Learning Probabilistic Programs

Xin Zhang
Peking University

Recap of Last Lecture

* Evaluation-based inference
* Dynamic
* Can deal with programs with unbounded loops

Likelihood Weighting

* A form of importance sampling where the proposal is the prior

p(X[Y)] 1 p(Y, X)
Fac | Zqpey "] T) Eao " T(Xﬂ
~ P Z Win(X)
Y, X! Y| XHp(X? If we use p(X') as the
W= pE](Xl)) - o |p(X)'§?)() - p(Y|Xl) proposal distribution

Y are observed/conditioned variables

Likelihood Weighting: Variants

* Naive Metropolis Hasting (draw random traces)

* Single-site proposal (try to only chance one variable at a time)

Sequential Monte Carlo

* In probabilistic programming, sample a high-dimensional distribution by
sampling a sequence of lower dimensional distributions

* Also called particle filters

* Used in signal processing and probabilistic inference

SMC: Problem Statement

)

Given

1 2

N

o

p(xg) and
p(x¢|xt—1) and
p(yelxe) and
Observations Vq.¢

Estimate

N

p(xO:tb}l:t) or
p(x¢t|y1:e) or
I(fp) = Epxo.elyio) |f: (x0.0)] = fft(xo:t)P(Xo:t|Y1:t)dx0:t

SMC: Main Ideas

* Sample on the Markov chain:

T (XO:t| Y1:t) =T (XO:t—1|.Y1:t—1) T (Xt\ XO:t—laYl:t)-

* Reweight the samples using importance sampling

* Throw away the samples (particles) with low probabilities

1=1,...,N=10 particles
(1)

o [
o O O O O o O O O tl’

From “An Introduction to Sequential

L v Monte Carlo Methods” by Arnaud
° ® {)?,El)l ,N M Doucet, Nando De Freitas, and Neil
l l Gordon
® O

x& N

<___

'
o W0

SMC: Bootstrap Filter

Assume the proposal distribution is p(x4.¢)

1. Initialization. T = 0

* Fori=1,...N, sample x(

)~p(x0) and sett =1

2. Importance sampling step.
T ~p (%2, and set (R_q, TL0).

* Fori1=1,.. .,N, evaluate the importance weights.
* Normalize the importance weights

* For sample x

3. Selection step

* Resample with replacement N particles from the current particles according to
importance weights

e Sett->t+1

Question 1

* In evaluation-based method, if the sampled trace doesn’t
terminate, what would you do 1n practice?

Question 2

* Consider the program x = unform(0, 1); y = gaussian(x,
1). Suppose the current trace 1s x = 0.5, y = 1. Now we
want to change y, what 1s p(y) that we‘re sampling from?

* What if we want to change x?

Question 3

* Consider the program
x = 0;

while(bernoulli(0.5));
x+=1

condition(x > 2)

* Describe an algorithm to sample traces from it.

Question 4

* Sequential Monte Carlo can be see as a variant of
importance sampling. Is the statement right?

Question 5

* What would happen if we don’t throw away particles in sequential Monte
Carlo?

This Lecture

* Learning in probabilistic programming
e Still an active research area

* Not a solved problem

Question

* Can you define inference and learning?

Inference vs. Learning

* Inference: given f |0, run |0 to output data

* Learning: given f |8, and data D, figure out 6

Inference vs. Learning

* Inference is often a part of learning

* Example: perform inference with different parameters

Inference vs. Learning

* Inference is often a part of learning

p = bernoulli()
D=]...]
it p==1:

m = modell
else:

m = model2

for (x,y) in D;
condition(m(x)+N(0,0.1) ==y)

output m

Learning in Probabilistic Programming

e Parameter learning

x = uniform(pl, p2)
y = gaussian(x, p3)
if(bernoulli(p4))

z =X

else

Z=y
condition(z > 100)

What are pl, p2, p3, p4°

Learning in Probabilistic Programming

* Structure learning

x = uniform(pl, p2)
y = gaussian(x, p3)

if(bernoulli(p4))
zZ =X
else
z=y

condition(z > 100)

More on Structure Learning

* How to synthesize (deterministic) programs is an active field

* Program synthesis
* Started early
e Still under development

* Works well in specitic settings

Program Synthesis

* Given a specification, generates a program that satisties the specification

* Main challenge: intractable search space

* Various approach to cut the search space
* Sketch
* SyGuS (Syntax-Guided Synthests)

Program Synthesis: Sketch

it (x > 27
y = 100
else

y =7r°r

output x*x+y*y

x=1,0=100
x = 10, o = 1000

Program Synthesis SyGuS

Syntax Constraints:
e :=input|e+elexele—ele/e
Semantic Constraints:
e(2) =100
e(5) =700

The semantics constraints can be more high-level than input-out examples. For
example, the output of a sorting algorithm is sorted.

Xin Zhang@PKU

More on Program Synthesis

* https://people.csail.mit.edu/asolar/SynthesisCourse/TOC.htm

 https:/ /xiongvyinefei.github.io/SA /2020 /main.htm

26

https://people.csail.mit.edu/asolar/SynthesisCourse/TOC.htm
https://xiongyingfei.github.io/SA/2020/main.htm
https://people.csail.mit.edu/asolar/SynthesisCourse/TOC.htm
https://xiongyingfei.github.io/SA/2020/main.htm

Xin Zhang@PKU

A Possible Pipeline to Synthesize Probabilistic Programs

specification ‘ Structure Learning ‘ Parameter Learning - Program

27

Two Typical Approaches

* Non-Bayesian method (Maximum Likelithood)

* Kevin Ellis, Armando Solar-Lezama, Joshua B. Tenenbaum: Unsupervised
Learning by Program Synthesis. NIPS 2015.

* Bayesian method

* Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard,
Vikash K. Mansinghka: Bayesian Synthesis of Probabilistic Programs for
Automatic Data Modeling. POPL 19.

Ellis et al., 2015: Motivations

* Goal: unsupervised learning

* Induce good latent representations of a data set

* Programs are a natural knowledge representation for many domains
* Compression: find smallest representation

* Infer both programs and inputs

e General solution is hard

* Encode domain-specific parts using a DSL

Key Ideas

* Using PCFG to limit the program space

* Symbolic search: SM'T

Problem Formalization

Minimize
N
ZlogPr(f) +3- (- log Py (il S (1) —logPy(L;))
z_l . - . J ‘r.
program length data reconstruction error data encoding length
f is drawn from a prior I is drawn from a domain-dependent description length prior Py,
determined by the sketch which leads to z; = f(I;).

Py|z(* |z;) estimates the error between predictions and observations.

Program 1s largely deterministic, but inputs are random. Also, going
from Z to X is a random process (manually specified)

Defining a Program Space

* Probabilistic context-free grammar (PCFG)

* Place probabilities on production rules

E-E+E | R | x

* Define denotations for each rule using SM'T
(&1 + &) = [&]() + [&](1) [reR|()=r [2](I)=1

* We can use SMT expression to denote the synthesis problem

Solution

 Construct an SMT that
* Detines the space of programs
* Computes the description length

* Computes the output given an input and a program

* Use SMT to perform linear search on the loss function

More on SMT

* Satistiability modulo theories

* Generalizes SAT such that each clause can contain real numbers, integers, strings,
quantifiers ...

* Highly expressive, but its solvers only scale under well-defined scenarios

* Representative solver: z3 from Microsoft

Example: Visual Concept Learning

* Space of programs: simple graphic programs that control a turtle

e Rotations
e Forward movement

* Rescaling of shapes

* Program outputs: image parses
* A list of shapes <id, scale, x, y>
* A list of containment relationships (1,)

* A list of reflexive borders relations borders (i, |)

4 N
G J

[51 = Shape(id — 1, scale = 1,\

r =10,y = 15)
so = Shape(id = 2, scale = 1,
x =27,y = 54)

borders(sy, s2)

- J

Xin Zhang@PKU

35

Example: Visual Concept Learning

* Program inputs:
* Shapes
* Positions
* Movement lengths and angles
* Scales

* A noise model Py, (* | *) that specifies how an output z produces a
parse X
* Positions (add uniform random noise)
* Optional borders and contains relations are erased with half chance
* The indices/orders of shapes are randomly permuted

Example: Visual Concept Learning

Example Program

U

o

teleport (position[O0],
initialOrientation)

draw (shape[0], scale = 1)
move (distance[0], 0deqg)

move (distance[0], 0deq)

(
(
draw (shape[0], scale = scale[0])
(
draw (shape[0], scale = scale[0])

Conclusion on Ellis et al., 2015

* Manually separated the deterministic part from the probabilistic part

* Convert the problem into an optimization problem by maximizing
likelthood and minimizing encoding lengths

Overview: Saad et al., 2019

* Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C.,
Rinard, Vikash K. Mansinghka: Bayesian Synthesis of Probabilistic
Programs for Automatic Data Modeling. POPL 19.

* Usage: generate probabilistic programs as generative models of data

* A prior over distribution of programs; conditioning on the observed data,
to infer the posterior distribution of the program

Overview of the Framework

Domain-Specific Language for Data Modeling

Xin Zhang@PKU

Venture Probabilistic Programming System

Observed Data
Y1 Y2 X1
1.8 2.1 4.5
3.7 4.2 -2

Denotational Denotational Program DSL to Venture
Semantics Semantics Mutations Translation

{Prior [E]} {Lik[E] (X))} {Ew+~ E’} {Venture [E]}

v

— l

. —_—>
Bayesian —>»

Synthesis ——>

Static Property
Query

Probabilistic| —> p
Programs |—> T roglr?n
(DSL) —> Translation

l

DSL Program Probability of
Analysis Property

YYVYY

Prediction
Query

Probabilistic
Programs
(Venture)

v

Venture
Interpreter

Probabilistic
Predictions

From the Original Paper

40

Details of the Approach

* https:/ /www.youtube.com/watch?v=T5fdUmY]sjM

More on Gaussian Process

* A distribution over functions (from x to y)

* Non-parametric model

* With infinite many parameters

* The function can be seen as vector which is drawn from a big correlated
Gaussian distribution

* Specitied by covariance functions

How to Sample Programs?

* MCMC (Metropolis-Hasting)
* Prior distribution: specified by the PCFG

* Accepting probability: correlates to likelthood

Conclusion on Saad et al., 2019

* A general Bayesian framework to handle different types of synthesis
problems
* Parameterized by the DSL

* Synthesize full programs in Bayesian manner

* Scalability might be a problem
* Choosing DSLs and priors are the key

Next Lecture

* Probabilistic Logic Programming

