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Adapted from the slides of “Pattern Recognition and Machine Learning” Chapter 8
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Recap of Last Lecture - WebPPL

Subset of Javascript

—

Distributions: Bernoulli, Categorical, Gaussian ...

WebPPL —
\

Probabilistic Constructs 7] Ssample > Process
condition
- observe > State

~ factor



Recap of Last Lecture - Applications

* Bayesian learning models

argmax,P(D|w) ) argmax,P(D|w) * P(w)

* Optimal experiment design

argmaxxE,xyy(Dg(m [x =X,y =Y |[m))

* Inverse graphics
Render(k)

k ~ Distribution
e.qg., lightning, angles

Model(x)

X ~ Distribution

Image
condition(lmage = Observed)



Why do we need graphical models?

* How would you represent a probability distribution, so you can

* Visualize and design a model.
* Gain insights about relationships between random variables.

* Do complex inferences.



Xin Zhang@PKU

Naive Method

A and B are Bernoulli random variables.

BT
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Naive Method

A and B are Bernoulli random variables.

BT

What questions can we ask?




Probabilistic Inference Problems

* Marginal inference:

* Let X be the set of random variables, Y be a subset of it, Z = X/Y then marginal
inference 1s to compute

P(Y=Vy) =%y, P(Y =V, Z =Vp)

 Conditional inference:

* Let X be the set of random variables, Y and W be subsets of it then conditional
inference 1s to compute

P(Y = Vy W = V)
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Probabillistic Inference in Table Method

IR

P(A = True) = P(A = True, B = False) + P(A = True, B = True)
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Probabillistic Inference in Table Method

IR

P(A =True, B =True)
P(A =True,B =True) + P(A = False,B = True)

P(A=True|B =True) =

9
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Bayesian Networks
* Directed Acyclic Graph (DAG)

a

p(a, b, c) = p(cla,b)p(a,b) = p(c|a, b)p(bla)p(a)

p(z1,...,2K) = p(TK|z1,. .., Tr-1)--.plz2|z1)p(z1)
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Bayesian Networks

p(z1)p(x2)p(x3)p(T4a|271, T2, 3)

p(x5 |$1 ; 563)]?(%‘ |£C4)p(567|$4, 1‘5)

General Factorization

p(x) = || plaxlpay)
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Bayesian Networks

Xin Zhang@PKU

Are x; and X, Independent?
What about x, and x:?

What about x, and Xz when x4 1s fixed?

We will talk about dependence later!
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Example Application: Bayesian Curve Fitting

, Polynomial
M

| y(z, w) =) w;a’
=0
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Example Application: Bayesian Curve Fitting

p(t,w) = p(w) H p(tn|y(W, zy))

n=1
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Example Application: Bayesian Curve Fitting

* Input variables and explicit hyperparameters

* « IS the parameter of the
parameter. For example:
w;~N(a, 1)

« o?is the variance of the
gaussian noise In training.

7

Ln
&

1

N
p(ta W|X, «, 02) — p(W|Oﬂ) H p(tn|W, Ly 02)'

oy
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Bayesian Curve Fitting — Learning

e Condition on data

p(wlt) o< p(w) | | p(talw)

n=1

w

oy
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Bayesian Curve Fitting — Prediction

A

Predictive distribution: p(t|z, x,t, a, 0°) /p(;f\, t, w|Z,x,a,0%) dw

where
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Which model is correct?
A: whether the school B: whether the teacher ° @
bus has a crash s late for the class

st | A
TN OO
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Generative Models

* Causal process for generating images

Object Position Orientation

Image
We will talk about causality in a later lecture!
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Two Special Cases

e Discrete variables

 (Gaussian variables



Discrete Variables

* General joint distribution: K 2-1 parameters

X1 X2 K K
()>—=()  soxxelw= [ [[wi
k=11[1=1

* Independent joint distribution: 2(K - 1) parameters

X1 X2 K K
() () seuxelw) =[] e [T wsr
=1 [=1

Xin Zhang@PKU
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Discrete Variables

General joint distribution over M variables:
KM-1 parameters

M -node Markov chain: K-1+ (M -1) K(K- 1)
parameters
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Discrete Variables: Bayesian Parameters

Hq Ho

O
O O~

P ({Xms Mo }) = 0 (X1 [0 ) P (1) p (X [Xm—1s ) P ()

m=2
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Discrete Variables: Bayesian Parameters

* Why are Direchlet distributions used?

* They are conjugate priors for categorical and binomial distributions.

* Further reading: https://towardsdatascience.com/dirichlet-
distribution-282ab942a879



Xin Zhang@PKU

Discrete Variables: Bayesian Parameters

H1 M Shared prior

p({xm} s, 1) =p(x1[py) p (1) [ p Ko [Xm—1, 1) p (1)

m=2
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Parameterized Conditional Distributions

L1 T M
If x1,...,xps  are discrete,
K-state variables,
ply =1lz1,...,x0) in
general has O(KM)
parameters.

The parameterized form

M
p(y — 1|$1,...,I‘M> — 0 | Wo —|—sz$@> — O(WTX>
1=1

requires only M+ 1 parameters



Linear-Gaussian Models

* Directed Graph

p(xi‘pa’i> =N (xz Z Wi 5 + bz,vz‘)

ijai

Each node I1s Gaussian, the mean is a linear function of the parents.

e Vector-valued Gaussian Nodes

p(xﬂpai) :N (Xz‘ Z Wz'ij ‘|_bz727,)

JEDPa,;




Recall This Graph
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Are x; and X, Independent?
What about x, and x:?

What about x, and Xz when x4 1s fixed?

We will talk about dependence now!
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Conditional Independence

* a is independent of b given ¢

p(alb, c) = plalc)

* Equivalently  p(a,blc) = p(alb, c)p(blc)
= p(alc)p(blc)

* Notation all blec



Conditional Independence: Example 1

C p(a, b, c) = p(alc)p(blc)p(c)

p(a,b) =Y p(ale)p(ble)p(c)

a b

all bl



Conditional Independence: Example 1

p(a,b,c)
p(c)
= p(alc)p(blc)

p(a, b|C) —

allb|c



Conditional Independence: Example 2

a C b

O—0O—=0

p(a,b,c) = p(a)p(cla)p(b|c)

p(a,b) = p(a) }  p(cla)p(ble) = p(a)p(bla)

all b|(



Conditional Independence: Example 2

O . O

plable) = P9
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Conditional Independence: Example 3

p(a,b,c) = p(a)p(b)p(c|a,b)
p(a,b) = p(a)p(b)
a1l b0

* Note: this 1s the opposite of Example 1, with ¢ unobserved.
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Conditional Independence: Example 3

_ pla,b,c)
a b p(aa b|C) — p(c)
e 5 ~ p@p(®)p(cla,b)
p(c)
all b|c

Note: this is the opposite of Example 1, with ¢ observed.
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“Am | out of fuel?”

p(G=1B=1F=1) = 0.8 = F
p(G=1B=1,F=0) = 0.2
p(G=1B=0,F=1) = 02
p(G=1B=0,F=0) = 0.1
G
p(F=1) = 0.9 B = Battery (O=flat, 1=fully charged)
F = Fuel Tank (O=empty, 1=full)
and hence G = Fuel Gauge Reading

p(FF=0) = 0.1 (O=empty, 1=full

36
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“Am | out of fuel?”

p(G = 0|F = 0)p(F = 0)

p(G = 0)
0.257 G

p(F=0|G=0) =

2

Probability of an empty tank increased by observing G =0.
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D-separation

* A, B, and C are non-intersecting subsets of nodes in a directed graph.

* A path from A to B is blocked if it contains a node such that either

a) the arrows on the path meet either head-to-tail or tail-to-tail at the
node, and the node 1s in the set C, or

b) the arrows meet head-to-head at the node, and neither the node, nor
any of its descendants, are in the set C.

* If all paths from A to B are blocked, A 1s said to be d-separated from B by C.

*If Ais d-separated from B by C, the joint distribution over all variables in
the graph satisties A 1L B | C.
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D-separation: Example

a f a

Q%b‘(ﬁ CLJ.l_b|f
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D-separation: |.1.D. Data

40



Question

* What can D-separation be used for?
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The Markov Blanket

p(X17°°°7XM)

/p(xl, Xy ) dx;
HP(XHP%)

k
/ TT ok Ipay) dx,
k

p(Xilxgziy) =

Factors independent of x; cancel between
numerator and denominator.
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Bayesian Networks: Summary

* Directed
* Factorizations of conditional probabilities

* Reason about the relationships between ditferent variables using
conditional independence



Markov Random Fields

e Undirected
e Markov networks

* One motivation: reasoning about conditional independence 1s subtle in
Bayesian networks. Can we have something simpler?
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Markov Random Fields

Markov Blanket

45



Markov Random Fields: Intuitions

* If x and y are not directly connected, then they should be independent
conditioning on the other variables

*PGoy [V/x,yh) = Px [V/{x,y}) = P(y [V/{x,¥})
* x and y should not appear in the same factor

* We should put nodes that are directly connected in the same factor
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Cligues and Maximal Cliques

Clique

3 . @

Maximal Cligue

47



Joint Distribution

p(x) = - [[ velxe)
C

* where Yo (x¢) is the potential over maximal clique C and

z=> 1] vecxe)
x C

e is the normalization coefficient; note: M K-state variables — KM terms in Z.

* In general, we only require potentials to be positive. One example: Energies and
the Boltzmann distribution

Vve(xe) = exp{—E(xc)}



Factorization and Conditional Independence

* Given a graph (potential function unknown), let UI be the distributions
whose conditional independence fits the graph

* Let UF be the subset of Ul that can be expressed in the factorization
form

* We have UF = UI: the Hammersley-Clifford theorem (Clitford, 1990)
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lllustration: Image De-Noising

Original Image Noisy Image

x; € {—1,1} yj € {—1,1}
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lllustration: Image De-Noising

{ S

g g pxy) = 5 exp{~E(xy)}

ol



Special Case: Conditional Random Field

* There two sets of variables X and Y
* The conditional distribution Y | X forms a Markov Random Field
* By observing Y, predict X

e Example: text seementation: X: text. Y: seoments
p g 5 g



Summary

* Bayesian networks
* Directed
* TFactorization of conditional probabilities

* Conditional independence: D-separation

e Markov random fields
e Undirected

* Factorization over maximum cliques



Next Class

* Relationship between directed and undirected models

e Inference



