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Recap of Last Lecture
• Regarding inference, before talking about How, we need to define What

• Program semantics: formally define what a program computes
• Modular
• Can be used to answer various questions in a mechanic way
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Recap of Last Lecture
• Operational semantics

• Denotational semantics
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General Approximate Inference Techniques

• Variational inference

• Transformation method

• Rejection sampling

• Importance sampling

• Markov chain Monte Carlo
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This Class and Next Class
• We are going to talk about instantiating general inference techniques in 

probabilistic programming
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Question
• Which construct of  a language might cause trouble for inference?
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Outline of the Lecture
• Graph-based inference (this lecture)
• More on MCMC

• Evaluation-based inference (next lecture)
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Graph-Based Inference: Introduction
• Key idea: convert a program into a graphical model
• We know to do inference on graphical models

• Limitation: a static method
• Have trouble to deal with cases where conditional dependences are dynamic
• Moreover, cannot deal with loops that can iterate for arbitrarily many times
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Graph-Based Inference: Example 1
Xin Zhang@PKU
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x = bernoulli(0.2)
if(x){

y = uniform(0, 2)
}
else

y = gaussian(0, 5)

z = gaussian(y, 1)

condition(z>10)

x

bernoulli(0.2)

yT yF

𝜙

uniform(0, 2) gaussian(0, 5)

x ? yT : yF

z z = gaussian(𝜙,1)
z > 10



Graph-Based Inference: Example 2
Xin Zhang@PKU
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x = guassian(0, 1)
y = uniform(0, x)
if  (x>10){

condition(y >1.5)
}
else{

condition(y<0.5)
}



Formal Definition of Transformation

•What information does a graph should contain?
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Formal Definition: Graph (Bayesian Network)
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𝐺 = 𝑉, 𝐴, 𝑃, 𝑌
• V is a set of  vertices
• A is a set of  arcs
• P is a map that defines the density functions or 

mass functions of  each variable
• Y is a set that tracks the conditioned variables



Formal Definition: Our Language (SSA)
• 𝑡 ∶≔ 𝑎 𝑎 ∈ 𝑅, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑣 𝑣 𝑖𝑠 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡 𝑜𝑝 𝑡 (

|
𝑜𝑝 ∈

+,−,×,÷ phi 𝑏, 𝑣!, 𝑣" |
𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑡, 𝑡 | 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝑡, 𝑡)| 𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑡)

• 𝑏 ∶: = 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑡 > 𝑡 𝑡 < 𝑡 𝑡 == 𝑡 𝑏&&𝑏 𝑏 || 𝑏

• 𝑒 ∶≔ 𝑠𝑘𝑖𝑝 e; e if b then e else e condition b v = 𝑡

Xin Zhang@PKU
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Translation
Xin Zhang@PKU
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𝜌, 𝜙, 𝐺, 𝑒 ⇓ 𝜌!, 𝜙!, 𝐺!

• 𝜌:	environment, which maps a variable to a 
constant or a node variable
• 𝜙: path condition
• 𝑒: program



Translation Rules: Terms
Xin Zhang@PKU
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𝜌, 𝜙, 𝐺, 𝑎 ⇓ 𝐺, 𝑎 𝜌, 𝜙, 𝐺, 𝑣 ⇓ 𝐺, 𝜌[𝑣]

𝜌, 𝜙, 𝐺, 𝑡! ⇓ 𝐺!, 𝐸! 𝜌, 𝜙, 𝐺, 𝑡" ⇓ 𝐺", 𝐸"
𝜌, 𝜙, 𝐺, 𝑡! 𝑜𝑝 𝑡" ⇓ 𝐺! + 𝐺", 𝐸! 𝑜𝑝 𝐸"

𝜌, 𝜙, 𝐺, 𝑡 ⇓ 𝐺!, 𝐸

𝜌, 𝜙, 𝐺, 𝑏 ⇓ 𝐺#, 𝐸′
𝜌, 𝜙, 𝐺, 𝜙 𝑏, 𝑣!, 𝑣" ⇓ 𝐺#, 𝑖𝑓 𝐸# 𝑡ℎ𝑒𝑛 𝜌 𝑣! 𝑒𝑙𝑠𝑒 𝜌(𝑣")

E is a deterministic expression



Translation Rules: Terms
Xin Zhang@PKU
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𝜌, 𝜙, 𝐺, 𝑡 ⇓ 𝐺!, 𝐸

𝜌, 𝜙, 𝐺, 𝑡! ⇓ 𝐺!, 𝐸! 𝜌, 𝜙, 𝐺, 𝑡" ⇓ 𝐺", 𝐸"
,𝑣 𝑖𝑠 𝑎 𝑓𝑟𝑒𝑠ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑉 𝑎𝑟𝑒 𝑓𝑟𝑒𝑒 𝑣𝑎𝑟𝑎𝑖𝑏𝑙𝑒𝑠 𝑖𝑛 𝐸! 𝑎𝑛𝑑 𝐸"

𝐹 = 𝑠𝑐𝑜𝑟𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝐸!, 𝐸"
𝜌, 𝜙, 𝐺, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑡!, 𝑡" ⇓

𝐺! + 𝐺" + ( ,𝑣 , 𝑣, ,𝑣 𝑣 ∈ 𝑉 , ,𝑣 ↦ 𝐹 , {}), ,𝑣



Translation Rules: Tests
Xin Zhang@PKU
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𝜌, 𝜙, 𝐺, 𝑡 ⇓ 𝐺!, 𝐸

𝜌, 𝜙, 𝐺, 𝑡𝑟𝑢𝑒 ⇓ 𝐺, 𝑡𝑟𝑢𝑒 𝜌, 𝜙, 𝐺, 𝑓𝑎𝑙𝑠𝑒 ⇓ 𝐺, 𝑓𝑎𝑙𝑠𝑒

𝜌, 𝜙, 𝐺, 𝑡! ⇓ 𝐺!, 𝐸! 𝜌, 𝜙, 𝐺, 𝑡" ⇓ 𝐺", 𝐸"
𝜌, 𝜙, 𝐺, 𝑡! 𝑜𝑝 𝑡" ⇓ 𝐺! + 𝐺", 𝐸! 𝑜𝑝 𝐸"



Translation Rules: Program
Xin Zhang@PKU
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𝜌, 𝜙, 𝐺, 𝑡 ⇓ 𝐺′, 𝐸
𝜌, 𝜙, 𝐺, 𝑥 ≔ 𝑡 ⇓ 𝜌 𝑥 ↦ 𝐸 , 𝜙, 𝐺#

𝜌, 𝜙, 𝐺, 𝑒! ⇓ 𝜌!, 𝜙!, 𝐺! 𝜌!, 𝜙!, 𝐺!, 𝑒" ⇓ 𝜌", 𝜙", 𝐺"
𝜌, 𝜙, 𝐺, 𝑒!; 𝑒" ⇓ 𝜌", 𝜙", 𝐺"

𝜌, 𝜙, 𝐺, 𝑠𝑘𝑖𝑝 ⇓ 𝜌, 𝜙, 𝐺



Translation Rules: Program
Xin Zhang@PKU
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𝜌, 𝜙, 𝐺, 𝑏 ⇓ 𝐺#, 𝐸
𝜌, 𝜙 ∧ 𝐸, 𝐺#, 𝑒! ⇓ 𝜌!, 𝜙!, 𝐺! 𝜌, 𝜙 ∧ ¬𝐸, 𝐺′, 𝑒" ⇓ 𝜌", 𝜙", 𝐺"

𝜌, 𝜙, 𝐺, 𝑖𝑓 𝑏 𝑡ℎ𝑒𝑛 𝑒!𝑒𝑙𝑠𝑒 𝑒" ⇓ 𝜌! + 𝜌", 𝜙, 𝐺! + 𝐺"

𝜌, 𝜙, 𝐺, 𝑏 ⇓ (𝑉, 𝐴, 𝑃, 𝑌), 𝐸
�̀� 𝑖𝑠 𝑎 𝑓𝑟𝑒𝑠ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐹 = 𝑖𝑓 𝜙 𝑠𝑐𝑜𝑟𝑒 𝐸, �̀� 𝑒𝑙𝑠𝑒 1

𝑉 𝑎𝑟𝑒 𝑓𝑟𝑒𝑒 𝑣𝑎𝑟𝑎𝑖𝑏𝑙𝑒𝑠 𝑖𝑛 𝐹/{�̀�}
𝜌, 𝜙, 𝐺, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑏 ⇓ 𝜌, 𝜙, (𝑉 ∪ �̀� , 𝐴 ∪ 𝑣, �̀� 𝑣 ∈ 𝑉 , 𝑃 ∪ �̀� ↦ 𝐹 , 𝑌 ∪ {�̀�})



Translation: Example
Xin Zhang@PKU
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x = bernoulli(0.2)
if(x){

y1 = uniform(0, 2)
}
else

y2 = gaussian(0, 5)

y3  = phi(x, y1, y2)
z = gaussian(y3, 1)

condition(z>10)

x y1 y2

z

b



Translation: Questions
• Are the translated graphs always trees?

• How do we deal with function calls?

• How to evaluate the density/mass function? 

Xin Zhang@PKU
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Translation: Questions
• What about factor?

Xin Zhang@PKU
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𝜌, 𝜙, 𝐺, 𝑏 ⇓ (𝑉, 𝐴, 𝑃, 𝑌), 𝐸
�̀� 𝑖𝑠 𝑎 𝑓𝑟𝑒𝑠ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐹 = 𝑖𝑓 𝜙 exp(𝑠𝑐𝑜𝑟𝑒 𝐸, �̀� ) 𝑒𝑙𝑠𝑒 1

𝑉 𝑎𝑟𝑒 𝑓𝑟𝑒𝑒 𝑣𝑎𝑟𝑎𝑖𝑏𝑙𝑒𝑠 𝑖𝑛 𝐸
𝜌, 𝜙, 𝐺, 𝑓𝑎𝑐𝑡𝑜𝑟 𝑏 ⇓ 𝜌, (𝑉 ∪ �̀� , 𝐴 ∪ 𝑣, �̀� 𝑣 ∈ 𝑉 , 𝑃 ∪ �̀� ↦ 𝐹 , 𝑌)



Translation: Questions
• Can we simplify the graph before inference?

Xin Zhang@PKU
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Partial evaluation: function calls and if  statements



Inference on the Translated Graph
• If  we want to compute marginal probabilities or most likely assignment, 

we can use (loopy) belief  propagation

• But we often want to draw samples, so methods like sampling methods 
are used more often

Xin Zhang@PKU
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Sampling Method
• Rejection sampling
• Straightforward, but often inefficient

• MCMC
• Used most widely
• Need to evaluate Z*p, where Z can be any positive number

Xin Zhang@PKU
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MCMC Variant: Gibbs Sampling
• Often we want to change one assignment at a time

• Proposal distribution
• Change one assignment at a time
• p(x | Y, X\{x}), where Y are observed variables

• Proof  of  correctness
• Stationary: change x doesn’t affect P(V\{x}), therefore P(V’) = P(V\{x}) * P(x | 

V\{x}) = P(V)
• Ergodic: depends on the distribution. A sufficient condition: none of  the 

conditional distribution is anywhere zero

Xin Zhang@PKU
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More on Gibbs Sampling
• Very useful when we can analytically compute p(x | V/{x})

• When not possible, we turn to Metropolis-within-Gibbs algorithms
• Use a proposal distribution q(x | V/{x})
• Still use the acceptance probability in Metropolis-Hasting

Xin Zhang@PKU
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Why Metropolis-within-Gibbs? 
• When computing

• Many terms in the two 𝑝(𝑧) will cancel out
• " #
" #!

= " $ | &# ∗"(&#)
" $* | &# ∗"(&#)

= " $ | &#
" $* | &#

• We can further decompose 𝑝 𝑥 | %𝑉 into products of  conditional probability, we 
only need to evaluate the part that involves x

Xin Zhang@PKU
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Full Description of Metropolis-within-Gibbs

• Page 78 of  “An Introduction to Probabilistic Programming”

Xin Zhang@PKU
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Optimization: Block Sampling
• Sample highly correlated variables together
• Example:

• Need to analyze the model to do appropriately

Xin Zhang@PKU
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x = gaussian(0, 1)
y = gaussian(0, 1)
z = gaussian(x+y, 0.01)
condition(z == 2)



Hamiltonian Monte Carlo (HMC)
• In many optimization techniques, gradients are good guidance

• Hamiltonian Monte Carlo is an MCMC technique that utilizes gradients
• Works for continuous variables
• Scales better for high dimensional distributions
• Make large changes while keeping the rejection probability small
• Analogy to dynamical systems in physics
• Compared to MH: the proposal distribution uses information from the target 

distribution

Xin Zhang@PKU
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Dynamical Systems
• Key idea of  HMC is to cast probabilistic simulation in the form of  a 

Hamiltonian system
• Exploiting the framework of  Hamiltonian dynamics

• Classical dynamics: Newton’s second law of  motion
• 𝑎 = 𝑣* = 𝑆** = 𝐹/𝑀

Xin Zhang@PKU
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Dynamical Systems
• The dynamics we consider: the evolution of  𝐳 = {𝑧$} under continuous 

time 𝜏

• Intermediate momentum variable 𝑟$ =
%&!
%'

, 𝐫 = {𝑟$}

• We view 𝐳 as position variables

• The joint space of  position and momentum is called phase space

Xin Zhang@PKU
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Intuition of HMC
• We can imagine a ball in a bowl without friction
• Define p = f(E), where E is the potential energy of  the ball
• The higher the probability is, the lower the potential energy is
• We use ball’s position to sample p
• Sometimes we need to give the ball a random kick

• Visualization: 
https://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carl
o.html

Xin Zhang@PKU
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Probability Distributions to Dynamical Systems

• We can write 𝑝(𝐳) as 

• 𝐸(𝐳) is the potential energy of  the system in state 𝐳

• The system acceleration is

Xin Zhang@PKU
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Probability Distributions to Dynamical Systems

• Kinetic energy:

• The total energy of  the dynamical system is given by the Hamiltonian 
function:

Xin Zhang@PKU
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Probability Distributions to Dynamical Systems

• The dynamics of  the systems can be expressed using Hamiltonian 
equations:

Xin Zhang@PKU
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Properties of Hamiltonian Dynamical Systems

• During the evolution of  the system, the Hamiltonian is constant

Xin Zhang@PKU
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Properties of Hamiltonian Dynamical Systems

• Liouville’s theorem: they preserve volume in phase space (z, r)

• To see why it holds, we define the flow field

• The divergence of  this field vanishes

Xin Zhang@PKU
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Probability Distributions to Dynamical Systems

• We now define joint distribution

• Using the two properties of  Hamiltonian Dynamical Systems, we can 
show that the Hamiltonian dynamics will leave p(z,r) invariant

Xin Zhang@PKU
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Probability Distributions to Dynamical Systems

• Using the two properties of  Hamiltonian Dynamical Systems, we can 
show that the Hamiltonian dynamics will leave p(z,r) invariant

• We can integrate over a finite time duration to make large changes to z in 
a systematic way

Xin Zhang@PKU
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Probability Distributions to Dynamical Systems

• However, sampling using the Hamiltonian dynamics will not form an 
ergodic Markov chain because H is constant

• To fix it, we can replace the value r with p(r|z), which can be a gaussian 
because z and r are independent

Xin Zhang@PKU
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Put Things Together: HMC
• Augment distribution 𝑝(𝒛) with 𝑝(𝒛, 𝒓)

• Proposal distribution:
• Update 𝒛, 𝒓 using Hamiltonian dynamics (in practice, a discretized approximation 

called leapfrog integration)
• Update 𝒓 stochastically

• Acceptance probability (After applying Hamiltonian dynamics):

Xin Zhang@PKU
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Account for 
approximation



The Leapfrog Approximation
Xin Zhang@PKU
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To remove biases introduced by numerical errors, 
the steps are sampled from 𝜖 and −𝜖



Why HMC is usually better than MH?
• MH has difficulties exploring low-density points

• HMC uses information of  the target distribution
• This will always go to the high-density points

• Momentum helps!

Xin Zhang@PKU
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HMC in Probabilistic Programming
• Have trouble with branching statements

• The density function has to be differentiable everywhere
• What about 0 gradients?

Xin Zhang@PKU
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Next Lecture
• Evaluation-based inference

Xin Zhang@PKU
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