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Recap: Bayesian Networks
• Directed Acyclic Graph (DAG)
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General Factorization



Recap: Conditional Independence
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Shaded nodes are observed.



Recap: D-Separation
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•A, B, and C are non-intersecting subsets of  nodes in a directed graph.
•A path from A to B is blocked if  it contains a node such that either

a) the arrows on the path meet either head-to-tail or tail-to-tail at the 
node, and the node is in the set C, or

b) the arrows meet head-to-head at the node, and neither the node, nor 
any of  its descendants, are in the set C.

• If  all paths from A to B are blocked, A is said to be d-separated from B by C. 
• If  A is d-separated from B by C, the joint distribution over all variables in 

the graph satisfies                  .



D-separation: Example
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Which graph(s) can describe the following distribution?

• A ~ N(0, 1), B ~ N(A, 1), C ~ N(B, 1)
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Is A d-separated from C by B?
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Recap: The Markov Blanket
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Factors independent of xi cancel between 
numerator and denominator.



Recap: Markov Random Field
• Undirected, can have cycles

• Markov networks

• Reason about conditional independence using graph reachability 
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Recap: Markov Random Field
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• where                   is the potential over maximal clique C and 

• is the normalization coefficient.



Recap: Markov Random Field
Xin Zhang@PKU

11

A B

C

D

𝑃 𝐴 = 𝑇𝑟𝑢𝑒, 𝐵 = 𝑇𝑟𝑢𝑒, 𝐶 = 𝑇𝑟𝑢𝑒, 𝐷 = 𝑇𝑟𝑢𝑒

=
𝜓!,#,$ 𝑇𝑟𝑢𝑒, 𝑇𝑟𝑢𝑒, 𝑇𝑟𝑢𝑒 ×𝜓$,%(𝑇𝑟𝑢𝑒, 𝑇𝑟𝑢𝑒)

Σ!,#,$,%𝜓!,#,$ 𝐴, 𝐵, 𝐶 ×𝜓$,%(𝐶, 𝐷)



This Class
• Relationship between directed and undirected models

• Inference (“Exact”)
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Converting Directed to Undirected Graphs
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Converting Directed to Undirected Graphs
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Steps in Converting Directed to Undirected

1. Add links between all pairs of  parents for each node (moralization)

2. Drop arrows, which results in a moral graph

3. Initialize all of  the clique potentials to 1. Take each conditional 
distribution factor and multiply it into one of  the clique potentials

4. Z = 1
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Example
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Directed vs. Undirected Graphs
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Can you convert the following graphs and keep the conditional indecencies?



Directed vs. Undirected Graphs
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Distributions that can be perfectly represented by two types of graphs
in terms of conditional independence 



Inference in Graphical Models
• Marginal probabilities: p(x) or p(x,y)

• Conditional probabilities: p(x|o) or p(x,y|o)
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What is the computational 
complexity regarding the 
number of variables?



Inference in Graphical Models
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Shaded nodes 
are observed.



Inference on a Chain
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Inference on a Chain
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Inference on a Chain
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Inference on a Chain
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Inference on a Chain

• To compute local marginals:
•Compute and store all forward messages,             .
•Compute and store all backward messages,             . 
•Compute Z at any node xm
•Compute

for all variables required.
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What about p(xn-1, xn)? 
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p 𝑥!"#, 𝑥! =
1
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What about p(xn|xm=V)
• Simply fix xm to V instead of  doing summarization over xm!

• Z will also be changed accordingly
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More Complex Graphs: Trees
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Undirected Tree Directed Tree Polytree

On these graphs, we can perform efficient exact inference using local message passing!

Before introducing algorithms, we first introduce a new model



Factor Graphs
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• Bipartite graph

• Two kinds of  nodes:
• Regular random variables
• Factor nodes

• Factor node represents a function 
that maps assignments to its 
neighbors to a real number

• 𝑝 𝒙 = ∏, 𝑓, 𝒙𝒔
𝑝 𝑥!, 𝑥", 𝑥# = !

$
𝑓% 𝑥!, 𝑥" 𝑓& 𝑥!, 𝑥" 𝑓' 𝑥", 𝑥# 𝑓((𝑥#)



Factor Graphs from Directed Graphs
Xin Zhang@PKU

30



Factor Graphs from Undirected Graphs
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The Sum-Product Algorithm

•Objective:
i. to obtain an efficient, exact inference algorithm for finding 

marginals on tree-structure graphs;
ii. in situations where several marginals are required, to allow 

computations to be shared efficiently.
• Key idea: Distributive Law
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The Sum-Product Algorithm
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The Sum-Product Algorithm
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The Sum-Product Algorithm
Xin Zhang@PKU

35



The Sum-Product Algorithm
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The Sum-Product Algorithm
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The Sum-Product Algorithm
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• Initialization



The Sum-Product Algorithm

•To compute local marginals:
• Pick an arbitrary node as root
• Compute and propagate messages from the leaf  nodes to the 

root, storing received messages at every node.
• Compute and propagate messages from the root to the leaf  

nodes, storing received messages at every node.
• Compute the product of  received messages at each node for 

which the marginal is required, and normalize if  necessary.
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Marginal Inference on A Set
• What if  I want to know 𝑝(𝒙𝒔) where 𝒙𝒔 are nodes in a factor s?
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𝑝 𝒙𝒔 = 𝑓5(𝒙𝒔) 4
6∈89(:!)

𝜇;"→:!(𝑥6)



Sum-Product: Example
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Sum-Product: Example
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Sum-Product: Example
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Sum-Product: Example
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What about conditional probabilities?
• Fix the observed variables

• Or add a factor node

• Both need normalization
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Xin Zhang@PKU
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What if I want to know values of all 
variables that have the highest probability?

argmaxx p(x)



The Max-Sum Algorithm
Objective: an efficient algorithm for finding 

i. the value xmax that maximises p(x);
ii. the value  of  p(xmax).

In general, maximum marginals ¹ joint maximum
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The Max-Sum Algorithm

•Maximizing over a chain (max-product)
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The Max-Sum Algorithm

•Generalizes to tree-structured factor graph

•maximizing as close to the leaf  nodes as possible
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max(ab, ac) = a max(b,c)



The Max-Sum Algorithm

•Max-Product ® Max-Sum
• For numerical reasons, use

• Again, use distributive law 
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The Max-Sum Algorithm

• Initialization (leaf  nodes)

•Recursion

Xin Zhang@PKU

51

Track the values



Max-Sum Algorithm 
• Termination (root node)

• Back-track, for all nodes i with l factor nodes to the root (l=0)  
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Sum-Product vs. Max-Sum
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Sum-Product Max-Sum

𝜇)→+ 𝑥 =>
+!

…>
+"

𝑓,(𝑥, 𝑥!, … , 𝑥-) @
+#∈/0())\4

𝜇+#→)(𝑥5)

𝜇+→) 𝑥 = @
6∈/0(+)\7

𝜇)$→+ (𝑥)

𝜇)→+ 𝑥 = max
+!,…,+"

[𝑙𝑛𝑓 𝑥, 𝑥!, … , 𝑥- + >
+#∈/0())\4

𝜇+#→) (𝑥5)]

𝜇+→) 𝑥 = >
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a(b+c) = ab+bc a+max(b,c) =max(a+b, a+c)



What about inference on general graphs? 
• NP-complete

• Counting problem
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The Junction Tree Algorithm

•Exact inference on general graphs
•Works by turning the initial graph into a junction tree and 
then running a sum-product-like algorithm
• Intractable on graphs with large cliques
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The Junction Tree Algorithm
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Loopy Belief Propagation
• Sum-Product on general graphs
• Initial unit messages passed across all links, after which messages are 

passed around until convergence (not guaranteed!)
• Approximate but tractable for large graphs
• Sometime works well, sometimes not at all
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Recap
• Bayesian networks → Markov Random Fields
• Connect parents
• Drop arrows
• Multiply conditional probabilities to get potentials

• Factor graph
• Random variable nodes
• Factor nodes
• 𝐹 𝒙 = ∏: 𝑓(𝑥I, 𝑥J, … , 𝑥8)
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Recap
• Marginal inference on tree-structure factor graph
• Sum-product algorithm: a message-passing algorithm
• Exchange sum and product using the distribution law
• Messages from a factor to a node: sum over products of  messages from other 

nodes to the factor
• Messages from a node to a factor: product over messages from other factors to 

the node

• Inferring settings with the highest probability
• Max-sum algorithm
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Recap
• Inference on general graphs with loops is NPC
• Exact: junction algorithm
• Approximate: loopy belief  propagation
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Next Class
• Approximate inference
• Sampling methods
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