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Recap of Last Lecture

•Graph-based inference
• Static
• Cannot deal with programs with unbounded loops
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Graph Translation: Example
Xin Zhang@PKU
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x = bernoulli(0.2)
if(x){

y1 = uniform(0, 2)
}
else

y2 = gaussian(0, 5)

y3  = phi(x, y1, y2)
z = gaussian(y3, 1)

condition(z>10)

x y1 y2

z

b



Inference on Translated Graphs
• Loopy belief  propagation

• Sampling
• Gibbs
• Hamiltonian Monte Carlo
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Gibbs Sampling
• Proposal distribution
• Change one assignment at a time
• p(x | Y, X\{x}), where Y are observed variables

• When we cannot evaluate p(x | Y, X\{x}), we can turn to Metropolis-
Hasting while using q(x | Y, X\{x}) as the proposal distribution
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Hamiltonian Monte Carlo (HMC)
• An more scalable MCMC algorithm
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Potential energy, z are 
the random variables 
to sample from

Kinetic energy, r are 
auxiliary variables, 
provides momentum



Intuition Behind HMC
• https://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carl

o.html
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Put Things Together: HMC
• Augment distribution 𝑝(𝒛) with 𝑝(𝒛, 𝒓)

• Proposal distribution:
• Update 𝒛, 𝒓 using Hamiltonian dynamics (in practice, a discretized approximation 

called leapfrog integration)
• Judge whether to accept 𝒛, 𝒓 (see below)
• Update 𝒓 stochastically

• Acceptance probability (After applying Hamiltonian dynamics):
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Account for 
approximation



The Leapfrog Approximation
Xin Zhang@PKU
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To remove biases introduced by numerical errors, 
the steps are sampled from 𝜖 and −𝜖



Question 1: Is the statement right?
• For any given probabilistic program with loops, it cannot be converted 

into a graphical model
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Question 2: Is the statement right?
• The graph obtained by translating a probabilistic program is always a tree
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Question 3: Translate the program into a graph

x = guassian(0, 1)
y = uniform(0, x)
if  (x>10){

z = x
condition(y >1.5)

}
else{

condition(y<0.5)
z = y

}
w = gaussian(z, 0)
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Question 4: Is the statement right? 
• Gibbs sampling can be applied to sample any distribution
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Question 5: Is the statement right? 
• In HMC, the gradient is the gradient of  the density function of  the target 

distribution
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Question 6: Is the statement right? 
• HMC cannot be applied to any probabilistic programs with branches
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This Lecture
• Evaluation-based inference

• More sampling algorithms
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Motivation
• The number of  random variables is unknown at compile time
• Introduce an upper bound on the number of  variables 

• Implement inference methods that dynamically instantiate variables

Xin Zhang@PKU

17



Likelihood Weighting
• A form of  importance sampling where the proposal is the prior
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Y are observed/conditioned variables

If  we use 𝑝(𝑋#) as the 
proposal distribution



Likelihood Weighting
• But wait, every run of  the program only evaluates a subset of  all 

variables! 

• It is OK: 𝑟(𝑋) is the return value projection of  all variables 𝑋
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Likelihood Weighting
• What happens if  there are no factor statements but only condition 

statements in the program?

• How to implement it in a graph-based inference?

Xin Zhang@PKU
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Likelihood Weighting: Evaluation-based Implementation

• Run the program to draw samples

• Update the weight 𝑊 while running the program
• Initially, log𝑊 = 0

• Whenever encounter an expression 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑏), update log𝑊 ← 𝑙𝑜𝑔𝑊 +
𝑙𝑜𝑔𝑝$(𝑡𝑟𝑢𝑒)
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Metropolis-Hasting
• Similar problem: each execution only evaluates a subset of  variables

• Naïve method: use the prior distribution p(X) as the proposal 
distribution:
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𝛼 =
𝑃 𝑋! 𝑌 𝑞 𝑋 𝑋!

𝑃 𝑋 𝑌 𝑞 𝑋′ 𝑋
=
𝑃(𝑋!, 𝑌)𝑞 𝑋 𝑋!

𝑃(𝑋, 𝑌)𝑞 𝑋′ 𝑋
=
𝑃(𝑌|𝑋′)
𝑃(𝑌|𝑋)



Metropolis-Hasting: Single-Site Proposals
• Most commonly used evaluation-based proposal

• Try to only change the value of  a one variable at a time
• Not always possible due to dependencies
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Metropolis-Hasting: Single-Site Proposals
• Map 𝜎(𝑋), such that 𝑋(𝑥) refers to the value of  𝑥 (only variables in the 

current execution)

• Map 𝜎(𝑙𝑜𝑔𝑃), where 𝑙𝑜𝑔𝑃(𝑣) evaluates the density for each variable
• When sampling from a distribution 𝑑, we have

𝜎 𝑙𝑜𝑔𝑃 𝑥 = 𝐿𝑂𝐺 − 𝑃𝑅𝑂𝐵(𝑑, 𝑋 𝑥 )

• When encounter 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑏), we have
𝜎 𝑙𝑜𝑔𝑃 𝑦 = 𝐿𝑂𝐺 − 𝑃𝑅𝑂𝐵(𝑏, 𝑡𝑟𝑢𝑒)
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Metropolis-Hasting: Single-Site Proposals
• Pick a variable 𝑥! ∈ 𝑑𝑜𝑚(𝑋) at a random from the current sample

• Construct a proposal 𝑋", 𝑃′ by re-running the program
• For an expression 𝑑 that sample from a variable 𝑥
• If  𝑥 == 𝑥%, or 𝑥 ∉ 𝑑𝑜𝑚(𝑋), then samples from the expression. Otherwise, 

reuse the value 𝑋& 𝑥 ← 𝑋 𝑥
• Calculate the probability 𝑃& 𝑥 ← 𝑃𝑅𝑂𝐵(𝑑, 𝑋& 𝑥 )

• For expression 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑏) with variable 𝑦:
• Calculate the probability 𝑃& 𝑦 ← 𝑃𝑅𝑂𝐵 𝑏, 𝑦 = 1[$(()]

• For expression 𝑜𝑏𝑠𝑒𝑟𝑣𝑒(𝑒, 𝑣) with variable 𝑦:
• Calculate the probability 𝑃& 𝑦 ← 𝑃𝑅𝑂𝐵(𝑒, 𝑣)
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Metropolis-Hasting: Single-Site Proposals
Xin Zhang@PKU
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Metropolis-Hasting: Single-Site Proposals
Xin Zhang@PKU
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We divide a 
sample into 
sampled part and 
reused part



Metropolis-Hasting: Single-Site Proposals
Xin Zhang@PKU
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Example
Xin Zhang@PKU
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x = 0

while(bernoulli(0.5){
x+= uniform(0,1)

}

condition(x >= 10)



Sequential Monte Carlo
• Problem with likelihood weighting algorithm:
• Essentially a “guess-and-check”
• Doesn’t work well with models where there are a lot of  random variables

• Sequential Monte Carlo
• In probabilistic programming, sample a high-dimensional distribution by 

sampling a sequence of  lower dimensional distributions
• Also called particle filters
• Used in signal processing and probabilistic inference

Xin Zhang@PKU
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Informal Example
• See the example by Andreas Svensson
• https://www.bilibili.com/video/BV1XE41177D1?share_source=copy_web
• https://www.youtube.com/watch?v=aUkBa1zMKv4
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SMC: Problem Statement 
Xin Zhang@PKU
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x0 x1

y1

x2

y2

…

Given
𝑝(𝑥!) and
𝑝(𝑥"|𝑥"#$) and
𝑝 𝑦" 𝑥" and
Observations 𝑦$:"

Estimate
𝑝(𝑥!:"|𝑦$:") or
𝑝 𝑥" 𝑦$:" or
𝐼 𝑓" = 𝐸&((!:#|*$:#) 𝑓" 𝑥!:" = ∫𝑓" 𝑥!:" 𝑝 𝑥!:" 𝑦$:" 𝑑𝑥!:"



SMC: Problem Analysis
Xin Zhang@PKU
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Can you compute 
these expressions?



SMC: Problem Analysis
• Evaluation of  complex high-dimensional integrals is hard

• People turn to approximate methods such as sampling

Xin Zhang@PKU
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SMC: Approach
• Use samples to deal with integrations

• Effective method that leverages importance sampling
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SMC: Naïve Importance Sampling

• Let the proposal distribution be 𝜋(𝑥!:0|𝑦1:0), then we have

Xin Zhang@PKU
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A sample 𝑥%:, is called a particle



SMC: Naïve Importance Sampling
• Problem
• Cannot be used for recursive estimation
• One needs to get all 𝑦-:, before estimating 𝑝(𝑥%:,|𝑦-:,)
• Need to re-evaluate whenever there is a new 𝑦
• Does not scale

Xin Zhang@PKU
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SMC: Sequential Importance Sampling
• If  we want to do recursive evaluation, the proposal distribution needs to 

satisfy

• Which indicates

Xin Zhang@PKU
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SMC: Sequential Importance Sampling
• Then we have

• Important case

Xin Zhang@PKU
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How to Derive the Formula
Xin Zhang@PKU
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Given

We have

𝜔 𝑥!:# =
𝑝 𝑥!:# 𝑦$:#
𝜋 𝑥!:# 𝑦$:#

=
𝑝 𝑥!:#%$, 𝑦$:#%$ ∗ 𝑝 𝑦# 𝑥# ∗ 𝑝(𝑥#|𝑥#%$)/𝑝(𝑦#|𝑦$:#%$)

𝜋 𝑥!:#%$ 𝑦$:#%$ 𝜋 𝑥& 𝑦$:#%$, 𝑦$:#
= 𝜔 𝑥!:#%$ ∗

𝑝 𝑦# 𝑥# ∗ 𝑝 𝑥#|𝑥#%$
𝜋 𝑥& 𝑦$:#%$, 𝑦$:#

∗
1

𝑝(𝑦#'$|𝑦$:#)



SMC: Sequential Importance Sampling

• Problem: as 𝑡 increases, importance weights ?𝜔0
(2) becomes more and 

more skewed 
• Almost all weights will become 0 except 1

• Solution: the bootstrap filter

Xin Zhang@PKU
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SMC: Bootstrap Filter 
• Key idea: remove particles with low weights and keep particles with high 

weights

• Formally replace

• with

Xin Zhang@PKU
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𝛿 is the Dirac 
measure



SMC: Bootstrap Filter 

• ∑2314 𝑁0
(2) = 0 , if  𝑁0

(5) = 0, then the particle 𝑥!:0
5 dies

• How to select 𝑁0
(2)?

• Many methods
• The most popular method: sampling N times from

Xin Zhang@PKU
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SMC: Bootstrap Filter 
Assume the proposal distribution is 𝑝(𝑥1:0)
1. Initialization. T = 0
• For i = 1,…,N, sample 𝑥%

(<)~𝑝(𝑥%) and set 𝑡 = 1
2. Importance sampling step.
• For  sample L𝑥,

(<)~𝑝(𝑥,| L𝑥,=-
(<) ) and set ( L𝑥%:,=-

(<) , L𝑥,
(<)).

• For i = 1,…,N, evaluate the importance weights.
• Normalize the importance weights

3. Selection step
• Resample with replacement N particles from the current particles according to 

importance weights
• Set 𝑡 → 𝑡 + 1

Xin Zhang@PKU
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More on Bootstrap Filter
• Compared to sequential importance sampling, it basically 
• Allows more variations under the prefixes with high weights
• Throws away prefixes with low weights

• Advantages:
• Easy to implement
• Efficient
• Modular
• Can be parallelized
• Can be used for complex models

Xin Zhang@PKU
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Bootstrap Filter: Example
Xin Zhang@PKU
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𝑥-~𝑁 0,10 , 𝑣>~𝑁 0,10 ,𝑤>~𝑁 0,1

From “An Introduction to Sequential Monte Carlo Methods” by Arnaud Doucet, 
Nando De Freitas, and Neil Gordon



Bootstrap Filter: Example
Xin Zhang@PKU
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From “An Introduction to Sequential 
Monte Carlo Methods” by Arnaud 
Doucet, Nando De Freitas, and Neil 
Gordon



Bootstrap Filter: Example
Xin Zhang@PKU
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From “An Introduction to 
Sequential Monte Carlo 
Methods” by Arnaud Doucet, 
Nando De Freitas, and Neil 
Gordon



SMC in Probabilistic Programming
Xin Zhang@PKU
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x0 x1

y1

x2

y2

…



SMC in Probabilistic Programming
Xin Zhang@PKU
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x0 x1

y1

x2

y2

…

x’s are the program trace excluding conditions

y’s are conditions



SMC in Probabilistic Programming
• We can evaluate intermediate densities using breakpoints

• We can use the prior distribution as the proposal distribution

Xin Zhang@PKU
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More on Inference in Probabilistic Programming

• There are other general methods
• Varational Inference

• No silver bullet
• The general problem is a counting problem
• Some researchers are exploring programmable inference frameworks: Gen: a 

general-purpose probabilistic programming system with programmable 
inference. Cusumano-Towner, M. F.; Saad, F. A.; Lew, A. K.; and Mansinghka, V. 
K. In PLDI 2019:

Xin Zhang@PKU
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More on Inference in Probabilistic Programming

• Implementation issues
• How can we avoid re-running programs

• Fork at sampling statements and conditions
• Can be Implemented through program transformation 

• For a comprehensive understanding, read http://dippl.org/chapters/03-
enumeration.html

Xin Zhang@PKU
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Next Lecture
• Learning in probabilistic programming

Xin Zhang@PKU
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