Probabilistic Graphical Models

(continued)

Xin Zhang
Peking University

Adapted from the slides of “Pattern Recognition and Machine Learning” Chapter 8



Xin Zhang@PKU

Recap: Bayesian Networks

* Directed Acyclic Graph (DAG)

= p(z1)p(z2)p(x3)p(24| 271, T2, T3)

p(x5 |$1 ; 553)]7(376 |$4)p(377|5€4, 1‘5)

General Factorization

p(x) = H p(xk|pay)




Xin Zhang@PKU

Recap: Conditional Independence

¢ a b

O—e—C

C
a1l blc a1l blc all b]c

Shaded nodes are observed.



Recap: D-Separation

* A, B, and C are non-intersecting subsets of nodes in a directed graph.

* A path from A to B is blocked if it contains a node such that either

a) the arrows on the path meet either head-to-tail or tail-to-tail at the
node, and the node 1s in the set C, or

b) the arrows meet head-to-head at the node, and neither the node, nor
any of its descendants, are in the set C.

* If all paths from A to B are blocked, A 1s said to be d-separated from B by C.

*If Ais d-separated from B by C, the joint distribution over all variables in
the graph satisties



Xin Zhang@PKU

D-separation: Example

a f a

CLAMLZ?‘C CLJ.l_b|f



Xin Zhang@PKU

Recap: The Markov Blanket

p(X17°°°7XM)

/p(xl, Xy ) dx;
HP(XHP%)

k
/ T o0k lpay) dx;
k

p(Xilxgziy) =

Factors independent of x; cancel between
numerator and denominator.



Recap: Markov Random Field

* Undirected, can have cycles
* Markov networks

* Reason about conditional independence using graph reachability



Recap: Markov Random Field

p60) = o [ velxe)
C

* where Yo (x¢) is the potential over maximal clique C and

zZ=> 1]vexce)
x C

* i5s the normalization coefficient.



Recap: Markov Random Field

G P(A =True,B = True,C = True,D = True)

_ Yapc(True, True, True) Xy p(True, True)

Q 2a5coWapc(4,B,C)XYcp(C,D)



This Class

* Relationship between directed and undirected models

* Inference (“Exact”)



Converting Directed to Undirected Graphs

p(x) = % Y1 2(21,22) Ya3(x2,23) - Yn_1 N(TN-1,2ZN)

X o IN-1 TN

Xin Zhang@PKU

11



Xin Zhang@PKU

Converting Directed to Undirected Graphs

H 54 3 T H 52

o X2

12



Steps in Converting Directed to Undirected

1. Add links between all pairs of parents for each node (moralization)
2. Drop arrows, which results in a moral graph

3. Initialize all of the clique potentials to 1. Take each conditional
distribution factor and multiply it into one of the clique potentials



Example

OO 0?0

Yapc = P(A)XP(B)XP(C|A, B)

l/Jc,D = P(D|C)



Xin Zhang@PKU

Directed vs. Undirected Graphs

Can you convert the following graphs and keep the conditional indecencies?

C
A B
A B
C
D
Al B¢ AY B0
AJ B|C Al B|CUD

C 1 D|AUB

15



Xin Zhang@PKU

Directed vs. Undirected Graphs

Distributions that can be perfectly represented by two types of graphs
In terms of conditional independence

16



Inference in Graphical Models

* Marginal probabilities: p(x) or p(X,y)

* Conditional probabilities: p(x| o) or p(x,y|0)



Xin Zhang@PKU

Inference in Graphical Models

Shaded nodes
are observed.

Zp (ylz")p plaly) = ZU2P

p(y)

18



Xin Zhang@PKU

Inference on a Chain

1

p(x) — E¢1,2($1,$2)¢2,3($2,$3) " '¢N—1,N($N—1,$N)

plan) =0 e 2L ) e 2 p)

Ln—1Tnt+1

19



Xin Zhang@PKU

Inference on a Chain

20



Xin Zhang@PKU

Inference on a Chain

:uoc(xn> — Z ¢n_1,n(xn_1,xn) |:Z :|

Ln—1 Ty—_9

= Z wn—l,n(xn—lv'xn>ua(xn—1>'

LTn—1

LTn+1 Tn42

pa(rn) = Z Vrnt1(Tn, Tnit1) [Z }

— Z wn,n+1(xnaxn+1>ﬂﬁ($n+1>.

LTn+1

21



Xin Zhang@PKU

Inference on a Chain

pa(Tn-1)  pal®n)  pp(@n)  pp(@ni1)

— Zw1,2(x1’x2) pe(rN-1) ZlDN 1,N(TN-1,TN)
1

Z = Z o (Tn ) s (Tn)

Ln,

22



Inference on a Chain

* To compute local marginals:

* Compute and store all forward messages, Ha(Zn).
* Compute and store all backward messages, ug(xy).
* Compute Z at any node X,
* Compute 1
p(Tn) = Eﬂa(xn)ﬂﬁ(xn)

for all variables required.



Xin Zhang@PKU

What about p(Xx,_.{, X,,)?

po(Tn 1) p5(Tn)
O—+~O—O—0——0
1 Tp—1 Tn Ln+1 LN
p(Xp_1,Xn) = fle--zxn_zzxnﬂ e Ly P12 (%1, x32) ---l/)N—l,N(xN—lrxN)

1
= Elpn—l,n (xn—lr xn)le- . an—z 1/)1,2 (xl: xz) wn—z,n—l(xn—Zr xn—l)
IV z:xl\,l/)n,n+1(xn» Xn+1) - YN-1N (XN-1,XN)

1
= E l/}n—l,n (xn_l, xn)ﬂa (xn—l):uﬁ (xn)

24



What about p(x,Ix,,=V)

* Simply fix x,, to V instead of doing summarization over x|

* Z will also be changed accordingly



Xin Zhang@PKU

More Complex Graphs: Trees

Undirected Tree Directed Tree Polytree

On these graphs, we can perform efficient exact inference using local message passing!

Before introducing algorithms, we first introduce a new model

26



Factor Graphs

Bipartite graph

Two kinds of nodes:
* Regular random variables
* Factor nodes

Factor node represents a function
that maps assignments to its
neighbors to a real number

p(x) = Hsﬁs (xs)

Ja

fb fc fd

POy, X, X3) = - fou (e, %) fy (e, %) f (0, %3) 4 (33)

Xin Zhang@PKU

27



Xin Zhang@PKU

Factor Graphs from Directed Graphs

J
p(x) = p(z1)p(z2) fa1, 9, 23) = fa(z1) = p(z1)
p(zs|z1, 2) p(x1)p(@2)p(3|T1, 22) folzs) = p(2)

fe(x1,22,23) = p(x3]|T1,22)

28



Xin Zhang@PKU

Factor Graphs from Undirected Graphs

X1 T x 9 T T2
S fa
Jo
3 xs3 Z3
Y(x1, 22, 73) f(z1, 22, 73) fa(z1, 22, 23) fo (22, T3)

= Y(x1,22,23) = Y(z1,22,73)

29



The Sum-Product Algorithm

* Objective:
i. to obtain an efficient, exact inference algorithm for finding
marginals on tree-structure graphs;

ii. 1n situations where several marginals are required, to allow
computations to be shared etticiently.

* Key idea: Distributive Law

ab + ac = a(b + c)



Xin Zhang@PKU

The Sum-Product Algorithm

& (33; Xs)

31



Xin Zhang@PKU

The Sum-Product Algorithm

2. (39; Xs)

ZFS(:C,XS)]

Xs

s€ne(x)

= I #-a@. o —o(@) = Y Folx, Xo)

s€ne(x) X, 32



Xin Zhang@PKU

The Sum-Product Algorithm

Fo(x, Xs) = fs(x,z1,...,20)G1 (1, Xs1) - - - Gar (pr, Xsnr)

33



Xin Zhang@PKU

The Sum-Product Algorithm

Hfs—x (x) =

34



Xin Zhang@PKU

The Sum-Product Algorithm

35



Xin Zhang@PKU

The Sum-Product Algorithm

e Initialization

o p(@) = 1 s a(@) = f(a)

36



The Sum-Product Algorithm

* To compute local marginals:

* Pick an arbitrary node as root

* Compute and propagate messages from the leat nodes to the
root, storing received messages at every node.

* Compute and propagate messages from the root to the leaf
nodes, storing received messages at every node.

* Compute the product of received messages at each node for
which the marginal is required, and normalize if necessary.



Marginal Inference on A Set

* What if I want to know p(Xxg) where X4 are nodes in a factor s?

peo) = filxs) | | n G

iene(fs)



Xin Zhang@PKU

Sum-Product: Example

O—a—CO—=8——0
M/

p(x) = fa(x1,22) fo(v2,23) fe(T2, 24)

39



Xin Zhang@PKU

Sum-Product: Example

O—a—0O—=—0O

!

IUle_ﬂfa(:’U]-> — ]‘
Hfo—zs (T2) = Zfa(%,@)
L1

L]
T
() henle) =1

T4 Mfc_>w2(x2> = ch(x2,1'4>

T4
IUJw2_>fb (.CUQ) — /’Lfa_>332 (x2>IUch_>x2 (xQ)
ff,—as(T3) = Zfb(x27x3)/‘x2—>fb (22)

2

40



Xin Zhang@PKU

Sum-Product: Example

O—a—0O—=—0

l

Hxs— fy (1‘3) = 1
ffy—ao (T2) = Z fo(x2,23)
3

() ot = wps(@iy (@)

L4 IUJfa_>331 (.CUl) — Zfa(x17x2>/’bw2_>fa (xQ)
2
/’Lw2_>fc(x2> — /’Lfa_>332(x2>/’bfb_>x2 (xQ)

/’Lfc_>334(x4> — ch(x27x4)ux2_>fc(x2)
2

41



Xin Zhang@PKU

Sum-Product: Example

T T2 T3

O—a—CO—8—0)

fa fb

.fc ﬁ(x2> — lUJfa_>332 (x2>lUJfb—>332 (x2>,UJfC—>332 (.CUQ)

= Z fa(z1, 562)] [Z fo(z2, $3>]

T4 ch(CCQ,CM)]
— S: S: S: fa(:cl, 1‘2>fb(1'2, xS)fc(x% 1‘4)

1 X3 T4

= 2.2 2 )

L1 s L4

42



What about conditional probabilities?

* Fix the observed variables
e Or add a factor node

e Both need normalization



What If | want to know values of all
variables that have the highest probability?

argmax, p(x)



The Max-Sum Algorithm

Objective: an efficient algorithm for finding
i.  the value XM that maximises p(X);
ii.  the value of p(x™M).

In general, maximum marginals # joint maximum

r=0 x=1
y =20 0.3 0.4
y=1 0.3 0.0

argmaxp(z,y) = 1 argmax p(x) =0

xZ X



Xin Zhang@PKU

The Max-Sum Algorithm

* Maximizing over a chain (max-product)

X ) IN -1 N

= max p(X) = max...max p(x)
X T1 L M

1
— - max - - -max [¢1 2(x1,22) - - YN-_1,N(TN=1,TN)]
2 TN
1
Z

TN

max [max [¢1,2(x1,x2> [ . mawa_LN(xN_l,xN)] y ”

46



The Max-Sum Algorithm

* Generalizes to tree-structured factor graph

max p(X) = max H max fs(xn, Xs)

X Ln XS
fs€ne(xy,)

* maximizing as close to the leat nodes as possible

max(ab, bc) = a max(b,c)



The Max-Sum Algorithm

e Max-Product - Max-Sum

* For numerical reasons, use

In (maxp(x)) = max In p(x).
* Again, use distributive law

max(a + b,a + ¢) = a + max(b, ¢).



The Max-Sum Algorithm

* Initialization (leat nodes)
/‘a:—>f(x> =0 ,uf—m:(x) — lnf(x>

e Recursion

proz(x) = max {lnf(:c,xl ..... ) + Z ,ua:m—>f(xm>:|

mene(f )\z
¢(r) = argmax |Inf(z,x1,..., Ty) + Z Ha,—f(Tm) | Track the values
L1geeny T pM mEne(f )\x



Max-Sum Algorithm

* Termination (root node)

pmax max Z pf,—z ()
s€ne(x)
M = argmax Z /’Lfs_>x($>
v s€ne(x)

* Back-track, for all nodes i with | factor nodes to the root (I1=0)

X = (i)



Sum-Product vs. Max-Sum

Sum-Product Max-Sum

* xmene(f)\x LM XmENe(f)\X

Brox@ = Y fixn i) || By Gom)  pn GO = max [nfCoxn, )+ ) by (o)

e = || e @ e ()= ) tp ()
lene(x)\f lene(x)\f

a(b+c) = ab+bc a+max(b,c) =max(a+b, a+c)



What about inference on general graphs?

* NP-complete

* Counting problem



The Junction Tree Algorithm

* Exact inference on general graphs

* Works by turning the initial graph into a junction tree and
then running a sum-product-like algorithm

* [ntractable on graphs with large cliques



Xin Zhang@PKU

The Junction Tree Algorithm

o4



Loopy Belief Propagation

* Sum-Product on general graphs

* Initial unit messages passed across all links, atter which messages are
passed around until convergence (not guaranteed!)

* Approximate but tractable for large graphs

* Sometime works well, sometimes not at all



Recap

* Bayesian networks = Markov Random Fields
* Connect parents
* Drop arrows

* Multiply conditional probabilities to get potentials

* Factor graph
e Random variable nodes

e Factor nodes

° F(x) — Hff(xlixZJ ---:xn)



Recap

* Marginal inference on tree-structure factor graph
* Sum-product algorithm: a message-passing algorithm
* Exchange sum and product using the distribution law

* Messages from a factor to a node: sum over products of messages from other
nodes to the factor

* Messages from a node to a factor: product over messages from other factors to
the node

* Inferring settings with the highest probability

* Max-sum algorithm



Recap

* Inference on general graphs with loops is NPC
* Exact: junction algorithm

* Approximate: loopy belief propagation



Next Class

* Approximate inference
* Sampling methods



