Probabilistic Graphical Models (continued)

Xin Zhang
Peking University

Recap: Bayesian Networks

- Directed Acyclic Graph (DAG)

Recap: Conditional Independence

Shaded nodes are observed.

Recap: D-Separation

- A, B, and C are non-intersecting subsets of nodes in a directed graph.
- A path from A to B is blocked if it contains a node such that either
a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C , or
b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C .
- If all paths from A to B are blocked, A is said to be d-separated from B by C.
- If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies

D-separation: Example

$a \not \perp b \mid c$

$a \Perp b \mid f$

Which graph(s) can describe the following distribution?

- $A \sim N(0,1), B \sim N(A, 1), C \sim N(B, 1)$

1

4

2

3

Is A d-separated from C by B?

Recap: The Markov Blanket

$$
\begin{aligned}
p\left(\mathbf{x}_{i} \mid \mathbf{x}_{\{j \neq i\}}\right) & =\frac{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right)}{\int p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right) \mathrm{d} \mathbf{x}_{i}} \\
& =\frac{\prod_{k} p\left(\mathbf{x}_{k} \mid \mathrm{pa}_{k}\right)}{\int \prod_{k} p\left(\mathbf{x}_{k} \mid \mathrm{pa}_{k}\right) \mathrm{d} \mathbf{x}_{i}}
\end{aligned}
$$

Factors independent of x_{i} cancel between numerator and denominator.

Recap: Markov Random Field

- Undirected, can have cycles
- Markov networks
- Reason about conditional independence using graph reachability

Recap: Markov Random Field

$$
p(\mathbf{x})=\frac{1}{Z} \prod_{C} \psi_{C}\left(\mathbf{x}_{C}\right)
$$

- where $\psi_{C}\left(\mathbf{x}_{C}\right)$ is the potential over maximal clique \mathbf{C} and

$$
Z=\sum_{\mathbf{x}} \prod_{C} \psi_{C}\left(\mathbf{x}_{C}\right)
$$

- is the normalization coefficient.

Recap: Markov Random Field

$$
\begin{aligned}
& P(A=\text { True, } B=\text { True }, C=\text { True }, D=\text { True }) \\
& =\frac{\psi_{A, B, C}(\text { True, True,True }) \times \psi_{C, D}(\text { True }, \text { True })}{\Sigma_{A, B, C, D} \psi_{A, B, C}(A, B, C) \times \psi_{C, D}(C, D)}
\end{aligned}
$$

This Class

- Relationship between directed and undirected models
- Inference ("Exact")

Converting Directed to Undirected Graphs

Converting Directed to Undirected Graphs

Steps in Converting Directed to Undirected

1. Add links between all pairs of parents for each node (moralization)
2. Drop arrows, which results in a moral graph
3. Initialize all of the clique potentials to 1 . Take each conditional distribution factor and multiply it into one of the clique potentials
4. $Z=1$

Example

$\psi_{A, B, C}=P(A) \times P(B) \times P(C \mid A, B)$
$\psi_{C, D}=P(D \mid C)$

Directed vs. Undirected Graphs

Can you convert the following graphs and keep the conditional indecencies?

$$
\begin{aligned}
& A \Perp B \mid \emptyset \\
& A \not \Perp B \mid C
\end{aligned}
$$

$$
\begin{gathered}
A \not \Perp B \mid \emptyset \\
A \Perp B \mid C \cup D \\
C \Perp D \mid A \cup B
\end{gathered}
$$

Directed vs. Undirected Graphs

Distributions that can be perfectly represented by two types of graphs in terms of conditional independence

Inference in Graphical Models

- Marginal probabilities: $\mathrm{p}(\mathrm{x})$ or $\mathrm{p}(\mathrm{x}, \mathrm{y})$

What is the computational complexity regarding the number of variables?

- Conditional probabilities: $\mathrm{p}(\mathrm{x} \mid \mathrm{o})$ or $\mathrm{p}(\mathrm{x}, \mathrm{y} \mid \mathrm{o})$

Inference in Graphical Models

Shaded nodes are observed.

$$
p(y)=\sum_{x^{\prime}} p\left(y \mid x^{\prime}\right) p\left(x^{\prime}\right) \quad p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Inference on a Chain

$$
\begin{gathered}
p(\mathbf{x})=\frac{1}{Z} \psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,3}\left(x_{2}, x_{3}\right) \cdots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right) \\
p\left(x_{n}\right)=\sum_{x_{1}} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_{N}} p(\mathbf{x})
\end{gathered}
$$

Inference on a Chain

$$
\begin{aligned}
\underbrace{}_{x_{1}} & \cdots x_{x_{n-1}}^{\mu_{\alpha}\left(x_{n}\right)} \\
& \underbrace{\left[\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \cdots\left[\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right] \cdots\right]}_{\mu_{\alpha}\left(x_{n}\right)} \\
& \underbrace{\left[\sum_{x_{n+1}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right) \cdots\left[\sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right] \cdots\right]}_{\mu_{\beta}\left(x_{n}\right)}
\end{aligned}
$$

Inference on a Chain

Inference on a Chain

$$
\begin{gathered}
\mu_{\alpha}\left(x_{n-1}\right) \\
\mu_{\alpha}\left(x_{2}\right)=\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right) \quad \mu_{\beta}\left(x_{N-1}\right)=\sum_{x_{N}} \psi_{N-1, N}\left(x_{n-1}\right) \\
Z=\sum_{x_{n}} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)
\end{gathered}
$$

Inference on a Chain

- To compute local marginals:
- Compute and store all forward messages, $\mu_{\alpha}\left(x_{n}\right)$.
- Compute and store all backward messages, $\mu_{\boldsymbol{\beta}}\left(x_{n}\right)$.
- Compute \mathbf{Z} at any node X_{m}
- Compute

$$
p\left(x_{n}\right)=\frac{1}{Z} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)
$$

for all variables required.

What about $\mathrm{p}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$?

$$
\begin{aligned}
& \mathrm{p}\left(x_{n-1}, x_{n}\right)=\frac{1}{Z} \Sigma_{x_{1}} . . \Sigma_{x_{n-2}} \Sigma_{x_{n+1}} \ldots \Sigma_{x_{N}} \psi_{1,2}\left(x_{1}, x_{2}\right) \ldots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right) \\
& =\frac{1}{Z} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \Sigma_{x_{1}} . . \Sigma_{x_{n-2}} \psi_{1,2}\left(x_{1}, x_{2}\right) \ldots \psi_{n-2, n-1}\left(x_{n-2}, x_{n-1}\right) \\
& \quad \Sigma_{x_{n+1}} . \Sigma_{x_{N}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right) \ldots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right) \\
& =\frac{1}{z} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \mu_{\alpha}\left(x_{n-1}\right) \mu_{\beta}\left(x_{n}\right)
\end{aligned}
$$

What about $p\left(x_{n} \mid x_{m}=V\right)$

- Simply fix x_{m} to V instead of doing summarization over x_{m} !
- Z will also be changed accordingly

More Complex Graphs: Trees

Undirected Tree

Directed Tree

Polytree

On these graphs, we can perform efficient exact inference using local message passing! Before introducing algorithms, we first introduce a new model

Factor Graphs

- Bipartite graph
- Two kinds of nodes:
- Regular random variables
- Factor nodes
- Factor node represents a function that maps assignments to its neighbors to a real number

- $p(\boldsymbol{x})=\prod_{s} f_{s}\left(\boldsymbol{x}_{\boldsymbol{s}}\right)$

$$
p\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{z} f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{1}, x_{2}\right) f_{c}\left(x_{2}, x_{3}\right) f_{d}\left(x_{3}\right)
$$

Factor Graphs from Directed Graphs

$$
\begin{aligned}
p(\mathbf{x})= & p\left(x_{1}\right) p\left(x_{2}\right) \\
& p\left(x_{3} \mid x_{1}, x_{2}\right)
\end{aligned}
$$

$f\left(x_{1}, x_{2}, x_{3}\right)=$
$p\left(x_{1}\right) p\left(x_{2}\right) p\left({ }_{3} \mid x_{1}, x_{2}\right)$

$$
\begin{aligned}
f_{a}\left(x_{1}\right) & =p\left(x_{1}\right) \\
f_{b}\left(x_{2}\right) & =p\left(x_{2}\right) \\
f_{c}\left(x_{1}, x_{2}, x_{3}\right) & =p\left(x_{3} \mid x_{1}, x_{2}\right)
\end{aligned}
$$

Factor Graphs from Undirected Graphs

$\psi\left(x_{1}, x_{2}, x_{3}\right)$

$f\left(x_{1}, x_{2}, x_{3}\right)$
$\quad=\quad \psi\left(x_{1}, x_{2}, x_{3}\right)$

$$
f_{a}\left(x_{1}, x_{2}, x_{3}\right) f_{b}\left(x_{2}, x_{3}\right)
$$

$$
=\psi\left(x_{1}, x_{2}, x_{3}\right)
$$

$$
=\psi\left(x_{1}, x_{2}, x_{3}\right)
$$

The Sum-Product Algorithm

- Objective:
i. to obtain an efficient, exact inference algorithm for finding marginals on tree-structure graphs;
ii. in situations where several marginals are required, to allow computations to be shared efficiently.
- Key idea: Distributive Law

$$
a b+a c=a(b+c)
$$

The Sum-Product Algorithm

The Sum-Product Algorithm

$$
\begin{array}{rlr}
p(x) & =\prod_{s \in \operatorname{ne}(x)}\left[\sum_{X_{s}} F_{s}\left(x, X_{s}\right)\right] & \\
& =\prod_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x) . & \mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} F_{s}\left(x, X_{s}\right)
\end{array}
$$

The Sum-Product Algorithm

$$
F_{s}\left(x, X_{s}\right)=f_{s}\left(x, x_{1}, \ldots, x_{M}\right) G_{1}\left(x_{1}, X_{s 1}\right) \ldots G_{M}\left(x_{M}, X_{s M}\right)
$$

The Sum-Product Algorithm

The Sum-Product Algorithm

$$
\begin{array}{ll}
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \sum_{X_{s m}} G_{m}\left(x_{m}, X_{s m}\right) & =\sum_{X_{s m}} \prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} F_{l}\left(x_{m}, X_{m l}\right) \\
G_{m}\left(x_{m}, X_{s m}\right) \\
\mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
\end{array}
$$

The Sum-Product Algorithm

- Initialization

The Sum-Product Algorithm

- To compute local marginals:
- Pick an arbitrary node as root
- Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
- Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
- Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

Marginal Inference on A Set

- What if I want to know $p\left(\boldsymbol{x}_{\boldsymbol{s}}\right)$ where $\boldsymbol{X}_{\boldsymbol{s}}$ are nodes in a factor s?

$$
p\left(\boldsymbol{x}_{s}\right)=f_{s}\left(\boldsymbol{x}_{s}\right) \prod_{i \in n e\left(f_{s}\right)} \mu_{x_{i} \rightarrow f_{s}}\left(x_{i}\right)
$$

Sum-Product: Example

Sum-Product: Example

Sum-Product: Example

Sum-Product: Example

What about conditional probabilities?

- Fix the observed variables
- Or add a factor node
- Both need normalization

What if I want to know values of all variables that have the highest probability?
$\operatorname{argmax}_{\mathbf{x}} \mathrm{p}(\mathbf{x})$

The Max-Sum Algorithm

Objective: an efficient algorithm for finding
i. the value $x^{\text {max }}$ that maximises $p(x)$;
ii. the value of $p\left(x^{\max }\right)$.

In general, maximum marginals \neq joint maximum

	$x=0$	$x=1$
$y=0$	0.3	0.4
$y=1$	0.3	0.0

$$
\underset{x}{\arg \max } p(x, y)=1 \quad \underset{x}{\arg \max } p(x)=0
$$

The Max-Sum Algorithm

- Maximizing over a chain (max-product)

$$
\begin{aligned}
& p\left(\mathbf{x}^{\max }\right)=\max _{\mathbf{x}} p(\mathbf{x})=\max _{x_{1}} \ldots \max _{x_{M}} p(\mathbf{x}) \\
& \quad=\frac{1}{Z} \max _{x_{1}} \cdots \max _{x_{N}}\left[\psi_{1,2}\left(x_{1}, x_{2}\right) \cdots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right] \\
& \quad=\frac{1}{Z} \max _{x_{1}}\left[\max _{x_{2}}\left[\psi_{1,2}\left(x_{1}, x_{2}\right)\left[\cdots \max _{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right] \cdots\right]\right]
\end{aligned}
$$

The Max-Sum Algorithm

- Generalizes to tree-structured factor graph

$$
\max _{\mathbf{x}} p(\mathbf{x})=\max _{x_{n}} \prod_{f_{s} \in \operatorname{ne}\left(x_{n}\right)} \max _{X_{s}} f_{s}\left(x_{n}, X_{s}\right)
$$

- maximizing as close to the leaf nodes as possible

$$
\max (\mathrm{ab}, \mathrm{ac})=a \max (\mathrm{~b}, \mathrm{c})
$$

The Max-Sum Algorithm

- Max-Product \rightarrow Max-Sum
- For numerical reasons, use

$$
\ln \left(\max _{\mathbf{x}} p(\mathbf{x})\right)=\max _{\mathbf{x}} \ln p(\mathbf{x})
$$

- Again, use distributive law

$$
\max (a+b, a+c)=a+\max (b, c)
$$

The Max-Sum Algorithm

- Initialization (leaf nodes)

$$
\mu_{x \rightarrow f}(x)=0 \quad \mu_{f \rightarrow x}(x)=\ln f(x)
$$

- Recursion

$$
\begin{aligned}
\mu_{f \rightarrow x}(x) & =\max _{x_{1}, \ldots, x_{M}}\left[\ln f\left(x, x_{1}, \ldots, x_{M}\right)+\sum_{m \in \operatorname{ne}(f) \backslash x} \mu_{x_{m} \rightarrow f}\left(x_{m}\right)\right] \\
\phi(x) & =\arg _{x_{1}, \ldots, x_{M}}^{\arg \max }\left[\ln f\left(x, x_{1}, \ldots, x_{M}\right)+\sum_{m \in \operatorname{ne}(f,) \backslash x} \mu_{x_{m} \rightarrow f}\left(x_{m}\right)\right] \text { Track the values } \\
\mu_{x \rightarrow f}(x) & =\sum_{l \in \operatorname{ne}(x) \backslash f} \mu_{f_{l} \rightarrow x}(x)
\end{aligned}
$$

Max-Sum Algorithm

- Termination (root node)

$$
\begin{aligned}
p^{\max } & =\max _{x}\left[\sum_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)\right] \\
x^{\max } & =\underset{x}{\arg \max }\left[\sum_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)\right]
\end{aligned}
$$

- Back-track, for all nodes \mathbf{i} with I factor nodes to the root $(I=0)$

$$
\mathbf{x}_{l}^{\max }=\phi\left(x_{i, l-1}^{\max }\right)
$$

Sum-Product vs. Max-Sum

Sum-Product

Max-Sum

$$
\begin{array}{cc}
\mu_{f \rightarrow x}(x)=\sum_{x_{1}} \ldots \sum_{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{x_{m} \in n e(f) \backslash \mathrm{x}} \mu_{x_{m} \rightarrow f}\left(x_{m}\right) & \mu_{f \rightarrow x}(x)=\max _{x_{1}, \ldots, x_{M}}\left[\ln f\left(x, x_{1}, \ldots, x_{M}\right)+\sum_{x_{m} \in n e(f) \backslash \mathrm{x}} \mu_{x_{m} \rightarrow f}\left(x_{m}\right)\right] \\
\mu_{x \rightarrow f}(x)=\prod_{l \in n e(x) \backslash \mathrm{f}} \mu_{f_{l} \rightarrow x}(x) & \mu_{x \rightarrow f}(x)=\sum_{l \in n e(x) \backslash \mathrm{f}} \mu_{f_{l} \rightarrow x}(x) \\
\mathrm{a}(\mathrm{~b}+\mathrm{c})=\mathrm{ab}+\mathrm{bc} & a+\max (\mathrm{b}, \mathrm{c})=\max (\mathrm{a}+\mathrm{b}, \mathrm{a}+\mathrm{c})
\end{array}
$$

What about inference on general graphs?

- NP-complete
- Counting problem

The Junction Tree Algorithm

- Exact inference on general graphs
- Works by turning the initial graph into a junction tree and then running a sum-product-like algorithm
- Intractable on graphs with large cliques

The Junction Tree Algorithm

Loopy Belief Propagation

- Sum-Product on general graphs
- Initial unit messages passed across all links, after which messages are passed around until convergence (not guaranteed!)
- Approximate but tractable for large graphs
- Sometime works well, sometimes not at all

Recap

- Bayesian networks \rightarrow Markov Random Fields
- Connect parents
- Drop arrows
- Multiply conditional probabilities to get potentials
- Factor graph
- Random variable nodes
- Factor nodes
- $F(x)=\prod_{f} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Recap

- Marginal inference on tree-structure factor graph
- Sum-product algorithm: a message-passing algorithm
- Exchange sum and product using the distribution law
- Messages from a factor to a node: sum over products of messages from other nodes to the factor
- Messages from a node to a factor: product over messages from other factors to the node
- Inferring settings with the highest probability
- Max-sum algorithm

Recap

- Inference on general graphs with loops is NPC
- Exact: junction algorithm
- Approximate: loopy belief propagation

Next Class

- Approximate inference
- Sampling methods

