Semantics of Probabilistic Programming

Xin Zhang
Peking University

Recap: Problem and Motivation

- Evaluate $\mathrm{P}(\mathrm{Z} \mid \mathrm{X})$ and related expectations
- Problem with exact methods
- Curse of dimensionality
- $\mathrm{P}(\mathrm{Z} \mid \mathrm{X})$ has a complex form making expectations analytically intractable

Recap: Variational Inference

- Functional: a function that maps a function to a value

$$
\mathrm{H}[p]=\int p(x) \ln p(x) \mathrm{d} x
$$

- Variational method: find an input function that maximizes the functional
- Variational inference: find a distribution $\mathrm{q}(\mathrm{z})$ to approximate $\mathrm{p}(\mathrm{Z} \mid \mathrm{X})$ so a functional is maximized

Recap: Variational Inference

$$
\ln p(\mathbf{X})=\mathcal{L}(q)+\mathrm{KL}(q \| p)
$$

$$
\begin{aligned}
& \substack{\text { Between p(ZXX) } \\
\text { and q(Z) }} \\
& \mathcal{L}(q)=\int q(\mathbf{Z}) \ln \left\{\frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}\right\} \mathrm{d} \mathbf{Z} \\
& \mathrm{KL}(q \| p)=-\int q(\mathbf{Z}) \ln \left\{\frac{p(\mathbf{Z} \mid \mathbf{X})}{q(\mathbf{Z})}\right\} \mathrm{d} \mathbf{Z}
\end{aligned}
$$

If q can be any distribution, then variational inference is precise. But in practice, it cannot

Is the following statement right?

- Probability $\mathrm{p}(\mathrm{Z}, \mathrm{X})$ is usually easier to evaluate compared to $\mathrm{P}(\mathrm{Z} \mid \mathrm{X})$.

Recap: Sampling Methods

- Stochastic methods
- Also called Monte Carlo methods

$$
\mathbb{E}[f]=\int f(\mathbf{z}) p(\mathbf{z}) \mathrm{d} \mathbf{z} \quad \Longleftrightarrow \hat{f}=\frac{1}{L} \sum_{l=1}^{L} f\left(\mathbf{z}^{(l)}\right) \mathrm{z}_{1, \ldots, \mathrm{z}_{1} \text { are samples from } \mathrm{p}}
$$

Recap: Sampling Methods

- Transformation method: CDF^{-1} (uniform $\left.(0,1)\right)$
- Rejection sampling
- A proposal distribution $\mathrm{q}(\mathrm{z})$
- Choose k, such that $k^{*} q(z)>=p(z)$, for any x
- Sampling process:
- Sample z_{0} from $q(z)$
- Sample h from uniform $\left(0, \mathrm{k}^{*} \mathrm{q}\left(\mathrm{z}_{0}\right)\right)$
- If $\mathrm{h}>\mathrm{p}\left(\mathrm{z}_{0}\right)$, discard it; otherwise, keep it

Is the following statement correct?

- All primitive distributions can be constructed using the transformation method.

Is the following statement right?

- In rejection sampling, given k, the probability whether a sample is accepted does not depend on the proposal distribution

Is the following statement correct?

-The efficiency of rejection sampling depends on the choice of the proposal distribution

Recap: Sampling Methods

- Importance sampling
- Used to evaluate $f(z)$ where z is from $p(z)$

$$
E(f)=\int f(z) p(z) d z=\int f(z) \frac{p(z)}{q(z)} q(z) d z \approx \frac{1}{L} \sum_{l=1}^{L} \frac{p\left(z^{l}\right)}{q\left(z^{l}\right)} f\left(z^{l}\right)
$$

- How to get real samples: create a new discrete distribution using the above samples and set their probabilities using the importance weights

Recap: Sampling Methods

- Markov Chain Monte Carlo
- A sampling method that works with a large family of distributions and high dimensions
- Workflow
- Start with some sample Z_{0}
- Suppose the current sample is z^{τ}. Draw next sample z^{*} from $q\left(z \mid z^{\tau}\right)$
- Decide whether to accept z^{*} as the next state based some criteria. If accepted, $z^{\tau+1}=z^{*}$. Otherwise, $z^{\tau+1}=z^{\tau}$
- Samples form a Markov chain

Recap: Sampling Methods

Constraints on the proposal distribution	Metropolis	Metropolis-Hasting
Accepting probability	$\min \left(1, \frac{p\left(z^{\prime}\right)}{p(z)}\right)$	None

Recap: Why MCMC works?

- Markov chain: $\quad p\left(\mathbf{z}^{(m+1)} \mid \mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(m)}\right)=p\left(\mathbf{z}^{(m+1)} \mid \mathbf{z}^{(m)}\right)$.
- Stationary distribution of a Markov chain: each step in the chain does not change the distribution.
- Detailed balance: $\quad p^{\star}(\mathbf{z}) T\left(\mathbf{z}, \mathbf{z}^{\prime}\right)=p^{\star}\left(\mathbf{z}^{\prime}\right) T\left(\mathbf{z}^{\prime}, \mathbf{z}\right)$
- $p^{*}(\mathbf{z})$ is a stationary distribution
- A ergodic Markov chain converges to the same distribution regardless the initial distribution
- The system does not return to the same state at fixed intervals
- The expected number of steps for returning to the same state is finite

Is the following statement right?

- The samples drawn using MCMC are independent

Is the following statement right?

- A Markov chain can have more than one stationary distribution

Use MCMC to solve the problem below

- Super optimization
- There is a straight-line program
- A set of test cases are given
- The program can be modified by deleting a statement, inserting a statement from the initial program at a given place
- Optimize the program by using the above operations

Motivations

- In order to reason about properties of a program, we need formal tools
- Example questions
- Is the postcondition satisfied?
- Does this program halt on all inputs?
- Does it always halt in polynomial time?

Motivations

- In order to reason about properties of a program, we need formal tools
- Example questions
- What is the probability that the postcondition is satisfied?
- What is the probability that this program halts on all inputs?
- What is the probability that it halts in polynomial time?

Motivations

- When designing a language, rigorous semantics is needed to guarantee its correctness
- An example that didn't have rigorous semantics: Javascript
- https://javascriptwtf.com

Examples

We can decompose the semantics of a program into semantics of statements

$\mathrm{x}:=0$
while $\mathrm{x}==0$ do
What is the probability that It runs through n iterations? What is the expected number of iterations? What is the probability that the program halts?

$$
x:=\operatorname{coin}()
$$

Examples

```
main{
        u:=0;
        v:=0;
        step(u,v);
        while u!=0 || v!=0 do
            step(u,v)
}
step(u,v){
    x:=coin();
    y:=coin();
    u:=u+(x-y);
    v:=v+(x+y-1)
```


What is the probability that the program halts?

The program is a two-dimensional random walk. According to probability theory, the probability that it returns to the origin is 1.

By relating to concepts in probabilities, we can simplify the reasoning

Examples

$\mathrm{i}:=0 ;$
$\mathrm{n}:=0 ;$
while $\mathrm{i}<1 \mathrm{e} 9$ do
$\mathrm{x}:=\mathrm{rand}($;
$\mathrm{y}:=\operatorname{rand}($;
if $\left(\mathrm{x}^{*} \mathrm{x}+\mathrm{y}^{*} \mathrm{y}\right)<1$ then $\mathrm{n}:=\mathrm{n}+1$;
$\mathrm{i}:=\mathrm{i}+1$
$\mathrm{i}:=4 * \mathrm{n} / 1 \mathrm{e}$;

What does this program compute?
How to reason about it?

Measure Theory

The mathematical foundation of probabilities and integration

Uniform(0,1) is called a Lebesgue measure

This Class

- Syntax of a simple imperative probabilistic language
- Operational semantics
- Measure theory \& denotational semantics (brief)

A Simple Imperative Language

- Highly simplified version
- Enough to explain the core concepts

Syntax

- Deterministic terms (expressions)
- Terms (Deterministic + Probabilistic)
- Tests (expression that evaluate to Booleans)
- Programs

Syntax - Deterministic Terms

(i) Deterministic terms:

$$
\begin{aligned}
d::= & a & & a \in \mathbb{R}, \text { constants } \\
& \mid x & & x \in \operatorname{Var}, \text { a countable set of variables } \\
& \mid d \text { op } d & & \text { op } \in\{+,-, *, \div\}
\end{aligned}
$$

Syntax - Terms

(ii) Terms:

$$
\begin{aligned}
t::= & d \\
& |\operatorname{coin}()| \operatorname{rand}() \\
& \mid t \text { op } t
\end{aligned}
$$

d a deterministic term
sample in $\{0,1\}$ and $[0,1]$, respectively
op $\in\{+,-, *, \div\}$

Syntax - Tests

(iii) Tests:

$$
b::=\text { true | false }
$$

$|d==d| d<d|d\rangle d \quad$ comparison of deterministic terms
$|b \& \& b| b||b|!b$

Boolean combinations of tests

Syntax - Program

(iv) Programs:

$$
\begin{aligned}
e::= & \text { skip } \\
& \mid x:=t \\
& \mid e ; e \\
& \mid \text { if } b \text { then } e \text { else } e \\
& \mid \text { while } b \text { do } e
\end{aligned}
$$

assignment
sequential composition conditional while loop

Syntax - Example Program

if $\operatorname{coin}()==1$ then

$$
x:=\operatorname{rand}(0 * 5
$$

else

$$
x:=6
$$

if $x>4.5$ then

$$
y:=\operatorname{coin}(0+2
$$

else

$$
y:=100
$$

Operational Semantics

- Model the step-by-step executions of a program on a machine
- Tracks the memory-state
- Values assigned to each variable
- Values of each random number generator
- A stack of instructions

Random Number Generators

- Modeled as infinite streams of numbers:
- coin(): $m_{0} m_{1} \ldots$ are i.i.d from Bernoulli(0.5)
- rand ()$: p_{0} p_{1} \ldots$ are i.i.d from uniform $(0,1)$
- When invoking the generator, a number is taken from the stream
- Pseudo-random generators

Operational Semantics: Machine States

- A memory-state is a triple (s, m, p)
- A store $s: n \rightarrow R$, where there are n variables in the program
- $m \in\{0,1\}^{\omega}$ is the current stream of available random Boolean values
- $p \in[0,1]^{\omega}$ is the current stream of available random real values
- A machine-state is a 4-tuple (e, s, m, p)
- e corresponds to a stack of instructions
- (s, m, p) is a memory-state

Machine States: Example

$$
\begin{aligned}
& (e,\{x \rightarrow \perp\}, 1001011 \ldots, 0.20 .50 .90 .21 \ldots) \\
& \text { if } \operatorname{coin}()==1 \text { then } \\
& (x:=\operatorname{rand}() * 5,\{x \rightarrow \perp\}, 001011 \ldots, 0.20 .50 .90 .21 \ldots) \\
& \qquad \mathbf{x}:=\operatorname{rand}()^{* 5} \\
& \text { (skip, }\{x \rightarrow 1\}, 001011 \ldots, 0.50 .90 .21 \ldots) \\
& \text { else } \\
& \qquad \mathbf{x}:=\mathbf{6}
\end{aligned}
$$

Operational Semantics: Introduction

- We now talk about how a program modifies the machine state
- Type of the operational semantics

$$
(e, s, m, p) \rightarrow\left(e^{\prime}, s^{\prime}, m^{\prime}, p^{\prime}\right)
$$

- Before talking about the reduction, we need to define semantics of terms and tests

Semantics of Terms

$$
\begin{aligned}
& \llbracket t \rrbracket: \quad \boldsymbol{R}^{n} \times \boldsymbol{N}^{\omega} \times \boldsymbol{R}^{\omega} \rightarrow \boldsymbol{R} \times \boldsymbol{N}^{\omega} \times \boldsymbol{R}^{\omega} \\
& \llbracket r \rrbracket:(s, m, p) \mapsto(r, m, p) \\
& \llbracket x_{i} \rrbracket:(s, m, p) \mapsto(s(i), m, p) \\
& \llbracket \operatorname{coin}() \rrbracket:(s, m, p) \mapsto(\text { hd } m, \text { tl } m, p) \\
& \llbracket r a n d() \rrbracket:(s, m, p) \mapsto(\text { hd } p, m, \text { tl } p) \\
& \llbracket t_{1} \text { op } t_{2} \rrbracket:(s, m, p) \mapsto \operatorname{let}\left(a_{1}, m^{\prime}, p^{\prime}\right)=\llbracket t_{1} \rrbracket(s, m, p) \text { in } \\
& \quad \text { let }\left(a_{2}, m^{\prime \prime}, p^{\prime \prime}\right)=\llbracket t_{2} \rrbracket\left(s, m^{\prime}, p^{\prime}\right) \text { in } \\
&\left(a_{1} \text { op } a_{2}, m^{\prime \prime}, p^{\prime \prime}\right) \\
& \text { opn } \in\{+, 0, *, \div\} h d\left(m_{1} m_{2}, \ldots\right)=m_{1}
\end{aligned}
$$

Semantics of Tests

$\llbracket b \rrbracket: \quad \boldsymbol{R}^{n} \times \boldsymbol{N}^{\omega} \times \boldsymbol{R}^{\omega} \rightarrow\{$ true, false $\}$

$$
\llbracket t_{1}==t_{2} \rrbracket:(s, m, p) \mapsto \begin{cases}\text { true } & \text { if } \llbracket t_{1} \rrbracket(s, m, p)=\llbracket t_{2} \rrbracket(s, m, p) \\ \text { false } & \text { otherwise }\end{cases}
$$

$$
\llbracket t_{1}<t_{2} \rrbracket:(s, m, p) \mapsto \begin{cases}\text { true } & \text { if } \llbracket t_{1} \rrbracket(s, m, p)<\llbracket t_{2} \rrbracket(s, m, p) \\ \text { false } & \text { otherwise }\end{cases}
$$

$$
\llbracket t_{1}>t_{2} \rrbracket:(s, m, p) \mapsto \begin{cases}\text { true } & \text { if } \llbracket t_{1} \rrbracket(s, m, p)>\llbracket t_{2} \rrbracket(s, m, p) \\ \text { false } & \text { otherwise }\end{cases}
$$

$\llbracket b_{1} \& \& b_{2} \rrbracket:(s, m, p) \mapsto \llbracket b_{1} \rrbracket(s, m, p) \wedge \llbracket b_{2} \rrbracket(s, m, p)$
$\llbracket b_{1} \| b_{2} \rrbracket:(s, m, p) \mapsto \llbracket b_{1} \rrbracket(s, m, p) \vee \llbracket b_{2} \rrbracket(s, m, p)$
$\llbracket!b \rrbracket:(s, m, p) \mapsto \neg \llbracket b \rrbracket(s, m, p)$

Operational Semantics: Reduction

Assignment:

$$
\frac{\llbracket t \rrbracket(s, m, p)=\left(a, m^{\prime}, p^{\prime}\right)}{\left(x_{i}:=t, s, m, p\right) \longrightarrow\left(\operatorname{skip}, s[i \mapsto a], m^{\prime}, p^{\prime}\right)}
$$

Sequential composition:

$$
\frac{\left(e_{1}, s, m, p\right) \longrightarrow\left(e_{1}^{\prime}, s^{\prime}, m^{\prime}, p^{\prime}\right)}{\left(e_{1} ; e_{2}, s, m, p\right) \longrightarrow\left(e_{1}^{\prime} ; e_{2}, s^{\prime}, m^{\prime}, p^{\prime}\right)} \quad(\operatorname{skip} ; e, s, m, p) \longrightarrow(e, s, m, p)
$$

Operational Semantics: Reduction

Conditional:

$\frac{\llbracket b \rrbracket(s, m, p)=\text { true }}{\left.\text { (if } b \text { then } e_{1} \text { else } e_{2}, s, m, p\right) \longrightarrow\left(e_{1}, s, m, p\right)}$
$\frac{\llbracket b \rrbracket(s, m, p)=\text { false }}{\left.\text { (if } b \text { then } e_{1} \text { else } e_{2}, s, m, p\right) \longrightarrow\left(e_{2}, s, m, p\right)}$
while loops:
(while b do $e, s, m, p) \longrightarrow($ if b then $(e ;$ while b do $e)$ else skip, $s, m, p)$

Operational Semantics: Reduction

Reflexive-transitive closure:

$$
(e, s, m, p) \xrightarrow{*}(e, s, m, p)
$$

$$
\frac{\left(e_{1}, s_{1}, m_{1}, p_{1}\right) \longrightarrow\left(e_{2}, s_{2}, m_{2}, p_{2}\right)}{\left(e_{1}, s_{1}, m_{1}, p_{1}\right) \xrightarrow{*}\left(e_{2}, s_{2}, m_{2}, p_{2}\right)}
$$

$$
\frac{\left(e_{1}, s_{1}, m_{1}, p_{1}\right) \xrightarrow{*}\left(e_{2}, s_{2}, m_{2}, p_{2}\right) \quad\left(e_{2}, s_{2}, m_{2}, p_{2}\right) \xrightarrow{*}\left(e_{3}, s_{3}, m_{3}, p_{3}\right)}{\left(e_{1}, s_{1}, m_{1}, p_{1}\right) \xrightarrow{*}\left(e_{3}, s_{3}, m_{3}, p_{3}\right)}
$$

Operational Semantics: Termination

- A program e terminates from (s, m, p) if

$$
(e, s, m, p) \xrightarrow{*}\left(\operatorname{skip}, s^{\prime}, m^{\prime}, p^{\prime}\right)
$$

- We say e diverges from (s, m, p) if it does not terminate

Operational Semantics: Examples

$x:=0$
while $x==0$ do

$$
x:=\operatorname{coin}()
$$

What is the probability that the program halts?

$$
\begin{aligned}
& (x:=0, s, m, p) \longrightarrow(\operatorname{skip}, s[x \mapsto 0], m, p) \\
& (x:=0 ; e, s, m, p) \longrightarrow(\text { skip ; } e, s[x \mapsto 0], m, p) \quad(\text { skip } ; e, s[x \mapsto 0], m, p) \longrightarrow(e, s[x \mapsto 0], m, p) \\
& (x:=0 ; e, s, m, p) \xrightarrow{*}(\mathrm{skip} ; e, s[x \mapsto 0], m, p) \quad(\mathrm{skip} ; e, s[x \mapsto 0], m, p) \xrightarrow{*}(e, s[x \mapsto 0], m, p) \\
& (x:=0 ; e, s, m, p) \xrightarrow{*}(e, s[x \mapsto 0], m, p)
\end{aligned}
$$

Operational Semantics: Examples

$x:=0$
while $x==0$ do

$$
x:=\operatorname{coin}()
$$

What is the probability that the program halts?

$$
(x:=0 ; e, s, m, p) \xrightarrow{*}(e, s[x \mapsto 0], m, p)
$$

$$
(e, s[x \mapsto 0], m, p) \xrightarrow{*}(x:=\operatorname{coin}() ; e, s[x \mapsto 0], m, p)
$$

$\overline{\text { (while } b \text { do } e, s, m, p) \longrightarrow(\text { if } b \text { then }(e ; \text { while } b \text { do } e) \text { else skip, } s, m, p)}$

$$
\frac{\llbracket b \rrbracket(s, m, p)=\text { true }}{\text { (if } \left.b \text { then } e_{1} \text { else } e_{2}, s, m, p\right) \longrightarrow\left(e_{1}, s, m, p\right)}
$$

Operational Semantics: Examples

$x:=0$
while $x==0$ do $\mathrm{x}:=\operatorname{coin}()$

What is the probability that the program halts?

$$
\begin{gathered}
(x:=0 ; e, s, m, p) \xrightarrow{*}(e, s[x \mapsto 0], m, p) \\
(e, s[x \mapsto 0], m, p) \xrightarrow{*}(x:=\operatorname{coin}() ; e, s[x \mapsto 0], m, p)
\end{gathered}
$$

$$
(x:=\operatorname{coin}() ; e, s[x \mapsto 0], m, p) \xrightarrow{*}(e,[s \mapsto \text { hd } m], \mathrm{tl} m, p) . \quad \begin{gathered}
h d\left(m_{1} m_{2} \ldots\right)=m_{1} \\
\mathrm{tl}\left(m_{1} m_{2} \ldots\right)=m_{2} \cdots
\end{gathered}
$$

The loop continues until it reaches m inf the form of $1 m^{\prime}$

$$
\begin{gathered}
\left(e, s[x \mapsto 1], m^{\prime}, p\right) \xrightarrow{*}\left(\operatorname{skip}, s[x \mapsto 1], m^{\prime}, p\right) \\
(x:=0 ; e, s, m, p) \xrightarrow{*}\left(\operatorname{skip}, s[x \mapsto 1], m^{\prime}, p\right)
\end{gathered}
$$

Operational Semantics: Examples

$$
\begin{aligned}
& \mathbb{P}\left[\exists m^{\prime}(x:=0 ; e, s, m, p) \xrightarrow{*}\left(\text { skip, } s[x \mapsto 1], m^{\prime}, p\right)\right] \\
& =\mathbb{P}\left[\exists k \geq 0 \exists m^{\prime} m=0^{k} 1 m^{\prime}\right] \\
& =\sum_{k=1}^{\infty} 2^{-k}=1
\end{aligned}
$$

Operational Semantics: Examples

main $\{$

$$
\begin{aligned}
& \mathrm{u}:=0 ; \\
& \mathrm{v}:=0 ; \\
& \text { step(u,v); } \\
& \text { while u! }=0| | \mathrm{v}!=0 \text { do } \\
& \quad \operatorname{step}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

$$
\text { \} }
$$

```
step(u,v) {
```

 \(\mathrm{x}:=\operatorname{coin}(\);
 \(\mathrm{y}:=\operatorname{coin}(\);
 \(\mathrm{u}:=\mathrm{u}+(\mathrm{x}-\mathrm{y})\);
 \(\mathrm{v}:=\mathrm{v}+(\mathrm{x}+\mathrm{y}-1)\)
 \}

$$
\begin{aligned}
& (\text { step, } s, 00 m, p) \xrightarrow{*}(\text { skip } s[(\mathrm{u}, \mathrm{v}) \mapsto(0,-1),(\mathrm{x}, \mathrm{y}) \mapsto(0,0)], m, p) \\
& (\mathrm{step}, s, 01 m, p) \xrightarrow{*}(\mathrm{skip}, s[(\mathrm{u}, \mathrm{v}) \mapsto(-1,0),(\mathrm{x}, \mathrm{y}) \mapsto(0,1)], m, p) \\
& (\mathrm{step}, s, 10 m, p) \xrightarrow{*}(\mathrm{skip}, s[(\mathrm{u}, \mathrm{v}) \mapsto(1,0),(\mathrm{x}, \mathrm{y}) \mapsto(1,0)], m, p) \\
& (\mathrm{step}, s, 11 m, p) \xrightarrow{*}(\mathrm{skip}, s[(\mathrm{u}, \mathrm{v}) \mapsto(0,1),(\mathrm{x}, \mathrm{y}) \mapsto(1,1)], m, p)
\end{aligned}
$$

Operational Semantics: Examples

main\{

$$
\begin{aligned}
& \mathrm{u}:=0 ; \\
& \text { v:=0; } \\
& \text { step(u,v); } \\
& \text { while u! }=0| | \mathrm{v}!=0 \text { do } \\
& \quad \operatorname{step}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

What is the probability that the program halts?

$$
\begin{aligned}
& \text { We define i.i.d variables } X_{1}, X_{2} \ldots \text { on } Z^{2} \text { such that } \\
& \qquad X_{i} \in\{(0,1),(0,-1),(1,0),(-1,0)\} \\
& \qquad \mathrm{S}_{n}=\sum_{i=1}^{n} X_{i}
\end{aligned}
$$

step (u,v) \{

$$
\begin{aligned}
& \mathrm{x}:=\operatorname{coin}() ; \\
& \mathrm{y}:=\operatorname{coin}() \\
& \mathrm{u}:=\mathrm{u}+(\mathrm{x}-\mathrm{y}) ; \\
& \mathrm{v}:=\mathrm{v}+(\mathrm{x}+\mathrm{y}-1)
\end{aligned}
$$

(main, $s, m, p) \xrightarrow{*}$
(while ! ($\mathbf{u}==\mathbb{0}) \|!(\mathrm{v}==\mathbb{0})$ do $\left.\operatorname{step}(\mathrm{u}, \mathrm{v}), s[(\mathrm{u}, \mathrm{v}) \mapsto(i, j)], \mathrm{t}^{4}(m), p\right)$

Operational Semantics: Examples

main\{

$$
\begin{aligned}
& \mathrm{u}:=0 ; \\
& \mathrm{v}:=0 ; \\
& \text { step(u,v); } \\
& \text { while u! }=0| | \mathrm{v}!=0 \text { do } \\
& \quad \operatorname{step}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

step $(u, v)\{$
$\mathrm{x}:=\operatorname{coin}($;
$\mathrm{y}:=\operatorname{coin}($;
$\mathrm{u}:=\mathrm{u}+(\mathrm{x}-\mathrm{y})$;
$\mathrm{v}:=\mathrm{v}+(\mathrm{x}+\mathrm{y}-1)$

What is the probability that the program halts?

The program halts if $\exists n . S_{2 n}=(0,0)$

$$
\begin{aligned}
& \quad(\text { main }, s, m, p) \xrightarrow{*}\left(\operatorname{skip}, s[(\mathrm{u}, \mathrm{v}) \mapsto(0,0)], \mathrm{tl}^{4 n}(m), p\right) . \\
& \mathbb{P}\left[\exists n(\text { main }, s, m, p) \xrightarrow{*}\left(\operatorname{skip}, s[(\mathrm{u}, \mathrm{v}) \mapsto(0,0)], \mathrm{tl}^{4 n}(m), p\right)\right] \\
& \quad=\mathbb{P}\left[\bigvee_{n=0}^{\infty} S_{2 n}=(0,0)\right]
\end{aligned}
$$

Operational Semantics: Examples

main $\{$

$$
\begin{aligned}
& \mathrm{u}:=0 ; \\
& \text { v:=0; } \\
& \text { step(u,v); } \\
& \text { while } \mathrm{u}!=0| | \mathrm{v}!=0 \text { do } \\
& \quad \operatorname{step}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

\}
step (u, v) \{

$$
\begin{aligned}
& \mathrm{x}:=\operatorname{coin}() ; \\
& \mathrm{y}:=\operatorname{coin}() ; \\
& \mathrm{u}:=\mathrm{u}+(\mathrm{x}-\mathrm{y}) ; \\
& \mathrm{v}:=\mathrm{v}+(\mathrm{x}+\mathrm{y}-1)
\end{aligned}
$$

What is the probability that the program halts?

$$
\begin{aligned}
\mathbb{P}\left[S_{2 n}=(0,0)\right] & =4^{-2 n} \sum_{m=0}^{n} \frac{(2 n)!}{m!m!(n-m)!(n-m)!} \\
& =4^{-2 n}\binom{2 n}{n} \sum_{m=0}^{n}\binom{n}{m}^{2} \\
& =4^{-2 n}\binom{2 n}{n}^{2}
\end{aligned}
$$

Operational Semantics: Examples

$$
\begin{aligned}
& \mathrm{i}:=0 \text {; } \\
& \text { n: }=0 \text {; } \\
& \text { while } \mathrm{i}<1 \mathrm{e} 9 \text { do } \\
& \text { Given } \epsilon>0 \text {, what is } \mathrm{P}(|\mathrm{i}-\pi| \leq \epsilon) \text { ? } \\
& \begin{array}{l}
\mathrm{x}:=\mathrm{rand}() ; \\
\mathrm{y}:=\operatorname{rand}() ; \\
i f\left(x^{*} \mathrm{x}+\mathrm{y}^{*}\right)
\end{array} \\
& \text { if }\left(x^{*} x+y^{*} y\right)<1 \\
& \text { then } \mathrm{n}:=\mathrm{n}+1 \text {; } \\
& \mathrm{i}=\mathrm{i}+1 \\
& \mathrm{i}:=4{ }^{*} \mathrm{n} / 1 \mathrm{e} 9 \text {; } \\
& n / N \text { is the expectation of } \\
& Z= \begin{cases}1 & \text { if } X^{2}+Y^{2}<1 \\
0 & \text { else }\end{cases}
\end{aligned}
$$

Operational Semantics: Examples

$i:=0$;
$\mathrm{n}:=0$;
while $i<1 \mathrm{e} 9$ do
Given $\epsilon>0$, what is $\mathrm{P}(|\mathrm{i}-\pi| \leq \epsilon)$?
$\mathrm{x}:=\mathrm{rand} \rho$
$\mathrm{x}:=\operatorname{rand}($;
$\mathrm{y}:=\operatorname{rand}()$;
if $\left(x^{*} x+y^{*} y\right)<1$
then $\mathrm{n}:=\mathrm{n}+1 ; \quad \mathbb{P}\left[X^{2} \leq t\right]=\mathbb{P}[X \leq \sqrt{t}]=\int_{0}^{\sqrt{t}} \mathbb{1}_{[0,1]}(x) d x=\sqrt{t}$
$\mathrm{i}:=\mathrm{i}+1$
$\mathrm{i}:=4 *_{\mathrm{n}} / 1 \mathrm{e} 9$;

$$
f(t)=\frac{\partial \mathbb{P}\left[X^{2} \leq t\right]}{\partial t}=\frac{1}{2 \sqrt{t}} \mathbb{1}_{[0,1]}(t)
$$

Operational Semantics: Examples

$i:=0$;
$\mathrm{n}:=0$;
while $i<1 \mathrm{e} 9$ do

$$
\begin{aligned}
& x:=\operatorname{rand}() ; \\
& y:=\operatorname{rand}() ; \\
& \text { if }\left(x^{*} x+y^{*} y\right)<1
\end{aligned}
$$

then $\mathrm{n}:=\mathrm{n}+1$;
$\mathrm{i}=\mathrm{i}+1$
$\mathrm{i}:=4 * \mathrm{n} / 1 \mathrm{e} 9$;
Given $\epsilon>0$, what is $\mathrm{P}(|\mathrm{i}-\pi| \leq \epsilon)$?
n / N is the expectation of $Z= \begin{cases}1 & \text { if } X^{2}+Y^{2}<1 \\ 0 & \text { else }\end{cases}$
The density of $X^{2}+Y^{2}$ is

$$
\begin{aligned}
(f * f)(t) & =\int_{-\infty}^{\infty} \frac{1}{2 \sqrt{x}} \mathbb{1}_{[0,1]}(x) \frac{1}{2 \sqrt{t-x}} \mathbb{1}_{[0,1]}(t-x) d x \\
& = \begin{cases}\int_{0}^{t} \frac{1}{4 \sqrt{x} \sqrt{t-x}} d x \quad \text { if } 0 \leq t \leq 1 \\
\int_{t-1}^{1} \frac{1}{4 \sqrt{x} \sqrt{t-x}} d x & \text { if } 1<t \leq 2\end{cases}
\end{aligned}
$$

Operational Semantics: Examples

$i:=0$;
$\mathrm{n}:=0$;
while $i<1 \mathrm{e} 9$ do

$$
\begin{aligned}
& x:=\operatorname{rand}() ; \\
& y:=\operatorname{rand}() ; \\
& \text { if }\left(x^{*} x+y^{*} y\right)<1
\end{aligned}
$$

then $\mathrm{n}:=\mathrm{n}+1$;
$\mathrm{i}=\mathrm{i}+1$
$\mathrm{i}:=4 * \mathrm{n} / 1 \mathrm{e} 9$;
Given $\epsilon>0$, what is $\mathrm{P}(|\mathrm{i}-\pi| \leq \epsilon)$?
n / N is the expectation of $Z= \begin{cases}1 & \text { if } X^{2}+Y^{2}<1 \\ 0 & \text { else }\end{cases}$
The density of $X^{2}+Y^{2}$ is

$$
\begin{aligned}
(f * f)(t) & =\int_{-\infty}^{\infty} \frac{1}{2 \sqrt{x}} \mathbb{1}_{[0,1]}(x) \frac{1}{2 \sqrt{t-x}} \mathbb{1}_{[0,1]}(t-x) d x \\
& = \begin{cases}\int_{0}^{t} \frac{1}{4 \sqrt{x} \sqrt{t-x}} d x \quad \text { if } 0 \leq t \leq 1 \\
\int_{t-1}^{1} \frac{1}{4 \sqrt{x} \sqrt{t-x}} d x & \text { if } 1<t \leq 2\end{cases}
\end{aligned}
$$

Operational Semantics: Examples

$\mathrm{i}:=0$;
$\mathrm{n}:=0$;
while $i<1 \mathrm{e} 9$ do
Given $\epsilon>0$, what is $\mathrm{P}(|\mathrm{i}-\pi| \leq \epsilon)$?

$$
\begin{aligned}
& \mathrm{x}:=\operatorname{rand}() ; \\
& \mathrm{y}:=\operatorname{rand}() ; \\
& \text { if }\left(x^{*} x+y^{*} y\right)<1 \quad \exp (Z) \text { is }
\end{aligned}
$$

n / N is the expectation of $Z= \begin{cases}1 & \text { if } X^{2}+Y^{2}<1 \\ 0 & \text { else }\end{cases}$

$$
\mathrm{i}:=\mathrm{i}+1
$$

$$
\int_{0}^{t} \frac{1}{4 \sqrt{x} \sqrt{t-x}} d x=\int_{0}^{1} \frac{1}{2 \sqrt{1-u^{2}}} d u=\frac{1}{2}\left(\sin ^{-1}(1)-\sin ^{-1}(0)\right)=\frac{\pi}{4}
$$

$\mathrm{i}:=4 *_{\mathrm{n}} / 1 \mathrm{e} 9$;

$$
\mathbb{P}\left[X^{2}+Y^{2} \leq 1\right]=\int_{0}^{1}(f * f)(t) d t=\int_{0}^{1} \frac{\pi}{4} d t=\frac{\pi}{4} .
$$

Operational Semantics: Examples

$i:=0$;
$\mathrm{n}:=0$;
while $i<1 \mathrm{e} 9$ do

$$
x:=\operatorname{rand}()
$$

Given $\epsilon>0$, what is $\mathrm{P}(|\mathrm{i}-\pi| \leq \epsilon)$?
$\mathrm{x}:=\operatorname{rand}() ;$
$\mathrm{y}:=\operatorname{rand}() ;$
if $\left(\mathrm{x}^{*} \mathrm{x}+\mathrm{y}^{*} \mathrm{y}\right)<1$ then $\mathrm{n}:=\mathrm{n}+1$;
n / N is the expectation of $Z= \begin{cases}1 & \text { if } X^{2}+Y^{2}<1 \\ 0 & \text { else }\end{cases}$

$$
\mathbb{P}\left[X^{2}+Y^{2} \leq 1\right]=\int_{0}^{1}(f * f)(t) d t=\int_{0}^{1} \frac{\pi}{4} d t=\frac{\pi}{4}
$$

$$
\begin{array}{cc}
\mathrm{i}:=\mathrm{i}+1 & \mathbb{P}\left[\left|\frac{n}{N}-\frac{\pi}{4}\right|>\varepsilon\right] \leq \frac{\sigma^{2}}{N \varepsilon^{2}} . \text { Where } \sigma^{2}=\frac{\pi}{4}-\left(\frac{\pi}{4}\right)^{2}
\end{array}
$$

This Class

- Syntax of a simple imperative probabilistic language
- Operational semantics
- Measure theory \& denotational semantics (brief)

Denotational vs. Operational Semantics

- Consider $\mathrm{x}:=\operatorname{coin}()$, in operational semantics:

$$
\begin{aligned}
& (\mathrm{x}:=\operatorname{coin}(), s, m, p) \longrightarrow(\operatorname{skip}, s[\mathrm{x} \mapsto 0], \mathrm{t} \mid m, p) \\
& (\mathrm{x}:=\operatorname{coin}(), s, m, p) \longrightarrow(\operatorname{skip}, s[\mathrm{x} \mapsto 1], \mathrm{t} \mid m, p)
\end{aligned}
$$

- Denotational semantics:
- Model all possible executions together
- States: probability distribution over memory states
- $\frac{1}{2} s[x \mapsto 0]+\frac{1}{2} s[x \mapsto 1]$

Denotational Semantics: Introduction

- State s can be identified with the Dirac measure σ_{s}, then the semantics of $\mathrm{x}:=$ coin() can be viewed as $\sigma_{s} \rightarrow \frac{1}{2} s[x \mapsto 0]+\frac{1}{2} s[x \mapsto 1]$
- In general, a program is interpreted as an operator mapping probability distributions to (sub)probability distributions

Denotational Semantics: Definition

- Assume there are n real variables, then a state is a distribution on R^{n}
- A program $e: M R^{n} \rightarrow M R^{n}$
- An operator called a state transformer

Measure Theory

- Measures: generalization of concepts like length, area, or volume

Measure Example: Length

- What subsets of R can meaningfully be assigned a length?
- What properties should the length function l satisfy?

Measure Example: Length

$$
\begin{aligned}
& \ell\left(\left[a_{1}, b_{1}\right] \cup\left[a_{2}, b_{2}\right]\right)=\ell\left(\left[a_{1}, b_{1}\right]\right)+\ell\left(\left[a_{2}, b_{2}\right]\right)=\left(b_{1}-a_{1}\right)+\left(b_{2}-a_{2}\right) . \quad b_{1}<a_{2} \\
& \ell\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \ell\left(A_{i}\right) . A_{i} \text { and } A_{j} \text { are disjoined .l is called additive } \\
& \ell\left(\bigcup_{i=0}^{\infty} A_{i}\right)=\sum_{i=0}^{\infty} \ell\left(A_{i}\right) . \begin{array}{l}
A_{i} \text { and } A_{j} \text { are disjoined .The set is countable. } \\
\text { lis called countably additive or } \sigma-\text { additive }
\end{array} \\
& l(R)=\infty, \text { but we are only going to talk about finite measures } \\
& \ell(B \backslash A)=\ell(B)-\ell(A) \quad \text { Domain should be closed under complementation }
\end{aligned}
$$

Measure Example: Length

- Can we extend the domain of length l to all subsets of R?
- No. Counterexample: Vitali sets
- $V \subseteq[0,1]$, such that for each real number r, there exists exactly one number $v \in$ V such that $v-r$ is rational
- Let q_{1}, q_{2}, \ldots be the rational numbers in $[-1,1]$, construct sets $V_{k}=V+q_{k}$
- $[0,1] \subseteq \mathrm{U}_{k} V_{k} \subseteq[-1,2]$
- $l\left(V_{k}\right)=l(V)$, and there are infinitely many V_{k}
- l is called the Lebesgue measure on real numbers

Measurable Spaces and Measures

- (\mathbf{S}, \mathbf{B}) is a measurable space
- \mathbf{S} is a set
- B is a σ-algebra on \mathbf{S}, which is a collection of subsets of \mathbf{S}
- It contains \emptyset
- Closed under complementation in \mathbf{S}
- Closed under countable union
- The elements of \mathbf{B} are called measurable sets
- If \mathbf{F} is a collection of subsets of $\mathbf{S}, \sigma(\boldsymbol{F})$ is the smallest σ-algebra containing \mathbf{F}, or $\sigma(\mathcal{F}) \triangleq \cap\{\mathcal{A} \mid \mathcal{F} \subseteq \mathcal{A}$ and \mathcal{A} is a σ-algebra . We say (S , $\sigma(\boldsymbol{F})$) is generated by \mathbf{F}.

Measurable Functions

- $\left(\boldsymbol{S}, \boldsymbol{B}_{\boldsymbol{S}}\right)$ and $\left(\boldsymbol{T}, \boldsymbol{B}_{\boldsymbol{T}}\right)$ are measurable spaces. A function $f: \boldsymbol{S} \boldsymbol{\boldsymbol { T }}$ is measurable if $f^{-1}(\boldsymbol{B})=\{x \in S \mid f(x) \in B\}$ for every $\boldsymbol{B} \in \boldsymbol{B}_{\boldsymbol{T}}$ is a measurable subset of S

Example: $\quad \chi_{B}(s)= \begin{cases}1, & s \in B, \\ 0, & s \notin B .\end{cases}$

Measures: Definitions

- A signed (finite) measure on $(\boldsymbol{S}, \boldsymbol{B})$ is a countably additive map $\mu: \boldsymbol{B} \rightarrow$ \boldsymbol{R} such that $\mu(\varnothing)=0$
- Positive signed measure: $\mu(A) \geq 0$ for all $A \in \boldsymbol{B}$
- A positive measure is a probability measure if $\mu(S)=1$
- ...is a subprobability measure if $\mu(S) \leq 1$

Measures: Definitions

- If $\mu(B)=0$, then B is a μ-nullset
- A property is said to hold μ-almost surely (everywhere) if the sets of points on which it does not hold is contained in nullset
- In probability theory, measures are sometimes called distributions

Measures: Discrete Measures

- For $s \in S$, the Diract measure, or Diract delta, or point mass on s:

$$
\delta_{s}(B)= \begin{cases}1, & s \in B \\ 0, & s \notin B\end{cases}
$$

- A measure is discrete if it is a countable weighted sum of Dirac measures
- If the weights add up to one, then it is a discrete probability measure
- Continuous measure: $\mu(\{s\})=0$ for all singleton sets $\{s\}$ in \boldsymbol{B} of $(\mathbf{S}, \boldsymbol{B})$

Measures: Pushforward Measure and Lebesgue Integration

- Given $f:\left(\boldsymbol{S}, \boldsymbol{B}_{\boldsymbol{S}}\right) \rightarrow\left(\boldsymbol{T}, \boldsymbol{B}_{\boldsymbol{T}}\right)$ measurable, an a measure μ on $\boldsymbol{B}_{\boldsymbol{S}}$, the pushfoward measure $\mu\left(f^{-1}(B)\right)$ on $\boldsymbol{B}_{\boldsymbol{T}}$ is defined as

$$
f_{*}(\mu)(B)=\mu\left(f^{-1}(B)\right), \quad B \in \mathcal{B}_{T}
$$

- Lebesgue integration: given $(\boldsymbol{S}, \boldsymbol{B}), \mu: \boldsymbol{B} \rightarrow \boldsymbol{R}, f: \boldsymbol{S} \rightarrow \boldsymbol{R}$, where $\mathrm{m}<$ $f<M$

$$
\int f d \mu=\lim _{n \rightarrow \max } \sum_{i=0}^{n} f\left(s_{i}\right) \mu\left(B_{i}\right)
$$

where B_{0}, \ldots, B_{n} is a measurable partition of \boldsymbol{S}, and the value of f does not vary more than $(M-m) / n$ in any B_{i} and $s_{i} \in B_{i}$

Markov Kernels

- Given ($\boldsymbol{S}, \boldsymbol{B}_{\boldsymbol{S}}$) and $\left(\boldsymbol{T}, \boldsymbol{B}_{\boldsymbol{T}}\right), P: \boldsymbol{S} \times \boldsymbol{B}_{\boldsymbol{T}} \rightarrow \boldsymbol{R}$ is called a Markov kernel if
- For fixed $A \in \boldsymbol{B}_{\boldsymbol{T}}$, the map $\lambda s . P(s, A) \rightarrow \boldsymbol{R}$ is a measurable function on $\left(\boldsymbol{S}, \boldsymbol{B}_{\boldsymbol{S}}\right)$
- For fixed $s \in \boldsymbol{S}$, the map $\lambda A . P(s, A) \rightarrow \boldsymbol{R}$ is a probability measure on ($\boldsymbol{T}, \boldsymbol{B}_{\boldsymbol{T}}$)
- Composition of two Markov kernels
- Given $P: S \rightarrow T, Q: T \rightarrow U(P ; Q)(s, A)=\int_{t \in T} P(s, d t) \cdot Q(t, A)$.
- Given μ on $\boldsymbol{B}_{\boldsymbol{S}}$, its push forward under the Markov Kernel P is

$$
P_{*}(\mu)(B)=\int_{s \in S} P(s, B) \mu(d s)
$$

More on Markov Kernels

- $\left(\boldsymbol{S}, \boldsymbol{B}_{\boldsymbol{S}}\right): \mathrm{x}=\ldots(\mathrm{x}>0)$
- $\left(\boldsymbol{T}, \boldsymbol{B}_{\boldsymbol{T}}\right): \mathrm{y}=$ uniform $(0, \mathrm{x})$
- Markov kernel $P\left(x, \mathrm{U}_{i=1}^{i=M}\left[a_{i}, b_{i}\right]\right)=\sum_{i=1}^{i=M}$ length $\left(\left[a_{i}, b_{i}\right] \cap[0, x]\right) / x$

More on Markov Kernels

- $\left(\boldsymbol{S}, \boldsymbol{B}_{\boldsymbol{S}}\right): \mathrm{x}=\ldots(\mathrm{x}>0)$
- $\left(\boldsymbol{T}, \boldsymbol{B}_{\boldsymbol{T}}\right): \mathrm{y}=$ uniform $(0, \mathrm{x})$
- $\left(\boldsymbol{T}, \boldsymbol{B}_{\boldsymbol{T}}\right)$: z $=$ uniform $(0, \mathrm{y})$
- Composition: $(P ; Q)(x,[0, z])=\int_{y \in[0, \infty]} P(x, d y) * Q(y,[0, z])$

$$
\begin{gathered}
\quad=\int_{y \in[0, x]} \frac{d y}{x} * \frac{\operatorname{length}([0, z] \cap[0, y])}{y} \\
=\int_{y \in[0, z]} \frac{d y}{x} * \frac{y}{y}+\int_{y \in[z, x]} \frac{d y}{x} * \frac{z}{y}=\frac{z}{x}+\frac{z}{x}(\ln x-\ln z)
\end{gathered}
$$

More on Markov Kernels

- $\left(\boldsymbol{S}, \boldsymbol{B}_{\boldsymbol{S}}\right): \mathrm{x}=$ uniform $(0.1,1.1) \mu([a, b])=\operatorname{length}([\mathrm{a}, \mathrm{b}] \cap[0.1,1.1])$
- $\left(\boldsymbol{T}, \boldsymbol{B}_{\boldsymbol{T}}\right): \mathrm{y}=$ uniform $(0, \mathrm{x})$
- Markov kernel $P\left(x, \cup_{i=1}^{i=M}\left[a_{i}, b_{i}\right]\right)=\sum_{i=1}^{i=M}$ length $\left(\left[a_{i}, b_{i}\right] \cap[0, x]\right) / x$
- μ 's pushforward under P is

$$
P_{*}(\mu)\left(B_{T}\right)=\int_{x \in[0.1,1.1]} B_{T} \cap[0, x] * \mu(d x)
$$

More on Markov Kernels

- We can use Markov kernels to define the meanings of statements
- A term can be seen as a Markov kernel that links the input variables (can be a distribution) with the output distribution

Summary

- To reason about properties and correctness of probabilistic programs, we need semantics
- To define semantics, we can
- Decompose it into semantics of program structures
- Link it with mathematical concepts

