Inference in Probabilistic
Programming |

Xin Zhang
Peking University

Part of the content is from “An Introduction to Probabilistic Programming” by Jan-
Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood

Recap of Last Lecture

* Regarding inference, before talking about How, we need to define What

* Program semantics: formally define what a program computes
* Modular

* Can be used to answer various questions in a mechanic way

Recap of Last Lecture

* Operational semantics

* Denotational semantics

General Approximate Inference Techniques

* Variational inference

* Transformation method
* Rejection sampling

* Importance sampling

e Markov chain Monte Carlo

This Class and Next Class

* We are going to talk about instantiating general inference techniques in
probabilistic programming

Question

* Which construct of a language might cause trouble for inference?

Outline of the Lecture

* Graph-based inference (this lecture)
* More on MCMC

* Evaluation-based inference (next lecture)

Graph-Based Inference: Introduction

* Key idea: convert a program into a graphical model

* We know to do inference on graphical models

* Limitation: a static method
* Have trouble to deal with cases where conditional dependences are dynamic

* Moreover, cannot deal with loops that can iterate for arbitrarily many times

Graph-Based Inference: Example 1

x = bernoulli(0.2)
i)

b

else

bernoulli(0.2) uniform(0, 2) gaussian(0, 5)

y = uniform(0, 2)

y = gaussian(0, 5)

z = gaussian(y, 1)

condition(z>10) an(o.])
z = gaussian(¢,
z>10

Graph-Based Inference: Example 2

x = guassian(0, 1)
y = uniform(0, x)
if (x>10){
condition(y >1.5)

)
else{

condition(y<0.5)
h

Formal Definition of Transformation

* What information does a graph should contain?

Formal Definition: Graph (Bayesian Network)

G=(V,APY)
* YV isa set of vertices
e A1isasetof arcs
* Pisamap that defines the density functions or
mass functions of each variable
* Y is a set that tracks the conditioned variables

Formal Definition: Our Language (SSA)

*t :=a (a € R,constant) |v (vis a variable) | topt (op €
{+) _;x)+} |ph1(b) vl) UZ) |
uniform(t,t) | gaussian (t,t)| bernoulli(t)

b= truel|false|t>t|t<t|t==1t|b&&b|Db]||Db

» e == skip |e; e |if b then e else e |condition(b) |[v =t

Translation

p,d,Gelp,¢p,G

* p: environment, which maps a variable to a
constant or a node variable

* ¢: path condition

* e: program

Translation Rules: Terms
p, ¢, G’ t U G,’ E E Is a deterministic expression

p,d,G,al G,a p,d,G,v i G,plv]
p,0,G,bl G E
p,9,G,d(b,v,v,) U G',if E' then p(v,)else p(vy

p,¢,G,t1UG1,E1 p,¢,G,t2~U'G2,E2
p,¢,G,t1 op tz U Gl + G21E1 op Ez

Translation Rules: Terms
p,0,G,t G'E

p,,G,t; Gy, E; p,p,G,t, U Gy, E,
Vis a fresh variable,V are free varaibles in E; and E,

F = score(uniform(Ey, E,))

p,d,G,uniform(t,t,) U
Gy + G+ ({(DL{w,DveVhiv» FL{}), T

Translation Rules: Tests
p,0,G,t G E

p,®,G, true I G, true p,),G, false U G, false

P, ¢, G' tl U Gl' El P, qu G' t2 U GZ! EZ
p,,G, tyopt, U Gy + Gy, E; 0p E,

Translation Rules: Program

p,®,G,skip U p,d, G

p,p,G,tl G E
p,0,G,x =t plx—>E|]pG’

P, ¢’ G, €1 U P1) ¢1' Gl P1) ¢1; 61'62 U P2, ¢2’G2

p,P,G,e;e, U py,y, Gy

Translation Rules: Program

p,d,G,b UG E

p,ONE, G, e; U py,q,G4 p,oAN-E, G e; U p,, ¢y, G
p,®,G,if btheneselsee, U py +py,0,G1 + G,

0,6,G, bl (V,A PY),E
Dis a fresh variable F=if ¢ score(E,V)else 1
V are free varaibles in F /{V}
p,®,G,condition(b) U p,p, VU{D}L,AU{(v,D)|lveV}L,PU{i - F},Y U{D})

Translation: Example

x = bernoulli(0.2)
i) {

h

else

y; = uniform(0, 2)

y, = gaussian(0, 5)

Y3 — phl(Xa Y15 YZ>
z = gaussian(ys, 1)

condition(z>10)

Translation: Questions

* Are the translated graphs always trees?

e How do we deal with function calls?

* How to evaluate the density/mass function?

Translation: Questions

e What about factor?

p,$,G,b U (V,AP,Y)E
Dis a fresh variable F =if ¢ exp(score(E, D)) else 1
V are free varaibles in E

p, o, G, factor(b) U p, (VU {D},Au{(v,D)|lveV}LPU{D - F}Y)

Translation: Questions

* Can we simplify the graph before inference?

Partial evaluation: function calls and if statements

Inference on the Translated Graph

* [f we want to compute marginal probabilities or most likely assignment,
we can use (loopy) belief propagation

* But we often want to draw samples, so methods like sampling methods
are used more often

Sampling Method

* Rejection sampling
* Straightforward, but often inefficient

s MCMC
* Used most widely

* Need to evaluate Z*p, where Z can be any positive number

MCMC Variant: Gibbs Sampling

* Often we want to change one assignment at a time

* Proposal distribution

* Change one assignment at a time
* p(x | Y, X\ {x}), where Y are observed variables

* Proot of correctness
* Stationary: change x doesn’t affect P(V\ {x}), therefore P(V’) = P(V\{x}) * P(x |
VAx)) = P(V)

* Ergodic: depends on the distribution. A sufficient condition: none of the
conditional distribution 1s anywhere zero

More on Gibbs Sampling

* Very useful when we can analytically compute p(x | V/{x})

* When not possible, we turn to Metropolis-within-Gibbs algorithms
* Use a proposal distribution q(x | V/{x})
* Still use the acceptance probability in Metropolis-Hasting

Why Metropolis-within-Gibbs?

* When computing

o/ (T) |
Ak(z*,Z(T)) — min (17~p(z)qk(z _ |z*)) .
p(z() gy (z*|2(")

* Many terms in the two p(z) will cancel out
PV _ px [V p() _ px|V)
p(V") plr|V)xp(V) plr|V)
* We can further decompose p(x | V) into products of conditional probability, we
only need to evaluate the part that involves x

Full Description of Metropolis-within-Gibbs

* Page 78 of “An Introduction to Probabilistic Programming”

Optimization: Block Sampling

* Sample highly correlated variables together
* Example:

x = gaussian(0, 1)

y = gausstan(0, 1)

z = gaussian(x+y, 0.01)
condition(z == 2)

* Need to analyze the model to do appropriately

Hamiltonian Monte Carlo (HMC)

* In many optimization techniques, gradients are good guidance

* Hamiltonian Monte Carlo is an MCMC technique that utilizes gradients
* Works for continuous variables
* Scales better for high dimensional distributions
* Make large changes while keeping the rejection probability small
* Analogy to dynamical systems in physics

* Compared to MH: the proposal distribution uses information from the target
distribution

Dynamical Systems

* Key idea of HMC is to cast probabilistic simulation in the form of a
Hamiltonian system

* Exploiting the framework of Hamiltonian dynamics

* Classical dynamics: Newton’s second law of motion
ca=v' =85"=F/M

Dynamical Systems

* The dynamics we consider: the evolution of Z = {z;} under continuous
time T

) i dz;
* Intermediate momentum variable 1; = d—T‘, r = {r;}

* We view Z as position variables

* The joint space of position and momentum is called phase space

Intuition of HMC

* We can imagine a ball in a bowl without friction
* Define p = {(E), where E is the potential energy of the ball
* The higher the probability is, the lower the potential energy is
* We use ball’s position to sample p
* Sometimes we need to give the ball a random kick

* Visualization:
https:/ /arogozhnikov.github.io/2016/12/19/markov_chain_monte_carl
o.html

Probability Distributions to Dynamical Systems

* We can write p(Z) as

1

p(z) = 7, &P (—E(z))

* £ (z) is the potential energy of the system in state Z

* The system acceleration is

d?“z' (9E(Z)

dr 0 24

Probability Distributions to Dynamical Systems

* Kinetic energy:

1 1
K@) = S|r)? = 532

1

* The total energy of the dynamical system is given by the Hamiltonian
function:

H(z,r) = E(z) + K(r)

Probability Distributions to Dynamical Systems

* The dynamics of the systems can be expressed using Hamiltonian
equations:

dzi o OH
dr N 8Ti
dTi OH

dr 8zi'

Properties of Hamiltonian Dynamical Systems

* During the evolution ot the system, the Hamiltonian 1s constant

dr Oz, dr = Or; dr

(/

3 OHOH OHOH) _
(?zz- 07“7; 6’73 8,2@ N

(/

Properties of Hamiltonian Dynamical Systems

* Liouville’s theorem: they preserve volume in phase space (z, 1)

* To see why it holds, we define the flow field
dz dr
V —
(d'r’ dT)

* The divergence of this field vanishes

Probability Distributions to Dynamical Systems

* We now define joint distribution

1

p(z,1) = Z—exp(=H(z1)).

* Using the two properties of Hamiltonian Dynamical Systems, we can
show that the Hamiltonian dynamics will leave p(z,r) invariant

dr N 87",&'
d’f’z' OH

dr a 322 .

Probability Distributions to Dynamical Systems

* Using the two properties of Hamiltonian Dynamical Systems, we can
show that the Hamiltonian dynamics will leave p(z,r) invariant

* We can integrate over a finite time duration to make large changes to z in
a systematic way

Probability Distributions to Dynamical Systems

* However, sampling using the Hamiltonian dynamics will not form an
ergodic Markov chain because H is constant

* To fix 1t, we can replace the value r with p(t|z), which can be a gaussian
because z and r are independent

Xin Zhang@PKU

Put Things Together: HMC

* Augment distribution p(z) with p(z, 1)

* Proposal distribution:

* Update z, r using Hamiltonian dynamics (in practice, a discretized approximation
called leapfrog integration)

* Update r stochastically

* Acceptance probability (After applying Hamiltonian dynamics):

Account for

min (1,exp{H (z,r) — H(z",r*)}) S —

43

Xin Zhang@PKU

The Leapfrog Approximation

Rr+e/2) = Tulr) - 55 (@)
zi(t4+¢€) = Zi(r)+ery(t+¢/2)

Rt = Rt/ - S +o)

To remove biases introduced by numerical errors,
the steps are sampled from € and —e

44

Why HMC is usually better than MH?

* MH has difficulties exploring low-density points

* HMC uses information of the target distribution
* This will always go to the high-density points

* Momentum helps!

HMC in Probabilistic Programming

* Have trouble with branching statements

* The density function has to be differentiable everywhere
* What about 0 gradients?

Next Lecture

e Evaluation-based inference

