

num_pull = 6

…

…

Weight Probability

1 1/(9+e)

1 1/(9+e)

1*e e/(9+e)

Xin Zhang@PKU
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More on Factor
• Factor is
• A “soft” version of  condition

• A more fine-grained way to modify the output distribution

• Harder to reason with than condition

• Not included in every probabilistic language

Xin Zhang@PKU
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var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c, num_no_ssr){
...
};

}

var gacha1 = function(){
var num_ssrs1 = gacha();
if(num_ssrs1 == 2)

factor(1);
if(num_ssrs1 == 1){

factor(Math.log(X));
}
return num_ssrs1;

}

var num_ssrs = Infer({model: gacha1})
viz(num_ssrs)

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If  5 continuous pulls yield 0 SSR, the 6th pull 

guarantees an SSR. 
• Xiaoming usually pulls 0-9 times a day.
• It is more likely that Xiaoming pulls 2 

SSR than 0 SSR, and the chance that he 
pulls 1 SSR is twice of  him pulling 2 
SSRs.

Xin Zhang@PKU

Need some work to 
get this number



What is the relationship between these two programs?
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var a = Gaussian({mu:0, sigma:1})

var model = function(){
var num = categorical({vs:_.range(1,11)})
var sim = binomial(0.5, num) - 2
factor(-Math.abs(num+sim - sample(a)))
return {n:num, s:sim}

}

var m = Infer(model)

viz(marginalize(m,function(x){return x.s}))

var a = Gaussian({mu:0, sigma:1})

var model = function(){
var num = categorical({vs:_.range(1,11)})
var sim = binomial(0.5, num) - 2
condition(num+sim == sample(a))
return {n:num, s:sim}

}

var m = Infer(model)

viz(marginalize(m,function(x){return x.s}))



Complete Syntax of WebPPL
• We finish off  WebPPL by introducing its complete syntax

• Deterministic part: subset of  Javascript
• Doesn’t allow general assignments (i.e., you cannot redefine a variable)
• Doesn’t allow loops (but recursions)
• Can invoke Javascript functions (must have no side effects)

Xin Zhang@PKU

21



Deterministic Constructs in WebPPL
• https://webppl.readthedocs.io/en/master/language.html

Xin Zhang@PKU
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Probabilistic Constructs in WebPPL
• Distributions
• https://webppl.readthedocs.io/en/master/distributions.html

• sample(dist)
• Draw a sample from dist, which is a built-in distribution or a distribution 

constructed using Infer

• Infer(f)
• f  is a stochastic function which samples a value from a given distribution
• It computes the marginal distribution of  f

Xin Zhang@PKU
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https://webppl.readthedocs.io/en/master/distributions.html
https://webppl.readthedocs.io/en/master/distributions.html


Probabilistic Constructs in WebPPL
• Conditioning
• condition(bool): conditions the marginal distribution on a proposition (bool)
• observe(dist, value)

• Conceptually it is the same as

• In many cases, especially for continuous distributions, using observe is more efficient than 
using condition (see a simple example using Gaussian)

• factor(score)
• Adds score to the log probability of  the current execution

Xin Zhang@PKU
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var x = sample(dist)
condition(x == value)
return x



This Class
• Finish introduction to WebPPL

• Some representative applications

Xin Zhang@PKU
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This Class
• Finish introduction to WebPPL

• Some representative applications

Xin Zhang@PKU
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Linear Regression

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3

y = a*x + b, a =? b=?

Xin Zhang@PKU
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Linear Regression: Conventional Method
• Data = {(1, 1.5), (2, 2), (3, 3)}
• Find a and b in f(x) = a*x + b, such that

!
(",$)∈'

𝑓 𝑥 − 𝑦 (

is minimized.

• In this example, a = 0.75, b = 0.67

Xin Zhang@PKU
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Why using a 
square error 

makes sense?



Linear Regression: Conventional Method
• There is a probabilistic explanation!
• Assume that the function is actually written as

f ’(x) = a*x + b + N(0, 𝜎)

Xin Zhang@PKU
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Gaussian noise



Linear Regression: Conventional Method
f ’(x) = a*x + b + N(0, 𝜎)

• We have a*x1 + b + NV1 = y1
a*x2 + b + NV2 = y2
…
a*xn + b + NVn = yn

NVk can be any value, but we want to find assignments to a and b such 
that their values (NVk ) are more likely.

Xin Zhang@PKU
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Linear Regression: Conventional Method
• In other words, we want to maximize

L (N(0, 𝜎) = NV1) * L (N(0, 𝜎) = NV2) * … L (N(0, 𝜎) = NVn)
=  L (N(0, 𝜎) = y1- a*x1 - b ) * … L (N(0, 𝜎) = yn- a*xn – b )

= )
* (+

𝑒,
y1− a∗x1 – b "

"#" * … )
* (+

𝑒,
yn− a∗xn – b "

"#"

Which is equivalent to maximizing

−! yk− a∗xk – b (

Or minimizing ∑ yk− a∗xk – b ( = ∑ yk− 𝑓(𝑥𝑘) (

Xin Zhang@PKU
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Problems with Conventional Method
• Overfit – regularization term

• One explanation

• Confidence is unknown

Xin Zhang@PKU
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Linear Regression: Bayesian Way
• Model uncertainties in parameters explicitly

• Make parameters random variables, for example

𝑦 = 𝑓(𝑥) = 𝑎 ∗ 𝑥 + 𝑏
𝑎~𝑢𝑛𝑖𝑓𝑜𝑟𝑚 −10,10
𝑏~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−10,10)

Xin Zhang@PKU
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What Can We do With the Model?
Xin Zhang@PKU
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What Can We do With the Model?
• Infer the most likely parameter conditioning on the data

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃(𝜔|𝐷)
= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝜔 𝐷

=  𝑎𝑟𝑔𝑚𝑎𝑥-
. '|- ∗.(-)

.(')

= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)

Xin Zhang@PKU
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Maximum Likelihood Inference



What Can We do With the Model?
• Infer the most likely parameter conditioning on the data

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃(𝜔|𝐷)
= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝜔 𝐷

=  𝑎𝑟𝑔𝑚𝑎𝑥-
. '|- ∗.(-)

.(')

= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)

Xin Zhang@PKU
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Maximum a posteriori (MAP) Inference = Maximum 
likelihood + Prior distribution



What Can We do With the Model?
• Infer the most likely parameter conditioning on the data

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃(𝜔|𝐷)
= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝜔 𝐷

=  𝑎𝑟𝑔𝑚𝑎𝑥-
. '|- ∗.(-)

.(')

= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)

Xin Zhang@PKU
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Maximum a posteriori (MAP) Inference = Maximum 
likelihood + Prior distribution

1. What if 𝑃(𝜔) is a uniform distribution?
2. How about Gaussian?



MAP Inference with Uniform Prior
• Assume 𝜔 ～𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−∞,+∞)

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)
= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔

Xin Zhang@PKU
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When the prior distribution of parameter is uniform, MAP 
inference is the same as maximum likelihood inference. And this 
achieves the same effect as the conventional linear regression.



MAP Inference with Gaussian Prior
• Assume 𝜔 ～𝑁 (0, 𝜎)

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)
= 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ exp(−𝜔()

Xin Zhang@PKU
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L2 regularization

Prior distribution on the parameters helps prevent overfitting.



MAP Inference with Other Priors

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)

• What if  𝜔~ )
(1
𝑒,

|%|
& (Laplace distribution)?

• Extended reading: A Probabilistic Interpretation of  Regularization 
(https://bjlkeng.github.io/posts/probabilistic-interpretation-of-
regularization/)

Xin Zhang@PKU
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/* Training Data */
var data = [[1,1.5], [2,2], [3,3]];

/* Linear Regression Model. */
var lr = function() {

/* Prior beliefs. */
var posterior_a = uniform(-10, 10);
var posterior_b = uniform(-10, 10);

/* Condition on training data. */
mapData({data: data}, function(d){
var y_pred = posterior_a * d[0] + posterior_b;
observe(Gaussian({mu:y_pred, sigma:1}), d[1])

});

return {a: posterior_a, b: posterior_b,};
};

/* Joint distribution. */
let dist = Infer({method: 'MCMC', samples: 100000, model:lr});

WebPPL does not have an 
adequate support for MAP 
inference. You can draw 
many samples and calculate 
the most frequent values.

In this case, we can calculate 
the expectations, which is 
actually more robust.



Linking between Conventional & Bayesian

Xin Zhang@PKU
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Conventional with Mean Square Loss
=

MAP(Bayesian+ uniform priors on the parameters + gaussian noise)

Conventional with Mean Square Loss + L2 Regularization 
=

MAP(Bayesian + gaussian priors on the parameters + gaussian noise)

Linear Regression

The Bayesian method is at least as expressive as the conventional method!



There is More Bayesian Can Do!
Xin Zhang@PKU
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• Seeing the the full distribution 
lets us know how well the 
model fits the data.

• Assigns a confidence to each 
parameter value.

• Smooth out the possible 
parameters using expectations



The Full Bayesian Approach
• Instead of  evaluating

𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)
• Giving a input 𝑥, we can estimate

𝑃 𝑦 𝐷, 𝑥) = F𝑃 𝜔 𝐷 𝑃 𝑦 𝑥,𝜔 𝑑𝜔

Xin Zhang@PKU
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Now the prediction is a distribution!
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/* Training Data */
var data = [[1,1.5], [2,2], [3,3]];

var x = 1.5

/* Linear Regression Model. */
var lr = function() {

/* Prior beliefs. */
var posterior_a = uniform(-10, 10);
var posterior_b = uniform(-10, 10);

/* Condition on training data. */
mapData({data: data}, function(d){
observe(Gaussian({mu:y_pred, sigma:1}), d[1]) });

var pred = posterior_a * x + posterior_b;
return pred;

};

/* Joint distribution. */
var dist = Infer({method: 'MCMC', samples: 100000, model:lr});

We now have a confidence in 
the prediction!



Basic Ideas of Making a Model Bayesian
• Make parameters random variables

• Add random noises to fit the model to the training data

• Make predictions by conditioning on the data

Xin Zhang@PKU
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Basic Ideas of Making a Model Bayesian
• You can make really complex models Bayesian

• A recent popular model is Bayesian Neural Networks

Xin Zhang@PKU
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“I don’t know.”    instead of    “Frog!”



More on Bayesian Neural Networks
• People have thought hard on how to assign confidences to predictions
• Previous: by looking at final layers (i.e., softmax)
• Bayesian neural nets offer a much more principled way!

• But inferences on Bayesian Neural Network are really challenging
• Variational Inference

Xin Zhang@PKU
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Extended reading: https://towardsdatascience.com/making-your-neural-network-say-i-
dont-know-bayesian-nns-using-pyro-and-pytorch-b1c24e6ab8cd



More on Bayesian Models
• Exploration based on uncertainties

Xin Zhang@PKU
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Label Data

Train Model
Find Most 
Uncertain 

Points



Optimal Experiment Design
Xin Zhang@PKU
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Reference: Long Ouyang, Michael Henry Tessler, Daniel Ly, Noah D. Goodman:
webppl-oed: A practical optimal experiment design system. CogSci 2018

• Coin flipping

• There is a user. They either assume the coin has an unknown bias or 
the coin is unbiased

• We want to know the user’s mental model by
• Showing them the results of  4 flips (i.e., HHHH, HTHT, …)
• Asking them to predict the next flip

• Is HHHH or HHTT better?



Optimal Experiment Design
• HHHH is better because when the user answers T, we know likely they 

believe the coin is unbiased

• We want to choose an experiment that gives us most information
• How do we measure information gain?

Xin Zhang@PKU
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Optimal Experiment Design
• We can measure information gain by looking at how much the 

distribution of  the hypotheses has changed

Xin Zhang@PKU
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Kullback–Leibler divergence

How much information is gained by going from Q to P



Optimal Experiment Design
• Suppose the random variable of  hypotheses is m, the experiment is x, 

the user’s answer is y, we want to find an experiment X, such that

• The above expectation is a random variable, we can use WebPPL to 
compute its distribution

Xin Zhang@PKU
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𝑋 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥!𝑬" !,$ (𝐷%& 𝑚 𝑥 = 𝑋, 𝑦 = 𝑌 ||𝑚))
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Reference: Ouyang et al, CogSci 2018



The Models
Xin Zhang@PKU
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Given the observation of 
seq, what is the prediction 
of the next flip?



Prior and Calculating OED
Xin Zhang@PKU
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More on Optimal Experiment Design
• Very useful in designing experiments to test theories. Used in Psychology 

and other fields.

• You can make our simple experiments more complex by adding more 
models and more participants

• See more at 
• Long Ouyang, Michael Henry Tessler, Daniel Ly, Noah D. Goodman:
webppl-oed: A practical optimal experiment design system. CogSci 2018

• https://github.com/mhtess/webppl-oed

Xin Zhang@PKU
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Inverse Graphics
• More application oriented

• One of  the killer applications that made probabilistic programming popular

• Applications:
• Scene understanding
• Generating data
• …

Xin Zhang@PKU
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Inverse Graphics
Xin Zhang@PKU
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Model Image
Render



Inverse Graphics
Xin Zhang@PKU
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Model(x) Image
Render(k)

x ~ Distribution k ~ Distribution
e.g., lightning, angles

Given an observed image, we can 
• Infer x
• Generating different images by changing k



Inverse Graphics
Xin Zhang@PKU
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Model(x) Image
Render(k)

x ~ Distribution k ~ Distribution
e.g., lightning, angles

P(x | Image = Observed)
P(Image’ | Image = Observed), Image’ = Render(k = K, Model)



Inverse Graphics
Xin Zhang@PKU
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Model(x) Image
Render(k)

x ~ Distribution k ~ Distribution
e.g., lightning, angles

P(x | Image = Observed)
P(Image’ | Image = Observed), Image’ = Render(k = K, Model)

Render(k= K) Image’

condition(Image = Observed)



Inverse Graphics
Xin Zhang@PKU
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Inverse Graphics – 3D faces rendered from 2D images using only 50 lines of PPL code. 
Reference: http://news.mit.edu/2015/better-probabilistic-programming-0413

http://news.mit.edu/2015/better-probabilistic-programming-0413
http://news.mit.edu/2015/better-probabilistic-programming-0413


Inverse Graphics
Xin Zhang@PKU
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Mansinghka, Vikash K., et al. "Approximate bayesian image interpretation using 
generative probabilistic graphics programs." Advances in Neural Information 
Processing Systems 26 (2013): 1520-1528.



Inverse Graphics-Simple Example
Xin Zhang@PKU
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One of“+”, “-”, “|”
Render(location offset)

See inverse_graphics.js.



Summary
• WebPPL
• Subset of  Javascript
• Probabilistic constructs: distributions, sample, condition, observe, factor

• Applications
• Bayesian learning models
• Optimal experiment design
• Inverse graphics
• More

Xin Zhang@PKU
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Next Lecture
• You have got an idea of  how probabilistic programming looks and what 

they can do

• We will get into its theory, algorithms, implementation now, starting with 
its predecessor: probabilistic graphical models

Xin Zhang@PKU
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