Semantics of Probabilistic
Programming

Xin Zhang
Peking University

Most of the content is from “Semantics of Probabilistic Programming:
A Gentle Introduction” by Fredrik Dahlqvist, Alexandra Silva, and Dexter Kozen

Recap: Problem and Motivation

* Evaluate P(Z | X) and related expectations

e Problem with exact methods

* Curse of dimensionality

* P(Z|X) has a complex form making expectations analytically intractable

Recap: Variational Inference

* Functional: a function that maps a function to a value
H[p] = / p(z) Inp(z) dz
* Variational method: find an input function that maximizes the functional

* Variational inference: find a distribution q(z) to approximate p(Z | X) so a
functional 1s maximized

Xin Zhang@PKU

Recap: Variational Inference
Inp(X) = L(q) + KL(¢g|lp)

p(X,Z
Bet\;vrfsrég)z()zlx) E(q) — /q(Z) ln{ (q(Z)) } dZ

a2

If q can be any distribution, then variational inference is precise.

KL(q||p)

But in practice, it cannot

Is the following statement right?

* Probability p(Z,X) 1s usually easier to evaluate
compared to P(Z | X).

Recap: Sampling Methods

e Stochastic methods

* Also called Monte Carlo methods

L
“:[f] = / f(z)p(z) dz —> f = % Z f(Z(l)) Z, ...z, are samples from p
=1

Recap: Sampling Methods

* Transformation method: CDF-!(uniform(0,1))

* Rejection sampling
* A proposal distribution q(z)
* Choose k, such that k*q(z) >= p(z2), tor any x

* Sampling process:
* Sample 7, from q(z)
* Sample h from uniform(0, k*q(z))
* If h > p(z;), discard it; otherwise, keep it

Is the following statement correct?

* All primitive distributions can be constructed using
the transformation method.

Is the following statement right?

* In rejection sampling, given k, the probability whether a
sample 1s accepted does not depend on the proposal
distribution

Is the following statement correct?

* The efficiency of rejection sampling depends on the
choice of the proposal distribution

Recap: Sampling Methods

* Importance sampling

* Used to evaluate f(z) where z 1s from p(z)

l
50 = [r@peas = [f 2D atads = Zzg 3 £(2)
=

* How to get real samples: create a new discrete distribution using the above
samples and set their probabilities using the importance weights

Recap: Sampling Methods

e Markov Chain Monte Carlo

* A sampling method that works with a large family of distributions and high
dimensions

 Workflow

* Start with some sample Z
* Suppose the current sample is z* . Draw next sample z* from q(z | z%)

* Decide whether to accept z*as the next state based some criteria. If accepted,

Zz'1 = z* Otherwise, ztt1 = 27

* Samples form a Markov chain

Xin Zhang@PKU

Recap: Sampling Methods

Constraints on the
proposal distribution

Symmetric None

p(z')q(z'|2)

pe) " @)

p(z))

)

Accepting probability min(1,

13

Recap: Why MCMC works?

* Markov chain: p(zmH|zM 2™ = p(z(mHD|z(M).

* Stationary distribution of a Markov chain: each step in the chain does not
change the distribution.

. Detailed balance: p*(2)T(z, Z,) =p" (z’)T(z', z)

* p*(z) is a stationary distribution

* A ergodic Markov chain converges to the same distribution regardless the initial
distribution
* The system does not return to the same state at fixed intervals
* The expected number of steps for returning to the same state 1s finite

Is the following statement right?

* The samples drawn using MCMC are independent

Is the following statement right?

* A Markov chain can have more than one stationary
distribution

Use MCMC to solve the problem below

* Super optimization
* There 1s a straight-line program
* A set of test cases are given

* The program can be modified by deleting a statement, inserting a
statement from the initial program at a given place

* Optimize the program by using the above operations

Motivations

* In order to reason about properties of a program, we need formal tools

* Example questions
* Is the postcondition satisfied?
* Does this program halt on all inputs?

* Does it always halt in polynomial time?

Xin Zhang@PKU

Motivations

* In order to reason about properties of a program, we need formal tools

* Example questions
* What is the probability that the postcondition is satistied?
* What is the probability that this program halts on all inputs?
* What is the probability that 1t halts in polynomial time?

19

Motivations

* When designing a language, rigorous semantics is needed to guarantee its
correctness

* An example that didn’t have rigorous semantics: Javascript
* https://javascriptwtf.com

We can decompose the semantics of a
Exam ples program into semantics of statements

B What iIs the probability that It runs through n iterations?
- What Is the expected number of iterations?
while x == 0 do What is the probability that the program halts?

x:=co1n()

1a:x:=0

1/ :x:=1
start —| [x > ?] [x — 0] >

Examples

main What is the probability that the program halts?
u:=0: p y p g
v:=0;
f,ﬁﬁﬁé“u‘&@ || v1=0 do The program is a two-dimensional random walk.
step(u,v) According to probability theory, the probability
! that it returns to the origin is 1.
step(u,v){
x:=coin(); By relating to concepts in probabillities,
y:=coin(); we can simplify the reasoning
w=u+(x-y);
vi=v+(x+y-1)

Examples

1:=0; What does this program compute?
n:=0; How to reason about it?
while 1<1e9 do |
x:=rand();
y:=rand(); - N
it (x*x+y*y) <1 then n:=n+1; Measure Theory
o The mathematical foundation of
1:=1+1 probabilities and integration
: - J
1:=4*n/1e9;

Uniform(0,1) is called a Lebesgue measure

This Class

* Syntax of a simple imperative probabilistic language

* Operational semantics

e Measure theorv & denotational semantics (brie
y

A Simple Imperative Language

* Highly simplified version

* Enough to explain the core concepts

Syntax

* Deterministic terms (expressions)
* Terms (Deterministic + Probabilistic)
* Tests (expression that evaluate to Booleans)

* Programs

Syntax — Deterministic Terms

(i) Deterministic terms:

d:.=a a € R, constants
| x x € Var, a countable set of variables

| dopd op € {+,—,%,+}

Xin Zhang@PKU

Syntax - Terms

(i) Terms:

t=d d a deterministic term
| coin() | rand () sample in {0, 1} and [0, 1], respectively
|t0pt Op€{+9_9*9+}

28

Syntax - Tests

(iii) Tests:

b ::= true | false
|ld==d|d<d|d>d comparison of deterministic terms
|b&& b |Db || b| 'b Boolean combinations of tests

Syntax - Program

(iv) Programs:

e ::= skip
x =t assignment
e;e sequential composition
if btheneelsee conditional
whilebdoe while loop

Syntax - Example Program

it coin() == 1 then

x := rand() * 5
else

X:=0
if x > 4.5 then

y := coin() + 2
else

y := 100

Operational Semantics

* Model the step-by-step executions of a program on a machine

* Tracks the memory-state
* Values assigned to each variable
* Values of each random number generator

* A stack of instructions

Random Number Generators

* Modeled as infinite streams of numbers:
* coin(): mgmy ... are i.1.d from Bernoulli(0.5)
* rand(): pop1 -.- are 1.i.d from uniform(0, 1)

* When invoking the generator, a number is taken from the stream

* Pseudo-random generators

Operational Semantics: Machine States

* A memory-state is a triple (s, m, p)
* A store s:n — R, where there are n variables in the program
 m € {0,1}% is the current stream of available random Boolean values

* p € [0,1]% is the current stream of available random real values

* A machine-state is a 4-tuple (e, s, m,p)
* e corresponds to a stack of instructions

* (s,m,p) is a memory-state

Xin Zhang@PKU

Machine States: Example

(e, {x —»1},1001011...,0.20.50.9 0.21...)

if coin() == 1 then

(x:=rand() * 5, {x -1}, 001011...,0.20.50.9 0.21...)
x :=rand() ¥ 5

(skip, {x — 1},001011...,0.50.9 0.21...)

else

35

Operational Semantics: Introduction

* We now talk about how a program modifies the machine state

* Type ot the operational semantics
(e,s,m,p) = (e',s’,m',p")

* Before talking about the reduction, we need to define semantics of terms
and tests

Xin Zhang@PKU

Semantics of Terms
] R*"XN®xXR® - RXN®xR®

[71l = (s,m,p) = (r,m, p)
[[xl : (Samap) = (S(l)’m’p)

[coinQ] : (s,m,p) — (hdm,tlm, p)
[rand O] : (s,m,p) — (hd p,m, 1l p)
[t1 0p 2] : (s,m,p) — 1let (a1;,m’,p’) = [[t1]I(s,m, p) in

let (ap,m”,p”) = [2]l(s,m’,p’) in
(a1 op az,m”,p")

opn € {+,0,x,~} hd(mim,,...) = my .

Semantics of Tests
10]: R"XN®XR® - {true, false}

true if [{](s,m,p) = [L](s,m, p)
false otherwise

[t ==] : (s,m,p) — {

"

true it [[tl]](sam’p) < [[tZ]](Sva))

H<bpll:(s,mp)r— A«
I I« P) \false otherwise

‘true if (41 1(s,m, p) > [L211(s, m, p)
\false otherwise

[b1 && bs]| : (s,m, p) > [[b1]I(s,m, p) A [b2]I(s, m, p)

[b1 11 b2l : (s,m, p) = [b1](s,m,p) V [b2]I(s,m, p)

[!D] : (s,m,p) — =[b]l(s,m, p)

11 >] : (s,m,p) —

Operational Semantics: Reduction

Assignment:

[[t]](s’ m’p) — (a’ m”p,)
(x; :=t,s,m,p) — (skip, s[i — a],m’,p")

Sequential composition:

(e1,5,m,p) — (e7,s’,m’,p’)

(e1; ez, 5,m,p) — (e] ; ez, s’,m’,p’)

(skip ; e, s,m,p) — (e, s,m, p)

Operational Semantics: Reduction

Conditional:

[6](s,m,p) = true
(if b then e else ey, s,m,p) — (e1,s,m,p)

[b]l(s,m,p) = false
(if b then e else ey, s,m,p) — (e2,s,m,p)

while loops:

(while bdoe,s,m,p) — (if b then (e ; while b do e) else skip, s,m, p)

Operational Semantics: Reduction

Reflexive-transitive closure:

(e1,81,mq,p1) — (e, 52,mp, p2)

%k
—_ m i
(e, s,m,p) (e, s,m,p) (e1,s1,m1,p1) — (e2, s2,ma, p2)

% %k
(e1,s1,m1,p1) — (e, 52,ma, p2) (e2,82,mp, p2) — (e3, s3,m3, p3)

*
(e1,81,m1,p1) — (e3,83,m3,p3)

Operational Semantics: Termination

* A program e terminates from (s, m,p) if

(e,s,m,p) i (skip,s’,m’, p").

* We say e diverges from (s, m,p) if it does not terminate

Xin Zhang@PKU

Operational Semantics: Examples

X :=0 What Is the probability that the program halts?
while x == 0 do
X:=coIn()

(x :=0,s,m, p) — (skip, s[x — 0], m, p)

(x :=0;e,s,m,p) — (skip; e, s[x —» 0],m,p) (skip; e, s[x — 0], m, p) — (e, s[x — 0], m, p)

(x :=03;e,s,m,p) — (skip ; e, s[x — 0], m,p) (skip ; e, s[x — 0], m, p) — (e, s[x > 0], m, p)

(x :=0; e,s,m,p) —> (e, s[x — 0], m, p)

43

Operational Semantics: Examples

X :=0 What Is the probability that the program halts?
while x == 0 do
x:=coin() (x :=0;e,s,m,p) — (e,s[x — 0],m, p)

(e,s[x — 0],m,p) — - —> (x := coin() ; e,s[x — 0],m, p)

(while b doe,s,m,p) — (if b then (e ; while b do ¢) else skip, s,m,p)

[61(s,m, p) = true
(if b then e; else ey, s,m,p) — (e1,s,m,p)

Operational Semantics: Examples

X :=0 What Is the probability that the program halts?
while x == 0 do

_ (x:=0;e,s,mp)i>(e s[x — 0], m, p)
x:=coin()

(e,s[x — 0],m,p) — - (x := coin(Q) ; e, s[x — 0],m, p)

(x :=coin() ; e,s[x — 0],m,p) — (e,[s — hdm],tim,p). hd(mm,..)=my
tl(m1m2) = m, ...

The loop continues until it reaches m inf the form of 1m’

(e,s[x — 1],m’,p) —> (skip, s[x — 1],m’,p)

(x :=0; e,5,m,p) — (skip, s[x = 1],m’, p)

Operational Semantics: Examples

=P|dk >0 =

P [E (— O y €, Samap) _*) (Skip,S[x = 1]9m,9p)]

m’ m = Oklm']

Operational Semantics: Examples

main {
u:=0;

Step(a)
step(u,v);
WhIljle ul=0 || vI=0do

step(u,v)

b

step(u,v) {
x:=coin();
y:=coin();
w=u+(x-y);
v:i=v+(x+y-1)

What Is the probabillity that the program halts?

(step, s,00m, p) — (skip, s
(step, s,01m, p) N (skip, s
(step,s, 10m, p) N (skip, s
(step,s,11m,p) N (skip, s

:(u’ V) = (O’_l)a (X’ Y) = (O’ O)]’m’p)
:(u’ V) = (_190)’ (X’ Y) = (O’ 1)]’m’p)
(u,v) = (1,0),(x,y) = (1,0)],m, p)

(w,v) = (0,1),(%,y) = (1,1)],m,p)

Operational Semantics: Examples

main { ; What is the probability that the program halts?
u:=0;
;’tjp()(u) We define 1.1.d variables X, X5 ... on Z % such that
while ul=0 | | v1=0 do X; € {(0,1),(0,-1),(1,0),(=1,0)}
step(u,v) L
} Sn — 2 Xi
=1
step(u,v){ _ .
©=coin(); (main, s,m,p) —
y:=coin(); (while !'(u==0) || !(v==0)do step(u,v),s[(u,v) — ()], t1*m),p)
w=u+(x-y);
v:i=v+(x+y-1)

Operational Semantics: Examples

main { . What is the probability that the program halts?

Vel Th halts if

féiﬁé“u‘@o =0 do e program halts if In. Sy, = (0,0)

step(u,v)] s]

} (main, s, m, p) — (skip, s[(u,v) — (0,0)], t1*"(m), p).
step(u,v){ P [Eln (main, s, m, p) = (skip, s[(u,v) — (0,0)],t1**(m), p)]

x:=coin();

y:=coin();

=P Son = (0,
w=u+(x-y); \—/O 2 (0)}
v:i=v+(x+y-1) "

Operational Semantics: Examples

main{ What Is the probability that the program halts?

u:=0;

v:=0;

Stfﬁ(u"? 2 || vi=0d & (2n)!

while ul= vi=0 do n).

- = (0, — 4—2n
step(u,v) P[S; (0,0)] mZ—O m!'m!(n —m)!(n — m)!
|] n 2
)20

step(u,v){ nj &= \m

x:=coin(); 2 2

y:=coin(); = 4—2n(I’l) .

w=u+(x-y); n

vi=v+(x+y-1)

Operational Semantics: Examples

1:=0; Given € > 0, whatis P(]i — | < €)?
n:=0; .
while i<1e9 do (prog,s,m,p) — (skip,s[i — 4n/N,n — n,...],mt*" (p))
x:=rand();
:=rand(); . .
y:=rand(); n/N is the expectation of

if (x*x+y*y) <1

1:=4*n/1e9; -

then n:=n+1;
i=i+1 1 ifX?2+Y?<1
0O else

Operational Semantics: Examples

1:=0; Given € > 0, whatis P(]i — | < €)?
n:=0; s ,
while 1<1e9 do n/N is the expectation of Z = { L it Xx"+1" <1
x:=rand(); \0 else
y:=rand();
if (x*x+y*y) <1 , Vi
then n:=n+1; P [X = t] =P [X S \/;] = ‘/0 Lio,11(x) dx = Vi
1:=1+1 [,]
i:=4*n/1e9; oP (X~ <t 1
f(t) = = ——1o,1;()

Operational Semantics: Examples

1:=0; Given € > 0, whatis P(]i — | < €)?
n:=0; (
1 ifX?+Y?<1
while i<1e9 do n/N is the expectation of Z = «
x:=rand(); \0 else
y:=rand(); . 2 u2
if (ctxtyy) < 1 The density of X< + Y is
then n:=n+1; © 1 1
N Fen0= [5=l =100 ds
:=4*n/1e9; ’/t 1 .
? d fO0<tr<l1
= {Jo A[x\t — x ol
B 1
dx ifl<t<?2
\[—1 4\/}\/2“ — X o

Operational Semantics: Examples

1:=0; Given € > 0, whatis P(]i — | < €)?
n:=0; (
1 ifX?+Y?<1
while i<1e9 do n/N is the expectation of Z = «
x:=rand(); \0 else
y:=rand(); . 2 u2
if (ctxtyy) < 1 The density of X< + Y is
then n:=n+1; © 1 1
N Fen0= [5=l =100 ds
:=4*n/1e9; ’/t 1 .
? d fO0<tr<l1
= {Jo A[x\t — x ol
B 1
dx ifl<t<?2
\[—1 4\/}\/2“ — X o

Operational Semantics: Examples

1:=0; Given € > 0, whatis P(]i — | < €)?
n:=0; s ,
e -
while 1<1e9 do n/N is the expectation of Z = { L it Xx"+1" <1
x:=rand(); \0 else
y:=rand(); |
it (x*x+y*y) <1 exp(Z) is
then n:=n+1; t L L L .
i=i+1 I i Ty oy Tt (s =

i:=4*n/1e9; 1 q
P[X2+Y2$1]:/(f*f)(t)dt:/ “dr ="
0 o 4774

Xin Zhang@PKU

Operational Semantics: Examples

1:=0; Given € > 0, whatis P(]i — | < €)?
ﬂ:O, (. 2) 2)
while i<1e9 do n/N is the expectation of Z = { LbX=+re <1
x:=rand(); 0 else
y:=rand(); | |
then n:=n+1; 0 o 4 4
i:=i+1 noon o? 2
_ < — 2 _Tt_ (¢
1:=4*n/1e9; P ”N 4 > 8] — Ng2 Whete 0% = 2 (4)

Chebyshev’s
inequality
56

This Class

* Syntax of a simple imperative probabilistic language

* Operational semantics

e Measure theory & denotational semantics (brie
y

Denotational vs. Operational Semantics

* Consider x := coin(), in operational semantics:
(x := coin(), s,m,p) — (skip, s[x > 0],tim, p)

(x := coin(),s,m,p) — (skip, s[x — 1],tlm, p)

e Denotational semantics:
* Model all possible executions together

* States: probability distribution over memory states

. %S[x - 0] -I-%S[X - 1]

Denotational Semantics: Introduction

* State S can be i1dentified with the Dirac measure gg, then the semantics
. . 1 1
of x:=coin() can be viewed as g5 — Es[x - 0] + Es[x - 1]

* In general, a program is interpreted as an operator mapping probability
distributions to (sub)probability distributions

Denotational Semantics: Definition

* Assume there are n real variables, then a state is a distribution on R™

* A program e: MR"™ - MR"

* An operator called a state transformer

Measure Theory

* Measures: generalization ot concepts like length, area, or volume

Measure Example: Length

* What subsets of R can meaningfully be assigned a length?

* What properties should the length function [satisty?

Measure Example: Length

€(la1, b1] U |az, b2]) = €([a1,b1]) + €([az, b2]) = (b1 — a1) + (b2 — a2).

) Z f(A) A; and Aj are disjoined .l is called additive

: “C=

(69)

= C(A: A; and A; are disjoined .The set is countable.
i) j
lis called countably additive or o — additive

f(gA,-

[(R) = oo, but we are only going to talk about finite measures

f(B \ A) — Z(B) — f(A) Domain should be closed under complementation

b; < a,

Measure Example: Length

* Can we extend the domain of length [to all subsets of R?

* No. Counterexample: Vitali sets

* V € [0,1], such that for each real number 7, there exists exactly one number v €
V such that v — 7 is rational

* Let qq, g, ... be the rational numbers in [—1,1], construct sets Vi, =V + g

« [0,1] € Uy Vi € [—1,2]
* [(Vy) = I(V), and there are infinitely many Vj

* [is called the Iebesgue measure on real numbers

Measurable Spaces and Measures

* (S, B) 1s a measurable space
* Sisaset

* B 1sa g-algebra on S, which 1s a collection of subsets of S
* It contains @
* Closed under complementation in S

* (Closed under countable union

* The elements of B are called measurable sets

* If Fis a collection of subsets of S, 0(F) is the smallest g-algebra

containing F, or o(F) £ N{A | F C A and A is a o-algebra} . We say (S,
o(F)) is generated by F.

Measurable Functions

* (S, Bg) and (T, Bt) are measurable spaces. A function f: 8 = T is
measurable if f™*(B) = {x € S|f(x) € B} forevery B € By is a

measurable subset of S

I, s € B,

Example: S) =
xB(S) {O, s ¢ B.

Measures: Definitions

* A signed (finite) measure on (S, B) is a countably additive map y: B —
R such that u(@) = 0

* Positive signed measure: u(4) = 0 forall A € B
* A positive measure is a probability measure if u(S) =1

* ...is a subprobability measure if u(S) <1

Measures: Definitions

o If u(B) = 0, then B is a p-nullset

* A property is said to hold p-almost surely (everywhere) if the sets of
points on which it does not hold 1s contained in nullset

* In probability theory, measures are sometimes called distributions

Measures: Discrete Measures

* For s € §, the Diract measure, or Diract delta, or point mass on s:
(
1, s € B,

Os(B) = 4
(B) kO, s ¢ B.

* A measure is discrete if it 1s a countable weighted sum of Dirac measures
* If the weights add up to one, then it is a discrete probability measure

* Continuous measure: ({s}) = 0 for all singleton sets {s} in B of (S, B)

Measures: Pushforward Measure and Lebesgue Integration

* Given f: (S, Bg) — (T, By) measurable, an a measure U on By, the
pushfoward measure y(f ~*(B)) on By is defined as

f(1)(B) = u(f~'(B)), B € Br.

* Lebesgue integration: given (S,B), u: B > R, f:S = R, where m <
f<M
[fdu=_lim i, f(s:)u(B:)

where By, .., B, is a measurable partition of §, and the value of f does
not vary more than (M — m)/n in any B; and s; € B;

Markov Kernels

 Given (S, Bg) and (T, By), P: SXBy — R is called a2 Markov kernel if
* For fixed A € By, the map 45. P(s,A) = R is a measurable function on (S, By)
* For fixed s € S, the map AA4. P(s,A) = R is a probability measure on (T, Br)

* Composition of two Markov kernels
e Given P:S > T,0Q:T - U (P; Q)(s,A) = / P(s,dt) - O(t, A).
tel

* Given U on Byg, its push forward under the Markov Kernel P is

P.(4)(B) = / P(s, B) u(ds).

SES

More on Markov Kernels
*(§5,Bg):x=... (x>0
* (T,Br): y = uniform(0,x)

e Markov kernel P(x, U=¥[a;, b;]) = =¥ length([a;, b;] N [0, x])/x

More on Markov Kernels

* (§S,Bg):x=... (x>0
* (T, Bt): y = uniform(0,x)

* (T, Bt): z = uniform(0,y)

* Composition: (P; Q)(x,10,z]) = fy €[0,00] P(x,dy) = Q(y, [0, z])
7 <X j dy length(]0,z] n]0,y])
— k
yE[0,x] X y
d dy z z Z
=J _y*X_|_f —y*—=—+ (Inx — Inz)
y€|[0,z] yE|z,x]

X Yy xyx;

More on Markov Kernels

* (S, Bg): x = uniform(0.1, 1.1) u([a, b]) = length([a, b] N [0.1,1.1])

» (T, By): y = uniform(0,x)

e Markov kernel P(x, U=¥[a;, b;]) = =M length([a;, b;] N [0, x])/x
» 1’s pushforward under P is

P,(1)(By) = f Br 01 [0, x] * pu(dx)

x€[0.1,1.1]

More on Markov Kernels

e We can use Markov kernels to define the meanings of statements

* A term can be seen as a Markov kernel that links the input variables (can
be a distribution) with the output distribution

Summary

* To reason about properties and correctness of probabilistic programs,
we need semantics

* To define semantics, we can
* Decompose it into semantics of program structures

* Link it with mathematical concepts

