Introduction to
 Probabilistic Programming
 Xin Zhang
 Peking University

What the course is about

- An introductory course to an advanced topic
- Still an advanced course
- The first course on probabilistic programming in China
- Offered to both domestic and international students
- Part of the international graduate program at PKU
- Course materials in English

What the course is not about

- Learning how to program
- Learning how to speak in English
- If I end up teaching in English, its fine if you ask/answer questions in Chinese
- You can ask me to clarify in Chinese
- You're encouraged to communicate in English

What needs to be decided

- Shall I teach in English?
- I will if at least one student needs that
- Will adjust as the student roster changes

Instructor

- Xin Zhang, Assistant Professor, Computer Science
- Research Areas: Programming Languages, Software Engineering, Assured Artificial Intelligence
- Website: http://xinpl.github.io
- E-mail: xin@pku.edu.cn

TA

- Junhao Liu, PhD Student
- Programming Languages Lab @ PKU
-Email: liujunhao@pku.edu.cn

Logistics

－Time：
－Thursday 9am－12am（9：00－9：50，10：10－11：00，11：10－12：00）
－Location：
－Changping Campus： 206 Teaching Building（昌平校区教学楼206）
－Credit hours： 3
－Course Website：http：／／xinpl．github．io／courses／probprog／2024／

Course WeChat Group

Course Policy

- Laptops and phones allowed to try example programs
- Mute them
- Don't use them to do things that are unrelated to the course
- Academic integrity
- http:/ /www.dean.pku.edu.cn/web/student_info.php?type=3\&id=49
- 0 tolerance for academic dishonesty and cheating
- Speak out when you don't understand something

Grading

- Assignments: 30\%
- Mid-Term (In-Class Exam): 30\%
- Final (In-Class Exam): 40\%

Past Grades

2021	
Grade	Percentage
A+	13.3%
A	33.3%
B+	46.7%
B	6.7%

2022 (Covid)	
Grade	Percentage
A+	11.1%
A	22.2%
P	66.7%

What you will learn

- What probabilistic programming is
- How to write programs in popular probabilistic languages
- Relevant concepts like graphical models, Bayesian learning, probabilistic inferences
- Theoretical foundations
- Inferences and learning
- Frontiers

Schedule (Tentative)

- Introduction with WebPPL (Week 1 \& 2)
- Relevant backgrounds (Week 3-5)
- Theoretical foundation (Week 6)
- Mid-Term (Week 7)
- Inference (Week 8 \& 9)
- Learning (Week 10)
- Probabilistic Logic Programming (Week 11 \& 12)
- Advanced Topics (Week 13-15)
- Final (Week 16)

After This Class

- Hopefully, you can
- Know what graphical models are
- Write probabilistic programs
- Have an idea about how probabilistic programming languages work underneath

How would you build an AI? What should it be able to do?

Different Styles of AI

Five Tribes of Machine Learning

Symbolists
Connectionists Bayesians

Evolutionaries
Analogizers

"The Master Algorithm", Pedro Domingos

Different Styles of AI

Five Trihes of Machir Learning

Symbolists

Probabilistic programming $=$ Programming Languages

Bayesians
Connectionists

BAYESIAN ANALYSIS

Doesn't LLM kill everything?

- Well, you can ask ChatGPT itself if probabilistic programming is still relevant

ChatGPT

Yes, we still need probabilistic programming alongside large language models because probabilistic programming offers advantages in modeling complex relationships, incorporating domain knowledge, quantifying uncertainty, integrating diverse data sources, ensuring interpretability, and addressing data limitations. While large language models excel in natural language tasks, probabilistic programming extends AI capabilities in various domains and provides more transparent and flexible modeling approaches.

Doesn't LLM kill everything?

- They can be combined
- PP can be used to program LLMs (https://arxiv.org/pdf/2306.03081.pdf)
- They can serve as different parts of an AI (https:// arxiv.org/pdf/2306.12672.pdf)
- LLM can understand the context well, while PP can do reasoning

Spirit of Probabilistic Programming

- Express your beliefs and uncertainties to generate data
- Adjust the model based on observed data

Bayesian

Spirit of Probabilistic Programming

- Express your beliefs and uncertainties to generate data

If Xiaoming stays up, there is 50% chance he will drink coffee. If he stays up and doesn't drink coffee, he will fall asleep in class.

- Adjust the model based on observed data

Given Xiaoming didn't fall asleep today, how likely did he stay up?

Bayesian

Spirit of Probabilistic Programming

- Express your beliefs and uncertainties to generate data in programs
- Adjust the model based on observed data using general algorithms

Bayesian

$$
+
$$

Programming Languages

Old Idea that Resurged Recently

- "High level probabilistic languages have been in use since the earliest versions of FORTRAN and BASIC."- Semantics of Probabilistic Programs, Dexter Kozen, FOCS 1979
- Resurged due to
- Novel applications
- New inference algorithms
- More computing power

Anglican

Oxford, UBC, etc.

Google

General-purpose programming languages + probabilistic constructs

Venture

MIT

ProbLog
KU LEUVEN

List of probabilistic programming languages [edit]

 relevant information, and removing excessive detai that may be against Wikipedia's inclusion policy. (October 2019) (Larn how and when to remove tis template (Learn how and when to remove this template message)Wikipedia lists 55 probabilistic programming languages! relevant informaion, and removing excessive detail that may be against Wikedia's inclusion policy. (October 2019) (Leam how and when to remove inis template

Name	Extends from	Host language
Analytica ${ }^{[17]}$		C++
bayesloop ${ }^{[18][19]}$	Python	Python
CuPPL ${ }^{[20]}$	NOVA ${ }^{[21]}$	
Venture ${ }^{[22]}$	Scheme	C++
Probabilistic-C[23]	c	c
Anglican ${ }^{[24]}$	Clojure	Clojure
IBAL ${ }^{[25]}$	OCaml	
BayesDB ${ }^{[26]}$	SQLite, Python	
PRISM ${ }^{[13]}$	B-Prolog	
Infer.NET ${ }^{[12]}$.NET Framework	.NET Framework
dimple ${ }^{[10]}$	MATLAB, Java	
chimple ${ }^{[11]}$	MATLAB, Java	
BLOG ${ }^{[27]}$	Java	
diff-SAT[${ }^{[8]}$	Answer set programming, SAT (DIMACS CNF)	
PSQL ${ }^{[29]}$	SQL	
BUGS ${ }^{[14]}$		
FACTORIE ${ }^{[30]}$	Scala	Scala
PMTK ${ }^{[31]}$	MATLAB	MATLAB
Alchemy ${ }^{[32]}$	C++	
Dyna ${ }^{[33]}$	Prolog	
Figaro ${ }^{[34]}$	Scala	Scala
Church ${ }^{[35]}$	Scheme	Various: JavaScript, Scheme
ProbLog ${ }^{[36]}$	Prolog	Python, Jython
ProbT ${ }^{[37]}$	C++, Python	
Stan ${ }^{[15]}$		C++
Hakaru ${ }^{[38]}$	Haskell	Haskell
BAli-Phy (software) ${ }^{[39]}$	Haskell	C++

Probabilistic Programming

- Introduces new machine learning models
- Introduces new programming models

Old-School Bayesian Models

Given the grass is wet, how likely did it rain?

		GRASS WET	
SPRINKLER	RAIN	T	F
F	F	0.0	1.0
F	T	0.8	0.2
T	F	0.9	0.1
T	T	0.99	0.01

The picture is from Wikipedia.

Probabilistic Programming Models

Inverse Graphics - 3D faces rendered from 2D images using only 50 lines of PPL code.
Reference: http://news.mit.edu/2015/better-probabilistic-programming-0413
Another example: https://www.youtube.com/watch?v=126X_P_y6hE

Old-School Languages vs. PPL

Built-in support for random variables and operations on them

The semantics of the program is defined on a given execution.

The semantics of the program is defined on a distribution of executions.

First Probabilistic Program in WebPPL

- There is a gacha game:
- 10% chance to get a SSR card every pull.
- A pull costs 10 RMB.
- Xiaoming usually pulls 0-9 times a day.
- How many SSRs can he get a day?
- We can model it using a probabilistic program in WebPPL!
- 10% chance to get a SSR card every pull.
- A pull costs 10 RMB.
- Xiaoming usually pulls 0-9 times a day.

You can install WebPPL locally or directly try it at http://webppl.org!

```
var gacha = function(){
    var pull = Bernoulli({p:0.1});
    var VS = rangeArray(0,10);
    var num_pull = Categorical({vs: VS});
    var num_pull_inst = sample(num_pull);
    var performPull = function(c){
        if(c c== 0){
            return 0;
        }
        return sample(pull)+performPull(c-1);
    }
    return performPull(num_pull_inst)
};
gacha()
```


Let's see it!

- 10% chance to get a SSR card every pull.
- A pull costs 10 RMB.
- Xiaoming usually pulls $0-9$ times a day.
- What if I want to know the average number of SSR Xiaoming gets?
- What if I want to know what is the chance that Xiaoming gets two SSRs?
- What if I want to know the full distribution?

```
var gacha = function(){
    var pull = Bernoulli({p:0.1});
    var VS = rangeArray(0,10); Built-in
    var num_pull = Categorical({vs: VS});
    var num_pull_inst = sample(num_pull);
    var performPull = function(c){
        if(c== 0){
        return 0;
        }
        return sample(pull)+performPull(c-1);
    }
    return performPull(num_pull_inst)
};
gacha()
```

Well, you can do it manually, but WebPPL has built-in support for these!

- 10% chance to get a SSR card every pull.
- A pull costs 10 RMB.
- Xiaoming usually pulls $0-9$ times a day.
- What if I want to know the average number of SSR Xiaoming gets?
- What if I want to know what is the chance that Xiaoming gets two SSRs?
- What if I want to know the full distribution?

```
var gacha = function(){
    var pull = Bernoulli({p:0.1});
    var VS = rangeArray(0,10);
    var num_pull = Categorical({vs: VS});
    var num_pull_inst = sample(num_pull);
    var performPull = function(c){
        if(c c== 0){
        return 0;
        }
        return sample(pull)+performPull(c-1);
    }
    return performPull(num_pull_inst)
};
gacha()
var gacha_model = Infer({model: gacha})
display(expectation(gacha_model))
display(Math.exp(gacha_model.score(3)))
viz(gacha_model)
```

- 10% chance to get a SSR card every pull.
- A pull costs 10 RMB.
- Xiaoming usually pulls $0-9$ times a day.
"Black magic" behind this function invocation. It performs Marginal
Inference, which creates a map from values to probabilities.
var gacha $=$ function() $\{$
var pull = Bernoulli(\{p:0.1\});
var VS = rangeArray(0,10);
var num_pull = Categorical(\{vs: VS\});
var num_pull_inst = sample(num_pull);
var performPull = function(c)\{ if($c==0)\{$ return 0;
\}
return sample(pull)+performPull(c-1);
\}
return performPull(num_pull_inst)

Built-in distributions/ random variables

More on Marginal Probabilities

- We can enumerate all possible worlds and calculate their probabilities.
- Marginal probability of $x=X$ is defined as

$$
P(x=X)=\Sigma_{w \in\{w \mid x=X \text { in } W\}} P(w)
$$

We will talk about how to calculate them later in the course.

Let's make the problem more interesting

- 10% chance to get a SSR card every pull.
- A pull costs 10 RMB.
- If 5 continuous pulls yield 0 SSR , the $6^{\text {th }}$ pull guarantees an SSR.
- Xiaoming usually pulls 0-9 times a day.

```
var gacha = function(){
    var pull = Bernoulli({p:0.1});
    var VS = rangeArray(0,10);
    var num_pull = Categorical({vs: VS});
    var num_pull_inst = sample(num_pull);
    var performPull = function(c){
        if(c c== 0){
        return 0;
        }
        return sample(pull)+performPull(c-1);
    }
    return performPull(num_pull_inst)
};
gacha()
var gacha_model = Infer({model: gacha})
display(expectation(gacha_model))
display(Math.exp(gacha_model.score(3)))
viz(gacha_model)
```

- 10% chance to get a SSR card every pull.
- A pull costs 10 RMB.
- If 5 continuous pulls yield 0 SSR , the $6^{\text {th }}$ pull guarantees an SSR.
- Xiaoming usually pulls 0-9 times a day.
- What if I want to know the average number of SSR Xiaoming gets?
- What if I want to know what is the chance that Xiaoming gets three SSRs?
- What if I want to know the full distribution?

```
var gacha = function(){
    var pull = Bernoulli({p:0.1});
    var VS = rangeArray(0,10);
    var num_pull = Categorical({vs: VS});
    var num_pull_inst = sample(num_pull);
    var performPull = function(c, num_no_ssr){
        if(c c== 0){
        return 0;
    }
    if (num_no_ssr == 5){
        return 1 + performPull(c-1, 0);
        }
        else{
        var cp = sample(pull);
        if (cp)
            return 1 + performPull(c-1, 0);
        else
            return 0 + performPull(c-1, num_no_ssr+1);
        }
    }
    return performPull(num_pull_inst, 0)
};
```


Informal Semantics of Probabilistic Programs

- Probabilistic programs define a distribution of executions
- The randomness comes from random variables
- Given an execution e, let V be the set of random variables that are evaluated in e, we use $v(e)$ to denote the value a random variable v takes in e, then we have

$$
P(e)=\prod_{v \in V} P(v=v(e))
$$

- We will introduce formal semantics later in the course!
- 10% chance to get a SSR card every pull.
- A pull costs 10 RMB.
- If 5 continuous pulls yield 0 SSR , the $6^{\text {th }}$ pull guarantees an SSR.
- Xiaoming usually pulls 0-9 times a day.

Hey! What you assume seems quite reasonable. But Xiaoming never gets more than two SSRs a day!

- 10% chance to get a SSR card every pull.
- A pull costs 10 RMB.
- If 5 continuous pulls yield 0 SSR, the $6^{\text {th }}$ pull guarantees an SSR.
- Xiaoming usually pulls 0-9 times a day.
- Xiaoming never gets more than 2 SSRs a day.

This describes the outcome rather than the process. How should we modify the program?

```
var gacha = function(){
    var pull = Bernoulli({p:0.1});
    var VS = rangeArray(0,10);
    var num_pull = Categorical({vs: VS});
    var num_pull_inst = sample(num_pull);
    var performPull = function(c, num_no_ssr){
        if(c = = 0){
        return 0;
    }
    if (num_no_ssr == 5){
        return 1 + performPull(c-1, 0);
    }
    else{
        var cp = sample(pull);
        if (cp)
            return 1 + performPull(c-1, 0);
        else
            return 0 + performPull(c-1, num_no_ssr+1);
        }
    }
    return performPull(num_pull_inst)
};
```

- 10% chance to get a SSR card every pull.
- A pull costs 10 RMB.
- If 5 continuous pulls yield 0 SSR , the $6^{\text {th }}$ pull guarantees an SSR.
- Xiaoming usually pulls 0-9 times a day.
- Xiaoming never gets more than 2 SSRs a day.

This describes the outcome rather than the process. How should we modify the program?

New Language Construct!

```
var gacha \(=\) function() \(\{\)
    return performPull(num_pull_inst)
\};
```

var gacha1 $=$ function() \{
var num_ssrs = gacha()
condition(num_ssrs <= 2)

\}
var gacha_model = Infer(\{model: gacha1\})
display(expectation(gacha_model))
display(Math.exp(gacha_model.score(3)))
viz(gacha_model)

More on Condition

var $d=$ sample(Categorical(\{ps: [0.2, 0.3, 0.5], vs: $[1,2,3]\}))$
condition(d != 3)

Value of d	Probability
1	0.2
2	0.3
3	0.5

More on Condition

var $d=$ sample(Categorical(\{ps: [0.2, 0.3, 0.5], vs: $[1,2,3]\}))$
condition(d != 3)

Value of d	Probability
1	0.2
2	0.3
3	0.5

More on Condition

var $d=$ sample(Categorical(\{ps: [0.2, 0.3, 0.5], vs: $[1,2,3]\}))$ condition(d != 3)

Value of d	Probability
1	$0.2 /(0.2+0.3)$
2	$0.3 /(0.2+.3)$
3	0.5

More on Condition

var $d=$ sample(Categorical(\{ps: [0.2, 0.3, 0.5], vs: $[1,2,3]\}))$
condition(d != 3)

Value of d	Probability
1	0.4
2	0.6
3	0.5

More on Condition

- Recall our informal semantics

$$
P(e)=\prod_{v \in V} P(v=v(e))
$$

- We use $P(e \mid c)$ to denote the probability of an execution e after a condition statement c is added to the program, and we use $\mathrm{c}(e)$ to represent whether c holds on e, then

$$
P(e \mid c)= \begin{cases}0, & \text { if } c(e)=\text { false } \\ \frac{P(e)}{\sum_{e^{\prime} \in\left\{e^{\prime \prime} \mid c\left(e^{\prime \prime}\right)\right\}} P\left(e^{\prime}\right)}, & \text { if } c(e)=\text { true }\end{cases}
$$

More on Condition

- It might be obvious, but condition does construct a conditional distribution:

$$
P(e \mid c)=\frac{P(e \cap c)}{P(c)}=\frac{P(e \cap c)}{\sum_{e^{\prime} \in E} P\left(c \cap e^{\prime}\right)}=\frac{P(c \mid e) * P(e)}{\sum_{e^{\prime} \in E} P\left(c \mid e^{\prime}\right) * P\left(e^{\prime}\right)}= \begin{cases}0, & \text { if } c(e)=\text { false } \\ \frac{P(e)}{\sum_{e^{\prime} \in\left\{e^{\prime \prime} \mid c\left(e^{\prime \prime}\right)\right\}} P\left(e^{\prime}\right),} & \text { if } c(e)=\text { true }\end{cases}
$$

Main Probabilistic Constructs in WebPPL

- Built-in random variables and sample together describe a random process in a constructive way
- Condition provides a way to incorporate external knowledge about the output

A Simple Bayesian Inference Example

- A disease can happen to 1% of the population
- A test method has the following property:

	Tested Positive	Tested Negative
Actually Positive	90%	10%
Actually Negative	10%	90%

- Xiaoming is tested positive. How likely does he carry the disease?

A Simple Bayesian Inference Example

- We can calculate the probability using Bayes' theorem

$$
\begin{gathered}
P(\text { positive } \mid \text { tested positive })=P(\text { positive }) \times \frac{P(\text { tested positive } \mid \text { positive })}{P(\text { tested positive })} \\
=0.01 \times \frac{0.9}{0.01 * 0.9+0.99 * 0.1} \\
=0.083
\end{gathered}
$$

A Simple Bayesian Inference Example

- The probabilistic program is as follow:

```
var medic_test = function(){
    var positive = sample(Bernoulli({p:0.01}))
    var test_positive = function(pg){
        if(pg){
            return sample(Bernoulli({p:0.9}))
    }
    else
            return !sample(Bernoulli({p:0.9}))
    }
    condition(test_positive(positive))
    return positive
}
var m = Infer({model:medic_test})
display(Math.exp(m.score(true)))
viz(m)
```

- 10% chance to get a SSR card every pull.
- A pull costs 10 RMB .
- If 5 continuous pulls yield 0 SSR , the $6^{\text {th }}$ pull guarantees an SSR.
- 20% of players believe the rate is not as advertised, but only 8%.
- To test if the assumption is true, Xiaoming pulled 20 times, and got 4 SSRs.

What is the chance that the rate is actually 8% ?

Try to calculate it using Bayes’ theorem!

- 10% chance to get a SSR card every pull.
- A pull costs 10 RMB.
- If 5 continuous pulls yield 0 SSR , the $6^{\text {th }}$ pull guarantees an SSR.
- 20% of players believe the rate is not as advertised, but only 8%.
- To test if the assumption is true, Xiaoming pulled 20 times, and got 4 SSRs.

In WebPPL, it is easy!

```
var gacha = function(){
    var cheated = sample(Bernoulli({p:0.2}));
    var pull = function(){
        if (cheated){
            return Bernoulli({p:0.08});
        }
        else
            return Bernoulli({p:0.1});
    }
    var num_pull_inst = 20;
    var performPull = function(c, num_no_ssr){
    }
    var num_ssrs = performPull(num_pull_inst, 0)
    condition(num_ssrs == 4)
    return cheated;
};
var gacha_model = Infer({model: gacha})
display(expectation(gacha_model))
```

- 10% chance to get a SSR card every pull.
- A pull costs 10 RMB.
- If 5 continuous pulls yield 0 SSR, the $6^{\text {th }}$ pull guarantees an SSR.
- When spending over 1000 RMB, for every new pull, there is a chance that the bank would call Xiaoming.
- Suppose the chance is $(\mathrm{x}-1000) / 1000$, and Xiaoming got called and then stopped, how many SSRs has he pulled so far?

```
var gacha = function(){
    var VS = rangeArray(0,1000);
    var num_pull = Categorical({vs: VS});
    var performPull = function(c, num_no_ssr){
        if( c == 0){
        return [0,false];
    }
    var cost = (num_pull_inst -c )*10;
    if(cost > 2000)
        return [0, true]
        if(cost > 1000)
        if(sample(Bernoulli({p: (cost - 1000)/1000.0}))){
            return [0, true]
        }
    }
    var pull_result = performPull(num_pull_inst, 0)
    condition(pull_result[1])
    return pull_result[0]
};
```


Probabilistic Programming So Far

- Built-in support for random variables
- Categorical, Bernoulli
- Sample
- A general language to describe the sampling process
- Subet of Javascript
- The ability to impose conditions on any state
- Condition

Probabilistic Programming So Far

- Built-in support for random variables
- Categorical, Bernoulli
- Sample
- A general language to describe the sampling process
- Subet of Javascript
- The ability to impose conditions on any state
- Condition

A convenient way to express highly complex distributions
Don't worry about how to calculate it! Just think about what is it!

That sounds too good to be true. There must be a catch here ...

That sounds too good to be true. There must be a catch here ...

Well, some of the probabilistic programs can be really slow to run.

People have been working on how to make probabilistic programs run fast, which we will discuss later in the course.

```
var gacha = function(){
    var pull = Bernoulli({p:0.1});
    var VS = rangeArray(0,1000);
    var num_pull = Categorical({vs: VS});
    var num_pull_inst = sample(num_pull);
    var performPull = function(c, num_no_ssr){
        if( c == 0){
            return 0;
        }
        if (num_no_ssr == 5){
            return 1 + performPull(c-1, 0);
        }
        else{
            var cp = sample(pull);
        if (cp)
            return 1 + performPull(c-1, 0);
        else
            return 0 + performPull(c-1, num_no_ssr+1);
        }
    }
    return performPull(num_pull_inst)
};
}
```

```
var gacha1 = function(){
    var num_ssrs = gacha()
    condition(num_ssrs <= 2)
    return num_ssrs
}
var gacha_model = Infer({model: gacha1})
display(expectation(gacha_model))
viz(gacha_model)
- \(10 \%\) chance to get a SSR card every pull.
```

- A pull costs 10 RMB.
- If 5 continuous pulls yield 0 SSR , the $6^{\text {th }}$ pull guarantees an SSR.
- Xiaoming usually pulls 0-999 times a day.
- Xiaoming never gets more than 2 SSRs a day.

Next Class

- More about WebPPL
- We have talked about the core probabilistic constructs
- Representative applications using WebPPL

