
Introduction to
Probabilistic Programming

Xin Zhang
Peking University

What the course is about
• An introductory course to an advanced topic

• Still an advanced course

• The first course on probabilistic programming in China

• Offered to both domestic and international students
• Part of the international graduate program at PKU

• Course materials in English

Xin Zhang@PKU

What the course is not about
• Learning how to program

• Learning how to speak in English
• If I end up teaching in English, its fine if you ask/answer questions in Chinese
• You can ask me to clarify in Chinese
• You’re encouraged to communicate in English

Xin Zhang@PKU

What needs to be decided
• Shall I teach in English?

• I will if at least one student needs that
• Will adjust as the student roster changes

Xin Zhang@PKU

Instructor
• Xin Zhang, Assistant Professor, Computer Science
• Research Areas: Programming Languages, Software

Engineering, Assured Artificial Intelligence
• Website: http://xinpl.github.io
• E-mail: xin@pku.edu.cn

Xin Zhang@PKU

http://xinpl.github.io/

TA
• Junhao Liu, PhD Student
• Programming Languages Lab @ PKU
• Email: liujunhao@pku.edu.cn

Xin Zhang@PKU

Logistics
• Time:

• Thursday 9am - 12am (9:00-9:50, 10:10 – 11:00, 11:10 – 12:00)

• Location:
• Changping Campus: 206 Teaching Building（昌平校区教学楼206）

• Credit hours: 3
• Course Website: http://xinpl.github.io/courses/probprog/2024/

Xin Zhang@PKU

http://xinpl.github.io/courses/probprog/2024/

Course WeChat Group
Xin Zhang@PKU

Course Policy
• Laptops and phones allowed to try example programs

• Mute them
• Don’t use them to do things that are unrelated to the course

• Academic integrity
• http://www.dean.pku.edu.cn/web/student_info.php?type=3&id=49
• 0 tolerance for academic dishonesty and cheating

• Speak out when you don’t understand something

Xin Zhang@PKU

http://www.dean.pku.edu.cn/web/student_info.php?type=3&id=49

Grading
• Assignments: 30%

• Mid-Term (In-Class Exam): 30%

• Final (In-Class Exam): 40%

Xin Zhang@PKU

Past Grades
Xin Zhang@PKU

Grade Percentage

A+ 13.3%

A 33.3%

B+ 46.7%

B 6.7%

2021

Grade Percentage

A+ 11.1%

A 22.2%

P 66.7%

2022 (Covid)

What you will learn
• What probabilistic programming is

• How to write programs in popular probabilistic languages

• Relevant concepts like graphical models, Bayesian learning, probabilistic inferences

• Theoretical foundations

• Inferences and learning

• Frontiers

Xin Zhang@PKU

Schedule (Tentative)
• Introduction with WebPPL (Week 1 & 2)
• Relevant backgrounds (Week 3 - 5)
• Theoretical foundation (Week 6)
• Mid-Term (Week 7)
• Inference (Week 8 & 9)
• Learning (Week 10)
• Probabilistic Logic Programming (Week 11 & 12)
• Advanced Topics (Week 13-15)
• Final (Week 16)

Xin Zhang@PKU

After This Class
• Hopefully, you can

• Know what graphical models are
• Write probabilistic programs
• Have an idea about how probabilistic programming languages work underneath

Xin Zhang@PKU

How would you build an AI?
What should it be able to do?

Xin Zhang@PKU

Different Styles of AI
Five Tribes of Machine Learning

Symbolists Connectionists Bayesians

“The Master Algorithm”, Pedro Domingos

Evolutionaries Analogizers

Xin Zhang@PKU

Different Styles of AI
Five Tribes of Machine Learning

Symbolists Connectionists Bayesians

“The Master Algorithm”, Pedro Domingos

Evolutionaries AnalogizersBayesians

Probabilistic programming = Programming
Languages +

Xin Zhang@PKU

Doesn’t LLM kill everything?
• Well, you can ask ChatGPT itself if probabilistic programming is still

relevant

Xin Zhang@PKU

Doesn’t LLM kill everything?
• They can be combined

• PP can be used to program LLMs (https://arxiv.org/pdf/2306.03081.pdf)

• They can serve as different parts of an AI (https://arxiv.org/pdf/2306.12672.pdf)
• LLM can understand the context well, while PP can do reasoning

Xin Zhang@PKU

https://arxiv.org/pdf/2306.03081.pdf
https://arxiv.org/pdf/2306.12672.pdf

Spirit of Probabilistic Programming
• Express your beliefs and uncertainties to generate data

• Adjust the model based on observed data

Bayesian

Xin Zhang@PKU

Spirit of Probabilistic Programming
• Express your beliefs and uncertainties to generate data

• Adjust the model based on observed data

Bayesian

If Xiaoming stays up, there is 50% chance he will drink coffee. If he
stays up and doesn’t drink coffee, he will fall asleep in class.

Given Xiaoming didn’t fall asleep today, how likely did he stay up?

Xin Zhang@PKU

Spirit of Probabilistic Programming
• Express your beliefs and uncertainties to generate data in programs

• Adjust the model based on observed data using general algorithms

Bayesian + Programming Languages

Xin Zhang@PKU

Old Idea that Resurged Recently
• “High level probabilistic languages have been in use since the earliest

versions of FORTRAN and BASIC.”- Semantics of Probabilistic
Programs, Dexter Kozen, FOCS 1979

• Resurged due to
• Novel applications
• New inference algorithms
• More computing power

Xin Zhang@PKU

Oxford, UBC, etc. Google

Venture
MIT

Facebook

Columbia, etc.

ProbLog
KU LEUVEN

General-purpose programming languages + probabilistic constructs

Omega
MIT (I was part of it)

Xin Zhang@PKU

Wikipedia lists
55 probabilistic
programming
languages!

Xin Zhang@PKU

Probabilistic Programming
• Introduces new machine learning models

• Introduces new programming models

Xin Zhang@PKU

Old-School Bayesian Models

Given the grass is wet, how likely
did it rain?

The picture is from Wikipedia.

Xin Zhang@PKU

Probabilistic Programming Models

Inverse Graphics – 3D faces rendered from 2D images using only 50 lines of PPL code.
Reference: http://news.mit.edu/2015/better-probabilistic-programming-0413
Another example: https://www.youtube.com/watch?v=126X_P_y6hE

Xin Zhang@PKU

http://news.mit.edu/2015/better-probabilistic-programming-0413

Old-School Languages vs. PPL

f Value fp Distribution

Built-in support for random
variables and operations on them

The semantics of the program is
defined on a given execution.

The semantics of the program is
defined on a distribution of executions.

Xin Zhang@PKU

First Probabilistic Program in WebPPL
• There is a gacha game:

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• Xiaoming usually pulls 0-9 times a day.

• How many SSRs can he get a day?

• We can model it using a probabilistic program in WebPPL!

Subset of Javascript + Probabilistic Constructs

Xin Zhang@PKU

var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c){
if(c == 0){
return 0;

}
return sample(pull)+performPull(c-1);

}
return performPull(num_pull_inst)

};

gacha()

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• Xiaoming usually pulls 0-9 times a day. Built-in

distributions/
random variables

You can install WebPPL locally or
directly try it at http://webppl.org!

Let’s see it!

Xin Zhang@PKU

http://webppl.org/

var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c){
if(c == 0){
return 0;

}
return sample(pull)+performPull(c-1);

}
return performPull(num_pull_inst)

};

gacha()

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• Xiaoming usually pulls 0-9 times a day. Built-in

distributions/
random variables

• What if I want to know the
average number of SSR Xiaoming
gets?

• What if I want to know what is the
chance that Xiaoming gets two
SSRs?

• What if I want to know the full
distribution?

Well, you can do it manually, but WebPPL has built-in
support for these!

Xin Zhang@PKU

var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c){
if(c == 0){
return 0;

}
return sample(pull)+performPull(c-1);

}
return performPull(num_pull_inst)

};

gacha()

var gacha_model = Infer({model: gacha})

display(expectation(gacha_model))
display(Math.exp(gacha_model.score(3)))
viz(gacha_model)

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• Xiaoming usually pulls 0-9 times a day. Built-in

distributions/
random variables

• What if I want to know the
average number of SSR Xiaoming
gets?

• What if I want to know what is the
chance that Xiaoming gets two
SSRs?

• What if I want to know the full
distribution?

Xin Zhang@PKU

var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c){
if(c == 0){
return 0;

}
return sample(pull)+performPull(c-1);

}
return performPull(num_pull_inst)

};

gacha()

var gacha_model = Infer({model: gacha})

display(expectation(gacha_model))
display(Math.exp(gacha_model.score(3)))
viz(gacha_model)

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• Xiaoming usually pulls 0-9 times a day. Built-in

distributions/
random variables

• What if I want to know the
average number of SSR Xiaoming
gets?

• What if I want to know what is the
chance that Xiaoming gets two
SSRs?

• What if I want to know thefull
distribution?

“Black magic” behind this function
invocation. It performs Marginal

Inference, which creates a map from
values to probabilities.

Xin Zhang@PKU

More on Marginal Probabilities
• We can enumerate all possible worlds and calculate their probabilities.

• Marginal probability of x = X is defined as

𝑃 𝑥 = 𝑋 = Σ!∈ ! #$% &'(}𝑃(𝑤)

We will talk about how to calculate them later in the course.

Xin Zhang@PKU

Let’s make the problem more interesting

Xin Zhang@PKU

var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c){
if(c == 0){
return 0;

}
return sample(pull)+performPull(c-1);

}
return performPull(num_pull_inst)

};

gacha()

var gacha_model = Infer({model: gacha})

display(expectation(gacha_model))
display(Math.exp(gacha_model.score(3)))
viz(gacha_model)

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th

pull guarantees an SSR.
• Xiaoming usually pulls 0-9 times a day.

Xin Zhang@PKU

var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c, num_no_ssr){
if(c == 0){
return 0;

}
if (num_no_ssr == 5){

return 1 + performPull(c-1, 0);
}
else{
var cp = sample(pull);
if (cp)
return 1 + performPull(c-1, 0);

else
return 0 + performPull(c-1, num_no_ssr+1);

}
}

 return performPull(num_pull_inst, 0)
};

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th

pull guarantees an SSR.
• Xiaoming usually pulls 0-9 times a day.

• What if I want to know the
average number of SSR Xiaoming
gets?

• What if I want to know what is the
chance that Xiaoming gets three
SSRs?

• What if I want to know the full
distribution?

Xin Zhang@PKU

Informal Semantics of Probabilistic Programs

• Probabilistic programs define a distribution of executions
• The randomness comes from random variables
• Given an execution 𝑒, let 𝑉 be the set of random variables that are evaluated in 𝑒,

we use 𝑣(𝑒) to denote the value a random variable 𝑣 takes in 𝑒, then we have

𝑃 𝑒 =,
*∈+

𝑃(𝑣 = 𝑣(𝑒))

• We will introduce formal semantics later in the course!

Xin Zhang@PKU

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th

pull guarantees an SSR.
• Xiaoming usually pulls 0-9 times a day.

Hey! What you assume seems quite reasonable. But Xiaoming
never gets more than two SSRs a day!

Xin Zhang@PKU

var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,10);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c, num_no_ssr){
if(c == 0){
return 0;

}
if (num_no_ssr == 5){

return 1 + performPull(c-1, 0);
}
else{
var cp = sample(pull);
if (cp)
return 1 + performPull(c-1, 0);

else
return 0 + performPull(c-1, num_no_ssr+1);

}
}

 return performPull(num_pull_inst)
};

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th pull

guarantees an SSR.
• Xiaoming usually pulls 0-9 times a day.
• Xiaoming never gets more than 2 SSRs a

day.

This describes the outcome
rather than the process. How

should we modify the program?
New Language Construct!

Xin Zhang@PKU

var gacha = function(){
 …
 return performPull(num_pull_inst)
};

var gacha1 = function(){
var num_ssrs = gacha()
condition(num_ssrs <= 2)
return num_ssrs

}

var gacha_model = Infer({model: gacha1})

display(expectation(gacha_model))

display(Math.exp(gacha_model.score(3)))

viz(gacha_model)

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th pull

guarantees an SSR.
• Xiaoming usually pulls 0-9 times a day.
• Xiaoming never gets more than 2 SSRs a

day.

This describes the outcome
rather than the process. How

should we modify the program?
New Language Construct!

Filter out executions that do
not satisfy external

knowledge, and computes a
conditional distribution

Xin Zhang@PKU

More on Condition

var d = sample(Categorical({ps: [0.2, 0.3, 0.5], vs: [1,2,3]}))
Value of d Probability

1 0.2

2 0.3

3 0.5

condition(d != 3)

Xin Zhang@PKU

More on Condition

var d = sample(Categorical({ps: [0.2, 0.3, 0.5], vs: [1,2,3]}))
Value of d Probability

1 0.2

2 0.3

3 0.5

condition(d != 3)

Xin Zhang@PKU

More on Condition

var d = sample(Categorical({ps: [0.2, 0.3, 0.5], vs: [1,2,3]}))
Value of d Probability

1 0.2 / (0.2+0.3)

2 0.3 / (0.2+.3)

3 0.5

condition(d != 3)

Xin Zhang@PKU

More on Condition

var d = sample(Categorical({ps: [0.2, 0.3, 0.5], vs: [1,2,3]}))
Value of d Probability

1 0.4

2 0.6

3 0.5

condition(d != 3)

Xin Zhang@PKU

More on Condition
• Recall our informal semantics

• We use 𝑃 𝑒 𝑐 to denote the probability of an execution 𝑒 after a
condition statement 𝑐 is added to the program, and we use c(𝑒) to
represent whether 𝑐 holds on 𝑒, then

𝑃 𝑒 =/
!∈#

𝑃(𝑣 = 𝑣(𝑒))

𝑃 𝑒|𝑐 = 5
0, 𝑖𝑓 𝑐 𝑒 = 𝑓𝑎𝑙𝑠𝑒

𝑃(𝑒)
∑$!∈ $!! %($!!)}𝑃(𝑒))

, 𝑖𝑓 𝑐 𝑒 = 𝑡𝑟𝑢𝑒

Xin Zhang@PKU

More on Condition
• It might be obvious, but condition does construct a conditional

distribution:

Xin Zhang@PKU

𝑃 𝑒|𝑐 =
𝑃(𝑒 ∩ 𝑐)
𝑃(𝑐) =

𝑃(𝑒 ∩ 𝑐)
∑$!∈* 𝑃(𝑐 ∩ 𝑒))

=
𝑃 𝑐 𝑒 ∗ 𝑃(𝑒)

∑$!∈* 𝑃 𝑐 𝑒) ∗ 𝑃(𝑒)) = 5
0, 𝑖𝑓 𝑐 𝑒 = 𝑓𝑎𝑙𝑠𝑒

𝑃(𝑒)
∑$!∈ $!! %($!!)}𝑃(𝑒))

, 𝑖𝑓 𝑐 𝑒 = 𝑡𝑟𝑢𝑒

Main Probabilistic Constructs in WebPPL
• Built-in random variables and sample together describe a random process

in a constructive way

• Condition provides a way to incorporate external knowledge about the
output

They together provide a mechanism to do Bayesian learning

What you believe + What you observe

Xin Zhang@PKU

A Simple Bayesian Inference Example
• A disease can happen to 1% of the population
• A test method has the following property:

• Xiaoming is tested positive. How likely does he carry the disease?

Tested Positive Tested Negative

Actually Positive 90% 10%

Actually Negative 10% 90%

Xin Zhang@PKU

A Simple Bayesian Inference Example
• We can calculate the probability using Bayes’ theorem

𝑃 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑠𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 𝑃 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ×
𝑃 𝑡𝑒𝑠𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑃 𝑡𝑒𝑠𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

= 0.01×
0.9

0.01 ∗ 0.9 + 0.99 ∗ 0.1

= 0.083

Xin Zhang@PKU

A Simple Bayesian Inference Example
• The probabilistic program is as follow:

var medic_test = function(){
var positive = sample(Bernoulli({p:0.01}))
var test_positive = function(pg){
if(pg){
return sample(Bernoulli({p:0.9}))

}
else
return !sample(Bernoulli({p:0.9}))

}
condition(test_positive(positive))
return positive

}

var m = Infer({model:medic_test})
display(Math.exp(m.score(true)))
viz(m)

Xin Zhang@PKU

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th pull

guarantees an SSR.
• 20% of players believe the rate is not as

advertised, but only 8%.
• To test if the assumption is true,

Xiaoming pulled 20 times, and got 4
SSRs.

What is the chance that the rate is actually 8%?

Try to calculate it using Bayes’ theorem!

Xin Zhang@PKU

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th pull

guarantees an SSR.
• 20% of players believe the rate is not as

advertised, but only 8%.
• To test if the assumption is true,

Xiaoming pulled 20 times, and got 4
SSRs.

In WebPPL, it is easy!

var gacha = function(){
var cheated = sample(Bernoulli({p:0.2}));
var pull = function(){
if (cheated){
return Bernoulli({p:0.08});

}
else
return Bernoulli({p:0.1});

}
var num_pull_inst = 20;

var performPull = function(c, num_no_ssr){
…

}
var num_ssrs = performPull(num_pull_inst, 0)
condition(num_ssrs == 4)
return cheated;

};

var gacha_model = Infer({model: gacha})

display(expectation(gacha_model))

Xin Zhang@PKU

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th pull

guarantees an SSR.
• When spending over 1000 RMB, for every

new pull, there is a chance that the bank
would call Xiaoming.

• Suppose the chance is (x-1000)/1000, and
Xiaoming got called and then stopped,
how many SSRs has he pulled so far?

Xin Zhang@PKU

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th pull

guarantees an SSR.
• When spending over 1000 RMB, for every

new pull, there is a chance that the bank
would call Xiaoming.

• Suppose the chance is (x-1000)/1000, and
Xiaoming got called and then stopped,
how many SSRs has he pulled so far?

var gacha = function(){
…
var VS = rangeArray(0,1000);
var num_pull = Categorical({vs: VS});
…
var performPull = function(c, num_no_ssr){
if(c == 0){
return [0,false];

}
var cost = (num_pull_inst -c)*10;
if(cost > 2000)
return [0, true]

if(cost > 1000)
if(sample(Bernoulli({p: (cost - 1000)/1000.0}))){
return [0, true]

}
…

}
var pull_result = performPull(num_pull_inst, 0)
condition(pull_result[1])
return pull_result[0]

};

Can you express this problem
using a conventional graphical
model like a Bayesian network?

Xin Zhang@PKU

Probabilistic Programming So Far
• Built-in support for random variables

• Categorical, Bernoulli….
• Sample

• A general language to describe the sampling process
• Subet of Javascript

• The ability to impose conditions on any state
• Condition

Xin Zhang@PKU

Probabilistic Programming So Far
• Built-in support for random variables

• Categorical, Bernoulli….
• Sample

• A general language to describe the sampling process
• Subet of Javascript

• The ability to impose conditions on any state
• Condition

A convenient way to express highly complex distributions

Don’t worry about how to calculate it! Just think about what is it!

Xin Zhang@PKU

That sounds too good to be true.
There must be a catch here ...

Xin Zhang@PKU

That sounds too good to be true.
There must be a catch here ...

Well, some of the probabilistic programs can
be really slow to run.

People have been working on how to
make probabilistic programs run fast,
which we will discuss later in the course.

Xin Zhang@PKU

var gacha = function(){
var pull = Bernoulli({p:0.1});
var VS = rangeArray(0,1000);
var num_pull = Categorical({vs: VS});
var num_pull_inst = sample(num_pull);
var performPull = function(c, num_no_ssr){
if(c == 0){
return 0;

}
if (num_no_ssr == 5){

return 1 + performPull(c-1, 0);
}
else{
var cp = sample(pull);
if (cp)
return 1 + performPull(c-1, 0);

else
return 0 + performPull(c-1, num_no_ssr+1);

}
}
return performPull(num_pull_inst)

};
}

var gacha1 = function(){
var num_ssrs = gacha()
condition(num_ssrs <= 2)
return num_ssrs

}

var gacha_model = Infer({model: gacha1})

display(expectation(gacha_model))

viz(gacha_model)

• 10% chance to get a SSR card every pull.
• A pull costs 10 RMB.
• If 5 continuous pulls yield 0 SSR, the 6th pull

guarantees an SSR.
• Xiaoming usually pulls 0-999 times a day.
• Xiaoming never gets more than 2 SSRs a

day.

Xin Zhang@PKU

Next Class
• More about WebPPL

• We have talked about the core probabilistic constructs

• Representative applications using WebPPL

Xin Zhang@PKU

