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Recap of Last Lecture - WebPPL
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WebPPL

Subset of Javascript

Probabilistic Constructs

Distributions: Bernoulli, Categorical, Gaussian ... 

sample

condition

Process

Stateobserve
factor



Recap of Last Lecture - Applications
• Bayesian learning models

• Optimal experiment design

• Inverse graphics

Xin Zhang@PKU
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𝑎𝑟𝑔𝑚𝑎𝑥!𝑃 𝐷|𝜔 𝑎𝑟𝑔𝑚𝑎𝑥!𝑃 𝐷|𝜔 ∗ 𝑃(𝜔)

𝑎𝑟𝑔𝑚𝑎𝑥"𝑬# ",% (𝐷&' 𝑚 𝑥 = 𝑋, 𝑦 = 𝑌 ||𝑚))

Model(x) Image
Render(k)

x ~ Distribution k ~ Distribution
e.g., lightning, angles

condition(Image = Observed)



Is the following statement correct?

•The Bayesian way to do linear regression is strictly 
more powerful than the conventional way to do 
linear regression.
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Is the following statement correct?

•In a Bayesian learning model, the more training 
data there is, the less the prediction results will be 
affected by the prior distribution of  the parameters.
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Is the following statement correct?

•When using a Bayesian model, one should always 
use the most likely result in the prediction 
distribution.

Xin Zhang@PKU

6



Is the following statement correct?

•Given two distributions A, B, we have
DKL(A || B) = DKL(B || A) .
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Is the following statement correct?

•The goal of  the optimal experiment design is to 
choose an experiment whose expected result (i.e., 
output value) is the highest among all experiments.
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What are the applications of inverse graphics?

1. Scene understanding.

2. Data generation.

3. Both.

Xin Zhang@PKU
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Why do we need graphical models?

•How would you represent a probability distribution, so you can
• Visualize and design a model.

• Gain insights about relationships between random variables.

• Do complex inferences.
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Naïve Method
Xin Zhang@PKU
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A= True A= False

B= True 0.25 0.25

B = False 0.25 0.25

A and B are Bernoulli random variables.



Naïve Method
Xin Zhang@PKU

12

A= True A= False

B= True 0.25 0.25

B = False 0.25 0.25

A and B are Bernoulli random variables.

What questions can we ask?



Probabilistic Inference Problems
• Marginal inference:
• Let X be the set of  random variables, Y be a subset of  it, Z = X/Y then marginal 

inference is to compute
𝑃 𝑌 = 𝑉% = Σ(!" 𝑃(𝑌 = 𝑉%, 𝑍 = 𝑉)")

• Conditional inference:
• Let X be the set of  random variables, Y and W be subsets of  it then conditional 

inference is to compute
𝑃 𝑌 = 𝑉! 𝑊 = 𝑉")

Xin Zhang@PKU

13



Probabilistic Inference in Table Method
Xin Zhang@PKU
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A= True A= False

B= True 0.25 0.25

B = False 0.25 0.25

P(A = True) = P(A = True, B = False) + P(A = True, B = True)



Probabilistic Inference in Table Method
Xin Zhang@PKU
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A= True A= False

B= True 0.25 0.25

B = False 0.25 0.25

𝑃 𝐴 = 𝑇𝑟𝑢𝑒 𝐵 = 𝑇𝑟𝑢𝑒) =
𝑃(𝐴 = 𝑇𝑟𝑢𝑒, 𝐵 = 𝑇𝑟𝑢𝑒)

𝑃 𝐴 = 𝑇𝑟𝑢𝑒, 𝐵 = 𝑇𝑟𝑢𝑒 + 𝑃(𝐴 = 𝐹𝑎𝑙𝑠𝑒, 𝐵 = 𝑇𝑟𝑢𝑒)



Bayesian Networks
Xin Zhang@PKU
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• Directed Acyclic Graph (DAG)



Bayesian Networks
Xin Zhang@PKU
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General Factorization



Bayesian Networks
Xin Zhang@PKU
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Are x1 and x2 independent?

What about x4 and x5?

What about x4 and x5 when x1 is fixed? 

We will talk about dependence later!



Example Application: Bayesian Curve Fitting 

Xin Zhang@PKU
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Polynomial

x is the set of training inputs 
while t is their predictions.



Example Application: Bayesian Curve Fitting 

Xin Zhang@PKU
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Plate



Example Application: Bayesian Curve Fitting 
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• Input variables and explicit hyperparameters

• 𝛼 is the parameter of the 
parameter. For example:

𝑤*~𝑁(𝛼, 1)

• 𝜎+ is the variance of the 
gaussian noise in training.



Bayesian Curve Fitting — Learning
Xin Zhang@PKU
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• Condition on data



Bayesian Curve Fitting — Prediction
Xin Zhang@PKU
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Predictive distribution: 

where



Which model is correct?
Xin Zhang@PKU
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A= True A= False

B= True 0.09 0.09

B = False 0.01 0.81

A: whether the school 
bus encounters an 
accident

B: whether the teacher 
is late for the class

A

B

B

A



Generative Models
Xin Zhang@PKU
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• Causal process for generating images

We will talk about causality in a later lecture!



Two Special Cases

•Discrete variables

•Gaussian variables

Xin Zhang@PKU
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Discrete Variables
Xin Zhang@PKU
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• General joint distribution: 𝐾# − 1parameters

• Independent joint distribution: 2 𝐾 − 1 parameters



Discrete Variables
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General joint distribution over M variables: 
KM - 1 parameters

M -node Markov chain: K - 1 + (M - 1) K(K - 1)
parameters



Discrete Variables: Bayesian Parameters 
Xin Zhang@PKU
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Discrete Variables: Bayesian Parameters 

•Why are Direchlet distributions used?
• They are conjugate priors for categorical and binomial distributions.

• Further reading: https://towardsdatascience.com/dirichlet-
distribution-a82ab942a879

Xin Zhang@PKU
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Discrete Variables: Bayesian Parameters
Xin Zhang@PKU
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Shared prior



Parameterized Conditional Distributions
Xin Zhang@PKU
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If                       are discrete,  
K-state variables, 

in 
general has O(K M) 
parameters.

The parameterized form

requires only M + 1 parameters



Linear-Gaussian Models
Xin Zhang@PKU
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• Directed Graph

• Vector-valued Gaussian Nodes
Each node is Gaussian, the mean is a linear function of the parents.



Recall This Graph
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Are x1 and x2 independent?

What about x4 and x5?

What about x4 and x5 when x1 is fixed? 

We will talk about dependence now!



Conditional Independence
Xin Zhang@PKU
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• a is independent of  b given c

• Equivalently

• Notation



Conditional Independence: Example 1
Xin Zhang@PKU

36



Conditional Independence: Example 1
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Conditional Independence: Example 2
Xin Zhang@PKU
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Conditional Independence: Example 2
Xin Zhang@PKU
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Conditional Independence: Example 3
Xin Zhang@PKU
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• Note: this is the opposite of  Example 1, with c unobserved.



Note: this is the opposite of Example 1, with c observed.

Conditional Independence: Example 3
Xin Zhang@PKU
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“Am I out of fuel?”
Xin Zhang@PKU

42

B = Battery (0=flat, 1=fully charged)
F = Fuel Tank (0=empty, 1=full)
G = Fuel Gauge Reading

(0=empty, 1=full)

and hence



“Am I out of fuel?”
Xin Zhang@PKU
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Probability of an empty tank increased by observing G  = 0. 

What if now we also know the battery is flat? 



“Am I out of fuel?”
Xin Zhang@PKU
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D-separation
•A, B, and C are non-intersecting subsets of  nodes in a directed graph.
•A path from A to B is blocked if  it contains a node such that either

a) the arrows on the path meet either head-to-tail or tail-to-tail at the 
node, and the node is in the set C, or

b) the arrows meet head-to-head at the node, and neither the node, nor 
any of  its descendants, are in the set C.

• If  all paths from A to B are blocked, A is said to be d-separated from B by C. 
• If  A is d-separated from B by C, the joint distribution over all variables in 

the graph satisfies                  .

Xin Zhang@PKU
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D-separation: Example
Xin Zhang@PKU
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D-separation: I.I.D. Data
Xin Zhang@PKU
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Question

•What can D-separation be used for?

Xin Zhang@PKU
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The Markov Blanket
Xin Zhang@PKU
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Factors independent of xi cancel between 
numerator and denominator.



Bayesian Networks: Summary
• Directed

• Factorizations of  conditional probabilities

• Reason about the relationships between different variables using 
conditional independence

Xin Zhang@PKU
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Markov Random Fields
• Undirected

• Markov networks

• One motivation: reasoning about conditional independence is subtle in 
Bayesian networks. Can we have something simpler?

Xin Zhang@PKU
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Markov Random Fields
Xin Zhang@PKU
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Markov Blanket



Markov Random Fields: Intuitions 
• If  x and y are not directly connected, then they should be independent 

conditioning on the other variables

• 𝑃 𝑥, 𝑦 |𝑉/{𝑥, 𝑦} = 𝑃 𝑥 |𝑉/{𝑥, 𝑦} ∗ 𝑃 𝑦 |𝑉/{𝑥, 𝑦}

• x and y should not appear in the same factor

• We should put nodes that are directly connected in the same factor

Xin Zhang@PKU
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Cliques and Maximal Cliques
Xin Zhang@PKU
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Clique

Maximal Clique



Joint Distribution
Xin Zhang@PKU
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• where                   is the potential over maximal clique C and 

• is the normalization coefficient; note: M K-state variables ® KM terms in Z.

• In general, we only require potentials to be positive. One example: Energies and 
the Boltzmann distribution



Factorization and Conditional Independence

• Given a graph (potential function unknown), let UI be the distributions 
whose conditional independence fits the graph

• Let UF be the subset of  UI that can be expressed in the factorization 
form

• We have UF = UI: the Hammersley-Clifford theorem (Clifford, 1990)

Xin Zhang@PKU
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Illustration: Image De-Noising
Xin Zhang@PKU
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Original Image Noisy Image

𝑥! ∈ {−1, 1} 𝑦" ∈ {−1, 1}



Illustration: Image De-Noising
Xin Zhang@PKU
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Special Case: Conditional Random Field
• There two sets of  variables X and Y

• The conditional distribution Y|X forms a Markov Random Field

• By observing Y, predict X

• Example: text segmentation: X: text, Y: segments

Xin Zhang@PKU
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Summary
• Bayesian networks
• Directed
• Factorization of  conditional probabilities
• Conditional independence: D-separation

• Markov random fields
• Undirected
• Factorization over maximum cliques

Xin Zhang@PKU
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Next Class
• Relationship between directed and undirected models

• Inference

Xin Zhang@PKU
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