Semantics of Probabilistic Programming

Xin Zhang Peking University

Most of the content is from "Semantics of Probabilistic Programming: A Gentle Introduction" by Fredrik Dahlqvist, Alexandra Silva, and Dexter Kozen

Recap: Problem and Motivation

- Evaluate $P(Z|X)$ and related expectations
- Problem with exact methods
	- Curse of dimensionality
	- $P(Z|X)$ has a complex form making expectations analytically intractable

Recap: Variational Inference

• Functional: a function that maps a function to a value

$$
H[p] = \int p(x) \ln p(x) dx
$$

- Variational method: find an input function that maximizes the functional
- Variational inference: find a distribution $q(z)$ to approximate $p(Z|X)$ so a functional is maximized

Recap: Variational Inference

 $\ln p(\mathbf{X}) = \mathcal{L}(q) + \mathrm{KL}(q||p)$

$$
\sum_{\text{and } q(Z)}^{\text{Between } p(Z|X)} \mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}
$$

$$
KL(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}
$$

If q can be any distribution, then variational inference is precise. But in practice, it cannot

Is the following statement right?

• Probability $p(Z,X)$ is usually easier to evaluate compared to $P(Z|X)$.

• Stochastic methods

• Also called Monte Carlo methods

$$
\mathbb{E}[f] = \int f(\mathbf{z}) p(\mathbf{z}) \, \mathrm{d}\mathbf{z} \qquad \longrightarrow \quad \hat{f} = \frac{1}{L} \sum_{l=1}^L f(\mathbf{z}^{(l)}) \, z_{1,\cdots, \, \mathsf{z}_l \text{ are samples from p}}
$$

- Transformation method: CDF^{-1} (uniform $(0,1)$)
- Rejection sampling
	- A proposal distribution $q(z)$
	- Choose k, such that $k^*q(z) \geq p(z)$, for any x
	- Sampling process:
		- Sample z_0 from $q(z)$
		- Sample h from uniform $(0, k^*q(z_0))$
		- If $h > p(z_0)$, discard it; otherwise, keep it

Is the following statement correct?

•All primitive distributions can be constructed using the transformation method.

Is the following statement right?

• In rejection sampling, given k, the probability whether a sample is accepted does not depend on the proposal distribution

Is the following statement correct?

• The efficiency of rejection sampling depends on the choice of the proposal distribution

- Importance sampling
	- Used to evaluate $f(z)$ where z is from $p(z)$

$$
E(f) = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \approx \frac{1}{L}\sum_{l=1}^{L}\frac{p(z^l)}{q(z^l)}f(z^l)
$$

• How to get real samples: create a new discrete distribution using the above samples and set their probabilities using the importance weights

- Markov Chain Monte Carlo
	- A sampling method that works with a large family of distributions and high dimensions
- Workflow
	- Start with some sample z_0
	- Suppose the current sample is z^{τ} . Draw next sample z^* from $q(z | z^{\tau})$
	- Decide whether to accept z^* as the next state based some criteria. If accepted, $z^{\tau+1} = z^*$. Otherwise, $z^{\tau+1} = z^{\tau}$
	- Samples form a Markov chain

Recap: Why MCMC works?

- $p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(1)},...,\mathbf{z}^{(m)}) = p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)}).$ • Markov chain:
- Stationary distribution of a Markov chain: each step in the chain does not change the distribution.

• Detailed balance:
$$
p^*(\mathbf{z})T(\mathbf{z}, \mathbf{z}') = p^*(\mathbf{z}')T(\mathbf{z}', \mathbf{z})
$$

- $p^*(z)$ is a stationary distribution
- ^A*ergodic* Markov chain converges to the same distribution regardless the initial distribution
	- The system does not return to the same state at fixed intervals
	- The expected number of steps for returning to the same state is finite

Is the following statement right?

• The samples drawn using MCMC are independent

Is the following statement right?

• A Markov chain can have more than one stationary distribution

Use MCMC to solve the problem below

- Super optimization
	- There is a straight-line program
	- A set of test cases are given
	- The program can be modified by deleting a statement, inserting a statement from the initial program at a given place
	- Optimize the program by using the above operations

Motivations

- In order to reason about properties of a program, we need formal tools
- Example questions
	- Is the postcondition satisfied?
	- Does this program halt on all inputs?
	- Does it always halt in polynomial time?

Motivations

- In order to reason about properties of a program, we need formal tools
- Example questions
	- What is the probability that the postcondition is satisfied?
	- What is the probability that this program halts on all inputs?
	- What is the probability that it halts in polynomial time?

Motivations

• When designing a language, rigorous semantics is needed to guarantee its correctness

- An example that didn't have rigorous semantics: Javascript
	- https://javascriptwtf.com

Examples

We can decompose the semantics of a program into semantics of statements

 $x := 0$ while $x = 0$ do $x:=\overline{\mathrm{coin}}$

What is the probability that It runs through n iterations? What is the expected number of iterations? What is the probability that the program halts?

Examples

}

}

step (u,v) {

```
main{
u:=0;v:=0;<br>step(u,v);while u=0 || v!=0 do
          step(u,v)
```
 $x:=\overline{\text{coin}}$.

 $y:=\overline{\text{coin}}$.

 $u:=u+(x-y);$

 $v:=v+(x+y-1)$

What is the probability that the program halts?

The program is a two-dimensional random walk. According to probability theory, the probability that it returns to the origin is 1.

By relating to concepts in probabilities, we can simplify the reasoning

Examples

 $i:=0;$ $n:=0;$ while i<1e9 do $x:=-\kappa\Omega\Omega d\Lambda$

x.-ranto(),
y:=rand();
if
$$
(x*x+y*y) < 1
$$
 then n:=n+1;
i:=4*n/1e9;

What does this program compute?

How to reason about it?

Measure Theory The mathematical foundation of probabilities and integration

Uniform(0,1) is called a *Lebesgue measure*

This Class

• Syntax of a simple imperative probabilistic language

• Operational semantics

• Measure theory & denotational semantics (brief)

A Simple Imperative Language

• Highly simplified version

• Enough to explain the core concepts

Syntax

- Deterministic terms (expressions)
- Terms (Deterministic + Probabilistic)
- Tests (expression that evaluate to Booleans)
- Programs

Syntax – Deterministic Terms

(i) Deterministic terms:

Syntax - Terms

(ii) Terms:

 $t ::= d$ $|coin() | rand()$ \int t op t

 d a deterministic term sample in $\{0, 1\}$ and $[0, 1]$, respectively op $\in \{+, -, *, \div\}$

Syntax - Tests

(iii) Tests:

 $b ::= true | false$ $\vert d = d \vert d < d \vert d > d$ $|b \& b | b | | b | | b | !b$

comparison of deterministic terms Boolean combinations of tests

Syntax - Program

(iv) Programs:

 $e ::=$ skip $\vert x \vert = t$ assignment $\mid e; e$ sequential composition $|$ if b then e else e conditional | while b do e while loop

Syntax - Example Program

if $\text{coin}() == 1$ then $x := \text{rand}() * 5$ else $x := 6$ if $x > 4.5$ then $y := \operatorname{coin}() + 2$ else

 $y := 100$

Operational Semantics

• Model the step-by-step executions of a program on a machine

- Tracks the memory-state
	- Values assigned to each variable
	- Values of each random number generator
	- A stack of instructions

Random Number Generators

- Modeled as infinite streams of numbers:
	- coin(): $m_0 m_1$... are i.i.d from Bernoulli(0.5)
	- rand(): $p_0 p_1$... are i.i.d from uniform(0, 1)

- When invoking the generator, a number is taken from the stream
	- Pseudo-random generators

Operational Semantics: Machine States

- A memory-state is a triple (s, m, p)
	- A store $s: n \to R$, where there are *n* variables in the program
	- $m \in \{0,1\}^{\omega}$ is the current stream of available random Boolean values
	- $p \in [0,1]$ ^{ω} is the current stream of available random real values
- A machine-state is a 4-tuple (e, s, m, p)
	- *e* corresponds to a stack of instructions
	- (s, m, p) is a memory-state

Machine States: Example

 $(e, \{x \rightarrow \perp\}, 1001011..., 0.2 0.5 0.9 0.21...)$ if $\operatorname{coin}() == 1$ then $(x := \text{rand}(x) * 5, \{x \rightarrow \perp\}, 001011..., 0.2 0.5 0.9 0.21...)$ $x := \text{rand}() * 5$ $(\text{skip}, \{x \rightarrow 1\}, 001011..., 0.5 0.9 0.21...)$ **else**

 $\mathbf{x} := 6$

Operational Semantics: Introduction

• We now talk about how a program modifies the machine state

- Type of the operational semantics $(e, s, m, p) \rightarrow (e', s', m', p')$
- Before talking about the reduction, we need to define semantics of terms and tests

Semantics of Tests $[[b]]: \qquad R^n \times N^{\omega} \times R^{\omega} \rightarrow \{true, false\}$ $\llbracket t_1 = t_2 \rrbracket : (s, m, p) \mapsto \begin{cases} \texttt{true} & \text{if } \llbracket t_1 \rrbracket (s, m, p) = \llbracket t_2 \rrbracket (s, m, p) \\ \texttt{false} & \text{otherwise} \end{cases}$ $\llbracket t_1 < t_2 \rrbracket : (s, m, p) \mapsto \begin{cases} \texttt{true} & \text{if } \llbracket t_1 \rrbracket (s, m, p) < \llbracket t_2 \rrbracket (s, m, p) \\ \texttt{false} & \text{otherwise} \end{cases}$ $[[t_1 > t_2]] : (s, m, p) \mapsto \begin{cases} \text{true} & \text{if } [[t_1]](s, m, p) > [[t_2]](s, m, p) \\ \text{false} & \text{otherwise} \end{cases}$ $[[b_1 \& b_2] : (s, m, p) \mapsto [[b_1]](s, m, p) \wedge [[b_2]](s, m, p)$ $[[b_1 \mid b_2]] : (s, m, p) \mapsto [[b_1]](s, m, p) \vee [[b_2]](s, m, p)$ $[[!b]:(s,m,p)\mapsto \neg [[b]](s,m,p)$

Operational Semantics: Reduction

Assignment:

 $[[t]](s,m,p) = (a,m',p')$ $(x_i := t, s, m, p) \longrightarrow (skip, s[i \mapsto a], m', p')$

Sequential composition:

$$
\frac{(e_1, s, m, p) \longrightarrow (e'_1, s', m', p')}{(e_1 ; e_2, s, m, p) \longrightarrow (e'_1 ; e_2, s', m', p')} \qquad \frac{}{(\text{skip}; e, s, m, p) \longrightarrow (e, s, m, p)}
$$

Operational Semantics: Reduction

Conditional:

 $[[b]](s,m,p) = \text{true}$ (if *b* then e_1 else e_2 , *s*, m , p) \longrightarrow (e_1, s, m, p)

 $[[b]](s,m,p) = false$ $(i f b then e_1 else e_2, s, m, p) \longrightarrow (e_2, s, m, p)$

while loops:

(while b do e, s, m, p) \longrightarrow (if b then (e; while b do e) else skip, s, m, p)

Operational Semantics: Reduction

Reflexive-transitive closure:

$$
\frac{(e_1, s_1, m_1, p_1) \rightarrow (e_2, s_2, m_2, p_2)}{(e_1, s_1, m_1, p_1) \rightarrow (e_2, s_2, m_2, p_2)}
$$
\n
$$
\frac{(e_1, s_1, m_1, p_1) \rightarrow (e_2, s_2, m_2, p_2)}{(e_1, s_1, m_1, p_1) \rightarrow (e_2, s_2, m_2, p_2) \rightarrow (e_3, s_3, m_3, p_3)}
$$
\n
$$
\frac{(e_1, s_1, m_1, p_1) \rightarrow (e_2, s_2, m_2, p_2) \rightarrow (e_3, s_3, m_3, p_3)}{(e_1, s_1, m_1, p_1) \rightarrow (e_3, s_3, m_3, p_3)}
$$

Operational Semantics: Termination

• A program e terminates from (s, m, p) if $(e, s, m, p) \stackrel{*}{\longrightarrow} (\text{skip}, s', m', p').$

• We say *e* diverges from (s, m, p) if it does not terminate

x :=0 while $x = 0$ do $x:=\text{coin}()$

What is the probability that the program halts?

$$
\frac{(x := 0, s, m, p) \longrightarrow (skip, s[x \mapsto 0], m, p)}{(x := 0; e, s, m, p) \longrightarrow (skip; e, s[x \mapsto 0], m, p)}
$$

$$
\frac{(x := 0; e, s, m, p) \longrightarrow (skip; e, s[x \mapsto 0], m, p)}{(x := 0; e, s, m, p) \xrightarrow{*} (skip; e, s[x \mapsto 0], m, p)}
$$

$$
\frac{(x := 0; e, s, m, p) \xrightarrow{*} (skip; e, s[x \mapsto 0], m, p) \xrightarrow{*} (e, s[x \mapsto 0], m, p)}{(x := 0; e, s, m, p) \xrightarrow{*} (e, s[x \mapsto 0], m, p)}
$$

What is the probability that the program halts? $x := 0$ **while x == 0 do** $(x := 0; e, s, m, p) \stackrel{*}{\longrightarrow} (e, s[x \mapsto 0], m, p)$ **x:=coin()**

$$
(e, s[x \mapsto 0], m, p) \xrightarrow{\ast} (x := \operatorname{coin}() ; e, s[x \mapsto 0], m, p)
$$

(while b do e, s, m, p) \longrightarrow (if b then (e; while b do e) else skip, s, m, p)

 $[[b]](s,m,p) = \text{true}$ (if *b* then e_1 else e_2 , *s*, *m*, *p*) \longrightarrow (e_1, s, m, p)

What is the probability that the program halts? $x := 0$ **while x == 0 do** $(x := 0; e, s, m, p) \stackrel{*}{\longrightarrow} (e, s[x \mapsto 0], m, p)$ **x:=coin()** $(e, s[x \mapsto 0], m, p) \stackrel{*}{\longrightarrow} (x := \text{coin}() ; e, s[x \mapsto 0], m, p)$

$$
(x := \text{coin() } ; e, s[x \mapsto 0], m, p) \xrightarrow{*} (e, [s \mapsto \text{hd } m], \text{tl } m, p). \quad hd(m_1 m_2 ...) = m_1
$$

$$
tl(m_1 m_2 ...) = m_2 ...
$$

The loop continues until it reaches m inf the form of $1m'$

$$
(e, s[x \mapsto 1], m', p) \xrightarrow{\ast} (skip, s[x \mapsto 1], m', p)
$$

$$
(x := 0 ; e, s, m, p) \xrightarrow{\ast} (\text{skip}, s[x \mapsto 1], m', p)
$$

$$
\mathbb{P}\left[\exists m' \ (x := 0 \ ; \ e, s, m, p) \stackrel{*}{\longrightarrow} (\text{skip}, s[x \mapsto 1], m', p)\right]
$$
\n
$$
= \mathbb{P}\left[\exists k \ge 0 \ \exists m' \ m = 0^k 1 m'\right]
$$
\n
$$
= \sum_{k=1}^{\infty} 2^{-k} = 1
$$

main{ $u:=0$: $v:=0;$
step $(u,v);$ while $u = 0$ || v!=0 do $step(u,v)$ } step (u,v) { $x:=\overline{\mathrm{coin}}$: $y:=\overline{\mathrm{coin}}$. $u:=u+(x-y);$ $v:=v+(x+y-1)$ }

What is the probability that the program halts?

 $(\text{step}, s, 00m, p) \stackrel{*}{\longrightarrow} (\text{skip}, s[(u, v) \mapsto (0, -1), (x, y) \mapsto (0, 0)], m, p)$ $(\mathsf{step}, s, 01m, p) \stackrel{*}{\longrightarrow} (\mathsf{skip}, s[(u, v) \mapsto (-1, 0), (x, y) \mapsto (0, 1)], m, p)$ $(\mathsf{step}, s, 10m, p) \stackrel{*}{\longrightarrow} (\mathsf{skip}, s[(u, v) \mapsto (1, 0), (x, v) \mapsto (1, 0)], m, p)$ $(\mathsf{step}, s, 11m, p) \stackrel{*}{\longrightarrow} (\mathsf{skip}, s[(u, v) \mapsto (0, 1), (x, y) \mapsto (1, 1)], m, p)$

main{ What is the probability that the program halts? $u:=0$: $v:=0$; The program halts if $\exists n. S_{2n} = (0,0)$ step(u,v);
while u!=0 || v!=0 do step(u,v) $(\text{main}, s, m, p) \stackrel{*}{\longrightarrow} (\text{skip}, s[(u, v) \mapsto (0, 0)], t|^{4n}(m), p).$ } $\mathbb{P}\left[\exists n \text{ (main, } s, m, p) \stackrel{*}{\longrightarrow} (\text{skip, } s[(u, v) \mapsto (0, 0)], t|^{4n}(m), p)\right]$ step (u,v) { $x:=\overline{\mathrm{coin}}$: $=\mathbb{P}\left[\bigvee_{n=0}^{\infty}S_{2n}=(0,0)\right]$ $y:=\overline{\text{coin}}$. $u:=u+(x-y);$ $v:=v+(x+y-1)$ }

```
main{
                                            What is the probability that the program halts?u:=0:
 v:=0;
step(u,v);<br>while u!=0 || v!=0 do
                                             \mathbb{P}[S_{2n} = (0,0)] = 4^{-2n} \sum_{m=0}^{n} \frac{(2n)!}{m!m!(n-m)!(n-m)!}step(u,v)}
                                                                    =4^{-2n}\binom{2n}{n}\sum_{m=0}^n\binom{n}{m}^2step(u,v){
 x:=\overline{\mathrm{coin}}:
                                                                    =4^{-2n}\binom{2n}{n}^2.
 y:=\overline{\mathrm{coin}}.
 u:=u+(x-y);v:=v+(x+y-1)}
```
50

i:=0; Given > 0, what is P(i − ≤)? n:=0; while i<1e9 do x:=rand(); y:=rand(); / is the expectation of if (x*x+y*y) < 1 then n:=n+1; i:=i+1 i:=4*n/1e9;

i:=0;
\nn:=0;
\nwhile i<1e9 do
\nx:=rand();
\nif (x*x+y*y) < 1
\nhen n:=n+1;
$$
\mathbb{P}[X^2 \le t] = \mathbb{P}[X \le \sqrt{t}] = \int_0^{\sqrt{t}} 1_{[0,1]}(x) dx = \sqrt{t}
$$

\ni:=4*n/1e9;
\n $f(t) = \frac{\partial \mathbb{P}[X^2 \le t]}{\partial t} = \frac{1}{2\sqrt{t}} 1_{[0,1]}(t)$

 $i:=0;$ Given $\epsilon > 0$, what is $P(|i - \pi| \leq \epsilon)$? $n:=0;$ n/N is the expectation of $Z = \begin{cases} 1 & \text{if } X^2 + Y^2 < 1 \\ 0 & \text{else} \end{cases}$ while i<1e9 do $x:=rand();$ y:=rand(); The density of $X^2 + Y^2$ is if $(x*x+y*y) < 1$ then $n:=n+1$; $(f * f)(t) = \int_{-\infty}^{\infty} \frac{1}{2\sqrt{x}} 1_{[0,1]}(x) \frac{1}{2\sqrt{t-x}} 1_{[0,1]}(t-x) dx$ $i:=i+1$ $= \begin{cases} \int_0^t \frac{1}{4\sqrt{x}\sqrt{t-x}} dx & \text{if } 0 \le t \le 1 \\ \int_{t-1}^1 \frac{1}{4\sqrt{x}\sqrt{t-x}} dx & \text{if } 1 < t \le 2 \end{cases}$ $i:=4*n/1e9;$

 $i:=0;$ Given $\epsilon > 0$, what is $P(|i - \pi| \leq \epsilon)$? $n:=0;$ n/N is the expectation of $Z = \begin{cases} 1 & \text{if } X^2 + Y^2 < 1 \\ 0 & \text{else} \end{cases}$ while i<1e9 do $x:=rand();$ y:=rand(); The density of $X^2 + Y^2$ is if $(x*x+y*y) < 1$ then $n:=n+1$; $(f * f)(t) = \int_{-\infty}^{\infty} \frac{1}{2\sqrt{x}} 1_{[0,1]}(x) \frac{1}{2\sqrt{t-x}} 1_{[0,1]}(t-x) dx$ $i:=i+1$ $= \begin{cases} \int_0^t \frac{1}{4\sqrt{x}\sqrt{t-x}} dx & \text{if } 0 \le t \le 1 \\ \int_{t-1}^1 \frac{1}{4\sqrt{x}\sqrt{t-x}} dx & \text{if } 1 < t \le 2 \end{cases}$ $i:=4*n/1e9;$

i:=0;
\nn:=0;
\nm:=0;
\nwhile i<1e9 do
\nx:=rand();
\nif (x*x+y*y) < 1
\nii:=1+1
\n
$$
\text{when } n:=n+1;
$$
\n
$$
\int_0^t \frac{1}{4\sqrt{x}\sqrt{t-x}} dx = \int_0^1 \frac{1}{2\sqrt{1-u^2}} du = \frac{1}{2}(\sin^{-1}(1) - \sin^{-1}(0)) = \frac{\pi}{4}.
$$
\nii:=4*n/1e9;
\n
$$
\mathbb{P}[X^2 + Y^2 \le 1] = \int_0^1 (f * f)(t) dt = \int_0^1 \frac{\pi}{4} dt = \frac{\pi}{4}.
$$

i:=0;
\nn:=0;
\nwhile i<1e9 do
\nx:=rand();
\nif (x*x+y*y) < 1
\nthen n:=n+1;
\nii:=4*n/1e9;
\n
$$
\mathbb{P}\left[\left|\frac{n}{N} - \frac{\pi}{4}\right| > \varepsilon\right] \leq \frac{\sigma^2}{N\varepsilon^2}.
$$
\nwhere $\sigma^2 = \frac{\pi}{4} - \left(\frac{\pi}{4}\right)^2$
\n
$$
\frac{1}{N} = \frac{\pi}{4} - \frac{\pi}{4}.
$$
\nii:=4*n/1e9;
\n
$$
\mathbb{P}\left[\left|\frac{n}{N} - \frac{\pi}{4}\right| > \varepsilon\right] \leq \frac{\sigma^2}{N\varepsilon^2}.
$$
\nWhere $\sigma^2 = \frac{\pi}{4} - \left(\frac{\pi}{4}\right)^2$

This Class

• Syntax of a simple imperative probabilistic language

• Operational semantics

• **Measure theory & denotational semantics (brief)**

Denotational vs. Operational Semantics

• Consider $x := \text{coin}()$, in operational semantics:

$$
(\mathbf{x} := \mathbf{coin(), } s, m, p) \longrightarrow (\mathbf{skip}, s[\mathbf{x} \mapsto \mathbf{0}], \mathbf{t} | m, p)
$$

$$
(\mathbf{x} := \mathbf{coin(), } s, m, p) \longrightarrow (\mathbf{skip}, s[\mathbf{x} \mapsto 1], \mathbf{t} | m, p)
$$

- Denotational semantics:
	- Model all possible executions together
	- States: probability distribution over memory states
	- 1 ; $s[x \mapsto 0] + \frac{1}{2}$; $s[x \mapsto 1]$

Denotational Semantics: Introduction

• State s can be identified with the Dirac measure σ_s , then the semantics of x:=coin() can be viewed as $\sigma_s \rightarrow$. / $s[x \mapsto 0] + \frac{1}{2}$ / $s[x \mapsto 1]$

• In general, a program is interpreted as an operator mapping probability distributions to (sub)probability distributions

Denotational Semantics: Definition

• Assume there are *n* real variables, then a state is a distribution on \mathbb{R}^n

- A program $e: MR^n \to MR^n$
	- An operator called a state transformer

Measure Theory

• Measures: generalization of concepts like length, area, or volume

Measure Example: Length

• What subsets of R can meaningfully be assigned a length?

• What properties should the length function l satisfy?

Measure Example: Length

$$
\ell([a_1,b_1]\cup[a_2,b_2])=\ell([a_1,b_1])+\ell([a_2,b_2])=(b_1-a_1)+(b_2-a_2).
$$
 b_1

$$
\ell\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \ell(A_i).
$$
 A_i and A_j are disjoint. 1 is called additive

$$
\ell\left(\bigcup_{i=0}^{\infty} A_i\right) = \sum_{i=0}^{\infty} \ell(A_i).
$$
 A_i and A_j are disjoint. The set is countable.
l is called countably additive or σ – additive

 $l(R) = \infty$, but we are only going to talk about finite measures

 $\ell(B \setminus A) = \ell(B) - \ell(A)$ Domain should be closed under complementation

Measure Example: Length

- Can we extend the domain of length l to all subsets of R?
- No. Counterexample: Vitali sets
	- $V \subseteq [0,1]$, such that for each real number r, there exists exactly one number $v \in$ V such that $\nu - r$ is rational
	- Let $q_1, q_2, ...$ be the rational numbers in $[-1,1]$, construct sets $V_k = V + q_k$
	- $[0,1] \subseteq \bigcup_{k} V_{k} \subseteq [-1,2]$
	- $l(V_k) = l(V)$, and there are infinitely many V_k
- *l* is called the *Lebesgue measure* on real numbers

Measurable Spaces and Measures

- (**S**, **B**) is a measurable space
	- **S** is a set
	- **B** is a σ -algebra on **S**, which is a collection of subsets of **S**
		- It contains Ø
		- Closed under complementation in **S**
		- Closed under countable union
	- The elements of **B** are called measurable sets
- If **F** is a collection of subsets of **S**, $\sigma(F)$ is the smallest σ -algebra containing **F**, or $\sigma(\mathcal{F}) \triangleq \bigcap \{ \mathcal{A} \mid \mathcal{F} \subseteq \mathcal{A} \text{ and } \mathcal{A} \text{ is a } \sigma\text{-algebra} \}$. We say (S, $\sigma(F)$) is generated by **F**.

Measurable Functions

• (S, B_S) and (T, B_T) are measurable spaces. A function $f: S \to T$ is measurable if $f^{-1}(B) = \{x \in S | f(x) \in B\}$ for every $B \in B_T$ is a measurable subset of S

Example:
$$
\chi_B(s) = \begin{cases} 1, & s \in B, \\ 0, & s \notin B. \end{cases}
$$

Measures: Definitions

- A signed (finite) measure on (S, B) is a countably additive map $\mu : B \rightarrow$ **R** such that $\mu(\emptyset) = 0$
- Positive signed measure: $\mu(A) \geq 0$ for all $A \in \mathbf{B}$
- A positive measure is a probability measure if $\mu(S) = 1$
- …is a subprobability measure if $\mu(S) \leq 1$

Measures: Definitions

• If $\mu(B) = 0$, then B is a μ -nullset

• A property is said to hold μ -almost surely (everywhere) if the sets of points on which it does not hold is contained in nullset

• In probability theory, measures are sometimes called distributions

Measures: Discrete Measures

- For $s \in S$, the Diract measure, or Diract delta, or point mass on s: $\delta_s(B) = \begin{cases} 1, & s \in B, \\ 0, & s \notin B. \end{cases}$
- A measure is discrete if it is a countable weighted sum of Dirac measures
	- If the weights add up to one, then it is a discrete probability measure
- Continuous measure: $\mu({s}) = 0$ for all singleton sets $\{s\}$ in **B** of (**S**, **B**)

Measures: Pushforward Measure and Lebesgue Integration

• Given $f: (S, B_S) \rightarrow (T, B_T)$ measurable, an a measure μ on B_S , the **pushfoward measure** $\mu(f^{-1}(B))$ on $\mathbf{B}_{\mathbf{T}}$ is defined as

$$
f_*(\mu)(B)=\mu(f^{-1}(B)), B\in\mathcal{B}_T.
$$

• Lebesgue integration: given (S, B) , $\mu: B \to R$, $f: S \to R$, where m < $f < M$

where B_0, \ldots, B_n is a measurable partition of S , and the value of f does not vary more than $(M - m)/n$ in any B_i and $S_i \in B_i$ $\int f d\mu = \lim$ $n{\rightarrow}max$ $\sum_{i=0}^n f(s_i) \mu(B_i)$

Markov Kernels

- Given (S, B_S) and (T, B_T) , $P: S \times B_T \rightarrow R$ is called a Markov kernel if
	- For fixed $A \in B_T$, the map $\lambda s. P(s, A) \to R$ is a measurable function on (S, B_S)
	- For fixed $s \in S$, the map $\lambda A \cdot P(s, A) \to R$ is a probability measure on (T, B_T)
- Composition of two Markov kernels • Given $P: S \to T, Q: T \to U$
- Given μ on $\mathbf{B}_{\mathbf{S}}$, its push forward under the Markov Kernel P is

$$
P_*(\mu)(B) = \int_{s \in S} P(s, B) \mu(ds).
$$

More on Markov Kernels

- $(S, B_S): x = ... (x>0)$
- (T, B_T) : y = uniform $(0,x)$
- Markov kernel $P(x, \bigcup_{i=1}^{i=M} [a_i, b_i]) = \sum_{i=1}^{i=M} length([a_i, b_i] \cap [0, x])/x$
More on Markov Kernels

- $(S, B_S): x = ... (x>0)$
- (T, B_T) : y = uniform $(0, x)$
- (T, B_T) : $z = \text{uniform}(0, y)$
- Composition: $(P; Q)(x, [0, z]) = \int_{y \in [0, \infty]} P(x, dy) * Q(y, [0, z])$ $= |$ $y \in [0,x]$ $\frac{dy}{y}$ χ ∗ \mathcal{L} ength $([0, z] \cap [0, y]$ \hat{y} $= |$ $y \in [0,z]$ \overline{dy} χ ∗ \hat{y} \overline{y} $+$ | $y \in [z,x]$ $\frac{dy}{y}$ χ ∗ \overline{Z} \overline{y} = \overline{Z} χ + \overline{Z} $\frac{1}{x}$ (lnx – lnz) $Z < X$

More on Markov Kernels

- $(S, B_S): x = \text{uniform}(0.1, 1.1)$ $\mu([a, b]) = \text{length}([a, b] \cap [0.1, 1.1])$
- (T, B_T) : y = uniform $(0,x)$
- Markov kernel $P(x, \bigcup_{i=1}^{i=M} [a_i, b_i]) = \sum_{i=1}^{i=M} length([a_i, b_i] \cap [0, x])/x$
- μ 's pushforward under P is

$$
P_*(\mu)(B_T) = \int_{x \in [0.1, 1.1]} B_T \cap [0, x] * \mu(dx)
$$

More on Markov Kernels

• We can use Markov kernels to define the meanings of statements

• A term can be seen as a Markov kernel that links the input variables (can be a distribution) with the output distribution

Summary

• To reason about properties and correctness of probabilistic programs, we need semantics

- To define semantics, we can
	- Decompose it into semantics of program structures
	- Link it with mathematical concepts