Probabilistic Graphical Models

(continued)

Xin Zhang
Peking University

Adapted from the slides of “Pattern Recognition and Machine Learning” Chapter 8

Xin Zhang@PKU

Recap: Bayesian Networks

* Directed Acyclic Graph (DAG)

= p(z1)p(z2)p(x3)p(24| 271, T2, T3)

p(x5 |$1 ; 553)]7(376 |$4)p(377|5€4, 1‘5)

General Factorization

p(x) = H p(xk|pay)

Xin Zhang@PKU

Recap: Conditional Independence

¢ a b

O—e—C

C
a1l blc a1l blc all b]c

Shaded nodes are observed.

Recap: D-Separation

* A, B, and C are non-intersecting subsets of nodes in a directed graph.

* A path from A to B is blocked if it contains a node such that either

a) the arrows on the path meet either head-to-tail or tail-to-tail at the
node, and the node 1s in the set C, or

b) the arrows meet head-to-head at the node, and neither the node, nor
any of its descendants, are in the set C.

* If all paths from A to B are blocked, A 1s said to be d-separated from B by C.

*If Ais d-separated from B by C, the joint distribution over all variables in
the graph satisties

Xin Zhang@PKU

D-separation: Example

a f a

CLAMLZ?‘C CLJ.l_b|f

Which graph(s) can describe the following distribution?

« A ~N(0, 1), B~N(A,1),C~N(®,1)

ORORONOSOanO

1 2 3
4 5 6

Is A d-separated from C by B?

O
©
©

Xin Zhang@PKU

Recap: The Markov Blanket

p(X17°°°7XM)

/p(xl, Xy) dx;
HP(XHP%)

k
/ T o0k lpay) dx;
k

p(Xilxgziy) =

Factors independent of x; cancel between
numerator and denominator.

Recap: Markov Random Field

* Undirected, can have cycles
* Markov networks

* Reason about conditional independence using graph reachability

Recap: Markov Random Field

p60) = o [velxe)
C

* where Yo (x¢) is the potential over maximal clique C and

zZ=> 1]vexce)
x C

* i5s the normalization coefficient.

Recap: Markov Random Field

G P(A =True,B = True,C = True,D = True)

_ Yapc(True, True, True) Xy p(True, True)

Q 2a5coWapc(4,B,C)XYcp(C,D)

This Class

* Relationship between directed and undirected models

* Inference (“Exact”)

Converting Directed to Undirected Graphs

p(x) = % Y1 2(21,22) Ya3(x2,23) - Yn_1 N(TN-1,2ZN)

X o IN-1 TN

Xin Zhang@PKU

13

Xin Zhang@PKU

Converting Directed to Undirected Graphs

H 54 3 T H 52

o X2

14

Steps in Converting Directed to Undirected

1. Add links between all pairs of parents for each node (moralization)
2. Drop arrows, which results in a moral graph

3. Initialize all of the clique potentials to 1. Take each conditional
distribution factor and multiply it into one of the clique potentials

Example

OO 0?0

Yapc = P(A)XP(B)XP(C|A, B)

l/Jc,D = P(D|C)

Xin Zhang@PKU

Directed vs. Undirected Graphs

Can you convert the following graphs and keep the conditional indecencies?

C
A B
A B
C
D
Al B¢ AY B0
AJ B|C Al B|CUD

C 1 D|AUB

17

Xin Zhang@PKU

Directed vs. Undirected Graphs

Distributions that can be perfectly represented by two types of graphs
In terms of conditional independence

18

Inference in Graphical Models

What is the computational
complexity regarding the
number of variables?

* Marginal probabilities: p(x) or p(X,y)

* Conditional probabilities: p(x| o) or p(x,y|0)

Xin Zhang@PKU

Inference in Graphical Models

Shaded nodes
are observed.

Zp (ylz")p plaly) = ZU2P

p(y)

20

Xin Zhang@PKU

Inference on a Chain

1

p(x) — E¢1,2($1,$2)¢2,3($2,$3) " '¢N—1,N($N—1,$N)

plan) =0 e 2L) e 2 p)

Ln—1Tnt+1

21

Xin Zhang@PKU

Inference on a Chain

22

Xin Zhang@PKU

Inference on a Chain

:uoc(xn> — Z ¢n_1,n(xn_1,xn) |:Z :|

Ln—1 Ty—_9

= Z wn—l,n(xn—lv'xn>ua(xn—1>'

LTn—1

LTn+1 Tn42

pa(rn) = Z Vrnt1(Tn, Tnit1) [Z }

— Z wn,n+1(xnaxn+1>ﬂﬁ($n+1>.

LTn+1

23

Xin Zhang@PKU

Inference on a Chain

pa(Tn-1) pal®n) pp(@n) pp(@ni1)

— Zw1,2(x1’x2) pe(rN-1) ZlDN 1,N(TN-1,TN)
1

Z = Z o (Tn) s (Tn)

Ln,

24

Inference on a Chain

* To compute local marginals:

* Compute and store all forward messages, Ha(Zn).
* Compute and store all backward messages, ug(xy).
* Compute Z at any node X,
* Compute 1
p(Tn) = Eﬂa(xn)ﬂﬁ(xn)

for all variables required.

Xin Zhang@PKU

What about p(Xx,_.{, X,,)?

po(Tn 1) ps(Tn)
O—+=O—O—0——0
1 Tp—1 Tn Ln+1 LN
p(Xp_1,Xn) = fle--zxn_zzxnﬂ e Ly P12 (%1, x32) ---l/)N—l,N(xN—lrxN)

1
= Elpn—l,n (xn—lr xn)le- . an—z 1/)1,2 (xl: xz) wn—z,n—l(xn—Zr xn—l)
IV z:xl\,l/)n,n+1(xn» Xn+1) - YN-1N (XN-1,XN)

1
= E l/}n—l,n (xn_l, xn)ﬂa (xn—l):uﬁ (xn)

26

What about p(x,Ix,,=V)

* Simply fix x,, to V instead of doing summarization over x|

* Z will also be changed accordingly

Xin Zhang@PKU

More Complex Graphs: Trees

Undirected Tree Directed Tree Polytree

On these graphs, we can perform efficient exact inference using local message passing!

Before introducing algorithms, we first introduce a new model

28

Factor Graphs

Bipartite graph

Two kinds of nodes:
* Regular random variables
* Factor nodes

Factor node represents a function
that maps assignments to its
neighbors to a real number

p(x) = Hsﬁs (xs)

Ja

fb fc fd

POy, X, X3) = - fou (e, %) fy (e, %) f (0, %3) 4 (33)

Xin Zhang@PKU

29

Xin Zhang@PKU

Factor Graphs from Directed Graphs

J
p(x) = p(z1)p(z2) fa1, 9, 23) = fa(z1) = p(z1)
p(zs|z1, 2) p(x1)p(@2)p(3|T1, 22) folzs) = p(2)

fe(x1,22,23) = p(x3]|T1,22)

30

Xin Zhang@PKU

Factor Graphs from Undirected Graphs

X1 T x 9 T T2
S fa
Jo
3 xs3 x3
Y(x1, 22, 73) f(z1, 22, 73) fa(z1, 22, 23) fo (22, T3)

= Y(x1,22,23) = Y(z1,22,73)

31

The Sum-Product Algorithm

* Objective:
i. to obtain an efficient, exact inference algorithm for finding
marginals on tree-structure graphs;

ii. 1n situations where several marginals are required, to allow
computations to be shared etticiently.

* Key idea: Distributive Law

ab + ac = a(b + c)

Xin Zhang@PKU

The Sum-Product Algorithm

& (33; Xs)

33

Xin Zhang@PKU

The Sum-Product Algorithm

Fs(x; Xs)

ZFS(:C,XS)]

Xs

s€ne(x)

= I #-a@. o —o(@) = Y Folx, Xo)

s€ne(x) X, 34

Xin Zhang@PKU

The Sum-Product Algorithm

Fo(x, Xs) = fs(x,z1,...,20)G1 (1, Xs1) - - - Gar (pr, Xsnr)

35

Xin Zhang@PKU

The Sum-Product Algorithm

Hfs—x (x) =

36

Xin Zhang@PKU

The Sum-Product Algorithm

37

Xin Zhang@PKU

The Sum-Product Algorithm

e Initialization

oo p(@) = 1 s a(@) = f(2)

38

The Sum-Product Algorithm

* To compute local marginals:

* Pick an arbitrary node as root

* Compute and propagate messages from the leat nodes to the
root, storing received messages at every node.

* Compute and propagate messages from the root to the leaf
nodes, storing received messages at every node.

* Compute the product of received messages at each node for
which the marginal is required, and normalize if necessary.

Marginal Inference on A Set

* What if I want to know p(Xxg) where X4 are nodes in a factor s?

peo) = filxs) | | n G

iene(fs)

Xin Zhang@PKU

Sum-Product: Example

O—8——CO—=8——0
_BE

p(x) = fa(x1,22) fo(v2,23) fe(T2, 24)

41

Xin Zhang@PKU

Sum-Product: Example

O—a—0O—=—0

!

IUle_ﬂfa(:’U]-> —]‘
Hfo—zs (T2) = Zfa(%,@)
L1

iz
T
() henle) =1

&4 Mfc_>w2(x2> = ch(x2,1'4>

T4
IUJw2_>fb (.CUQ) — /’Lfa_>332 (x2>IUch_>x2 (xQ)
ff,—as(T3) = Zfb(x27x3)/‘x2—>fb (22)

2

42

Xin Zhang@PKU

Sum-Product: Example

O—a—0O—a—0

1

Hxs— fy (1‘3) = 1
ffy—ao (T2) = Z fo(x2,23)
3

() @) = bpn(@iy—n (o)

L4 IUJfa_>331 (.CUl) — Zfa(x17x2>/’bw2_>fa (xQ)
2
/’Lw2_>fc(x2> — /’Lfa_>332(x2>/’bfb_>x2 (xQ)

/’Lfc_>334(x4> — ch(x27x4)ux2_>fc(x2)
2

43

Xin Zhang@PKU

Sum-Product: Example

T T2 T3

O—a—O—8—0)

fa fb

.fc ﬁ(x2> — lUJfa_>332 (x2>lUJfb—>332 (x2>,UJfC—>332 (.CUQ)

= Z fa(z1, 562)] [Z fo(z2, $3>]

T4 ch(CCQ,CM)]
— S: S: S: fa(:cl, 1‘2>fb(1'2, xS)fc(x% 1‘4)

1 X3 T4

= 2.2 2)

L1 s L4

44

What about conditional probabilities?

* Fix the observed variables
e Or add a factor node

e Both need normalization

What If | want to know values of all
variables that have the highest probability?

argmax, p(x)

The Max-Sum Algorithm

Objective: an efficient algorithm for finding
i. the value XM that maximises p(X);
ii. the value of p(x™M).

In general, maximum marginals # joint maximum

r=0 x=1
y =20 0.3 0.4
y=1 0.3 0.0

argmaxp(z,y) = 1 argmax p(x) =0

xZ X

Xin Zhang@PKU

The Max-Sum Algorithm

* Maximizing over a chain (max-product)

T L9 IN-—-1 TN

= max p(X) = max...max p(x)
X T1 L M

1
— - max - - -max [¢1 2(x1,22) - - YN-_1,N(TN=1,TN)]
2 TN
1
Z

TN

max [max [¢1,2(x1,x2> [. mawa_LN(xN_l,xN)] y ”

43

The Max-Sum Algorithm

* Generalizes to tree-structured factor graph

max p(X) = max H max fs(xn, Xs)

X Ln XS
fs€ne(xy,)

* maximizing as close to the leat nodes as possible

max(ab, ac) = a max(b,c)

The Max-Sum Algorithm

e Max-Product - Max-Sum

* For numerical reasons, use

In (maxp(x)) = max In p(x).
* Again, use distributive law

max(a + b,a + ¢) = a + max(b, ¢).

The Max-Sum Algorithm

* Initialization (leat nodes)
/‘a:—>f(x> =0 ,uf—m:(x) — lnf(x>

e Recursion

proz(r) = max {lnf(:c,:cl,...,xM)—l— Z ,ua:m—>f(xm>:|

mene(f)\x
¢(z) = argmax |Inf(z,21,...,20m)+ Z Ha,—f(Tm) | Track the values
TlyeesTM méene(f)\z

poms@) = S ()

Max-Sum Algorithm

* Termination (root node)

pmax max Z pf,—z ()
s€ne(x)
M = argmax Z /’Lfs_>x($>
v s€ne(x)

* Back-track, for all nodes i with | factor nodes to the root (I1=0)

X = (i)

Sum-Product vs. Max-Sum

Sum-Product Max-Sum

* xmene(f)\x LM XmENe(f)\X

Brox@ = Y fixn i) || By Gom) pn GO = max [nfCoxn,)+) by (o)

e = || e @ e ()=) tp ()
lene(x)\f lene(x)\f

a(b+c) = ab+bc a+max(b,c) =max(a+b, a+c)

What about inference on general graphs?

* NP-complete

* Counting problem

The Junction Tree Algorithm

* Exact inference on general graphs

* Works by turning the initial graph into a junction tree and
then running a sum-product-like algorithm

* [ntractable on graphs with large cliques

Xin Zhang@PKU

The Junction Tree Algorithm

56

Loopy Belief Propagation

* Sum-Product on general graphs

* Initial unit messages passed across all links, atter which messages are
passed around until convergence (not guaranteed!)

* Approximate but tractable for large graphs

* Sometime works well, sometimes not at all

Recap

* Bayesian networks = Markov Random Fields
* Connect parents
* Drop arrows

* Multiply conditional probabilities to get potentials

* Factor graph
e Random variable nodes

e Factor nodes

° F(x) — Hff(xlixZJ ---:xn)

Recap

* Marginal inference on tree-structure factor graph
* Sum-product algorithm: a message-passing algorithm
* Exchange sum and product using the distribution law

* Messages from a factor to a node: sum over products of messages from other
nodes to the factor

* Messages from a node to a factor: product over messages from other factors to
the node

* Inferring settings with the highest probability

* Max-sum algorithm

Recap

* Inference on general graphs with loops is NPC
* Exact: junction algorithm

* Approximate: loopy belief propagation

Next Class

* Approximate inference
* Sampling methods

