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Recap: Converting Directed to Undirected

1. Add links between all pairs of  parents for each node (moralization)

2. Drop arrows, which results in a moral graph

3. Initialize all of  the clique potentials to 1. Take each conditional 
distribution factor and multiply it into one of  the clique potentials

4. Z = 1
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Converting Directed to Undirected Graphs

Xin Zhang@PKU

3



Directed vs. Undirected Graphs
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Distributions that can be perfectly represented by two types of graphs
in terms of conditional independence 



Can you convert the following directed graphs into 
undirected while keeping conditional independence?
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1 2 3

No Yes Yes



Can you convert the following undirected graphs into 
directed while keeping conditional independence?
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1 2 3

Yes YesNo



Factor Graphs
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• Bipartite graph

• Two kinds of  nodes:

• Regular random variables

• Factor nodes

• Factor node represents a function 

that maps assignments to its 

neighbors to a real number

• 𝑝 𝒙 = ς𝑠 𝑓𝑠 𝒙𝒔
𝑝 𝑥1, 𝑥2, 𝑥3 =

1

𝑍
𝑓𝑎 𝑥1, 𝑥2 𝑓𝑏 𝑥1, 𝑥2 𝑓𝑐 𝑥2, 𝑥3 𝑓𝑑(𝑥3)



Sum-Product Algorithm

• Computes marginal probabilities with/out conditions

• Exact on tree-structure factor graphs

• Key idea: exchange sums and products using the distributive law
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The Sum-Product Algorithm

•To compute local marginals:
• Pick an arbitrary node as root

• Compute and propagate messages from the leaf  nodes to the 
root, storing received messages at every node.

• Compute and propagate messages from the root to the leaf  
nodes, storing received messages at every node.

• Compute the product of  received messages at each node for 
which the marginal is required, and normalize if  necessary.
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The Max-Sum Algorithm

• Efficient algorithm that finds an assignment to all variables that 
maximizes the probability

• Similar to Sum-Product, but it uses the distributive law on max and sum:
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Sum-Product vs. Max-Sum

Xin Zhang@PKU
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Sum-Product Max-Sum

𝜇𝑓→𝑥 𝑥 =

𝑥1

…

𝑥𝑀

𝑓𝑠(𝑥, 𝑥1, … , 𝑥𝑀) ෑ

𝑥𝑚∈𝑛𝑒(𝑓)\x

𝜇𝑥𝑚→𝑓(𝑥𝑚)

𝜇𝑥→𝑓 𝑥 = ෑ

𝑙∈𝑛𝑒(𝑥)\f

𝜇𝑓𝑙→𝑥 (𝑥)

𝜇𝑓→𝑥 𝑥 = max
𝑥1,…,𝑥𝑀

[𝑙𝑛𝑓 𝑥, 𝑥1, … , 𝑥𝑀 + 

𝑥𝑚∈𝑛𝑒(𝑓)\x

𝜇𝑥𝑚→𝑓 (𝑥𝑚)]

𝜇𝑥→𝑓 𝑥 = 

𝑙∈𝑛𝑒(𝑥)\f

𝜇𝑓𝑙→𝑥 (𝑥)

a(b+c) = ab+bc a+max(b,c) =max(a+b, a+c)



What about inference on general graphs? 

• NP-complete

• Counting problem
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Is the following description right?

•Factor graph can be only used in probabilistic inference.
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No



Is the following description right?

• In general, the sum-product algorithm is imprecise for 
Bayesian networks that are not trees.
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Yes



Is the following description right?

•The sum-product algorithm is imprecise for any Markov 
Random Field that is not a tree.
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No



Is the following statement right?

• To compute the most likely value for a joint distribution, one 
can calculate the marginal probabilities of  each variable, and 
take the values with the highest probabilities.
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No



Is the following statement correct?

•Loopy belief  propagation is approximate, but it 
monotonically converges to the precise value if  infinite 
time is given.

Xin Zhang@PKU
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No



Motivation

• A central task in applying probabilistic models is to evaluate P(Z | X)

• And calculate expectations

• Example
• X: training data

• Z: parameters

• Expectations: predictions or parameters themselves

Xin Zhang@PKU
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Latent 
variables

Observed 
values



Motivation

•However, as we see in graphical model inference, exact 
solution is not always possible:
• Curse of  dimensionality

• The posterior distribution has a highly complex form making 
expectations not analytically tractable
• Continuous case: no closed-form analytical form

• Discrete: cannot perform summarization because there are too 
many hidden variables

Xin Zhang@PKU
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This Class

•General approximate inference techniques for various 
probabilistic models.
• Deterministic

• Can never generate exact results

• The approximation has an analytical form

• Stochastic (Sampling-Based)
• Gives exact results when infinite resources are given

• Can be computationally demanding

Xin Zhang@PKU

20



Deterministic Approximate Methods

• Variational inference

• Expectation propagation

Xin Zhang@PKU
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Brief introduction



Variational Inference: Background

• Originates from the calculus of  variations
• A functional maps a function to a value

• Functional derivative: expresses how the value of  a functional changes in 
response to infinitesimal changes to the input function 

• Variational method: find an input function that maximizes or minimizes the 
functional

• Exact if  the input function can be of  any form; in general, we restrict it to some 
range

Xin Zhang@PKU
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Variational Inference: Main Idea

• Goal: approximate p(Z | X) and p(X)

• Where

Xin Zhang@PKU
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Variational Inference : Main Idea

• Here L(q) is a functional. What happens if  we maximizes it?

• We have KL(q||p) =0.

• This implies q(Z) = p(Z|X)!

• In other words, we can approximate p(Z|X) using q(Z) by minimizing 
KL(q||p) or maximizing L(q)

Xin Zhang@PKU
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L(q) is called evidence lower bound( ELBO)



Variational Inference: Main Idea

• In order to make the problem tractable, we need to restrict q to a family 
of  distributions

• Example: q(Z | w), find w using nonlinear optimization

Xin Zhang@PKU
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Variational Inference: Factorized Distributions

• We can divide the latent variables Z into disjoint groups Z1, …, ZM:

• No restriction on the forms of  qi

• Corresponds to an approximation framework in physics called mean field 
theory

• Optimize L(q) with respect to each qi(Zi) in turn

Xin Zhang@PKU
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Variational Inference: Factorized Distributions

Xin Zhang@PKU
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qi=qi(Zi). Optimize with respect to qj while keeping other qi’s constant

Where



Variational Inference: Factorized Distributions

Xin Zhang@PKU
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−𝐾𝐿( 𝑝(𝑿, 𝑍𝑗)||𝑞𝑗)

Solution:

Essentially, the optimal solution for qj is obtained by taking 

the expectation of  p(X,Z) with respect to all the other factors



Variational Inference: Factorized Distributions

•Algorithm workflow:
• Initialize all factors appropriately

• Cycle through all factors to run the optimization and update 
the factors

• Convergence is guaranteed because the bound is convex with 
respect to each factor (Boyd and Vandenberghe, 2004)

Xin Zhang@PKU
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Variational Inference in Probabilistic Programming

• http://docs.webppl.org/en/master/optimization/index.html

• https://probmods.org/chapters/inference-algorithms.html
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http://docs.webppl.org/en/master/optimization/index.html
https://probmods.org/chapters/inference-algorithms.html


Sampling Methods: Introduction

• Also called Monte Carlo methods

• Suppose want to evaluate E(f) when its inputs are from distribution z, we 
can replace 

• With 

Xin Zhang@PKU
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z1, …, zl are samples from p



Sampling Methods: Introduction

• New problem: how to sample independent samples effectively?

Xin Zhang@PKU
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What about graphical models?

Xin Zhang@PKU
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Standard Distributions: Transformation

• Seed distributions z which we know how to draw samples from: 

uniform(0,1)

• To sample from a given distribution y, we can define function f, so that
𝑦 = 𝑓(𝑥)

• Key challenge: how to define f  so we can use the samples from z to 
calculate y?

Xin Zhang@PKU
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Standard Distributions: Transformation

• Key ideas

• Interpret numbers in uniform distribution z as probabilities

• Find h(y), such that the probability regarding y is z:

𝑧 = ℎ 𝑦 = 𝑃 ො𝑦 < 𝑦 = න
−∞

𝑦

𝑝 ො𝑦 𝑑 ො𝑦

• f  = h-1

• Function h is called the cumulative distribution function (CDF) of  distribution y

• Function f  is called the inverse CDF

Xin Zhang@PKU
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Standard Distributions: Transformation

Xin Zhang@PKU
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Transformation Method: Examples

• Exponential distribution: 𝑝 𝑦 = 𝜆 exp −𝜆𝑦 , 0 ≤ 𝑦 < ∞

• ℎ 𝑦 = 1 − exp −𝜆𝑦 , 𝑦 = −𝜆−1ln(1 − 𝑧)

• Gaussian: Box-Muller method (inverse CDF of  Gaussian is not well-
defined)
• Assume 𝑧1, 𝑧2 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 −1,1
• Draw samples from 𝑧1, 𝑧2, and only keep 𝑧1

2 + 𝑧2
2 ≤ 1. Now we get 𝑝 𝑧1, 𝑧2 =

1

𝜋

• Let 𝑦1 = 𝑧1
−2𝑙𝑛𝑧1

𝑟2
, y2 = 𝑧2

−2𝑙𝑛𝑧2

𝑟2
, where 𝑟2 = 𝑧1

2 + 𝑧2
2

• 𝑝 𝑦1, 𝑦2 = [
1

2𝜋
exp(−𝑦1

2/2)][
1

2𝜋
exp(−𝑦2

2/2)]
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More on Box-Muller Method

• https://www.quora.com/What-is-an-intuitive-explanation-of-the-Box-
Muller-transform

Xin Zhang@PKU
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𝜃~2𝜋 ∗ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1)

𝑟~ −2ln(𝑢𝑛𝑖𝑓𝑜𝑟𝑚 0,1 )

𝑦1 = 𝑟𝑠𝑖𝑛𝜃
𝑦2 = 𝑟𝑐𝑜𝑠𝜃



Rejection Sampling: Introduction

• Allows sampling from relatively complex distributions with constraints

• One of  the basic inference methods in probabilistic programming

• Basic idea: sample from a proposal distribution and accept some samples

Xin Zhang@PKU
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Rejection Sampling: Assumptions

• Sampling from z is hard, but we can evaluate p(z) for any value of  z up 
to some normalizing constant Z:

• There exists a proposal distribution q(z) which we know how to sample 
form and

• There exists a constant k such that 

Xin Zhang@PKU
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Rejection Sampling: Algorithm

• Each step, generates two numbers:

• z0 ~ z，according to q

• u0 ~ uniform(0, kq(z0))

• If  𝑢0 > 𝑝(𝑧0), then the sample is rejected, otherwise  z0 is accepted 

• The set of  kept samples are distributed according to p

Xin Zhang@PKU
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(z0, u0) are uniform under the 

curve of  kq(z0)

(z0, u0) are uniform under the 

curve of  𝑝(𝑧0)



Rejection Sampling: Analysis

Xin Zhang@PKU
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Efficiency is decided by the ratio of the grey 
area and the white area:
1. Choose k as small as possible
2. The proposal distribution should be as 

close to the real distribution as possible



Rejection Sampling in Prob. Prog.

• Much simpler. Usually it just throws away the samples that do not meet 
the conditions

Xin Zhang@PKU
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Importance Sampling: Background

• Goal: evaluate the expectation of  a function f(z) where z is from 
distribution p(z) 

• Naïve idea: sampling using a grid

• Problem: does not scale with number of  dimensions

Xin Zhang@PKU
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Importance Sampling: Idea

• Motivation: only points where p(z) or f(z)*p(z) are large matter

• Idea: again using a proposal distribution but we don’t discard samples

𝐸 𝑓 = න𝑓 𝑧 𝑝 𝑧 𝑑𝑧 = න𝑓 𝑧
𝑝 𝑧

𝑞 𝑧
𝑞 𝑧 𝑑𝑧 ≈

1

𝐿


𝑙=1

𝐿
𝑝 𝑧𝑙

𝑞 𝑧𝑙
𝑓 𝑧𝑙

𝑝 𝑧𝑙

𝑞 𝑧𝑙
are called importance weights. They are used to correct bias 

introduced by sampling the wrong distribution 

Xin Zhang@PKU
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We don’t get right samples but samples with correcting weights



Xin Zhang@PKU
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What if I want to get the right 
samples with importance sampling?



Sampling-Importance-Resampling 

• Alternative to rejection sampling when k is hard to find

• Steps:
• Draw samples z1, 𝑧2, … , 𝑧𝐿 using importance sampling

• Logging importance weights 𝑤1, 𝑤2, … , 𝑤𝐿

• Construct a discrete distribution (z1, 𝑧2, … , 𝑧𝐿) whose probabilities are given by 
𝑤1, 𝑤2, … , 𝑤𝑙 . Sample from this distribution

• Precise when 𝐿 → ∞

Xin Zhang@PKU
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Markov Chain Monte Carlo

• Goal: find a sampling method that works well with a large family of  
distribution with high dimensions
• Problem with rejection and importance sampling: high dimensionality

• Main Idea:
• Still based on using a proposal distribution

• But the proposal distribution is based on current state: 𝑞 𝑧 𝑧𝜏)
• Decide whether to accept 𝑧∗as the next state based on 𝑞 𝑧 𝑧𝜏). If  accepted, 𝑧𝜏+1 = 𝑧∗ . 

Otherwise, 𝑧𝜏+1 = 𝑧𝜏

• Samples form a Markov chain

• Assumption: we can efficient evaluate 𝑝 𝑧 = 𝑍 ∗ 𝑝(𝑧)

Xin Zhang@PKU
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Markov Chain Monte Carlo

• Originated from physics

• Often used in optimization
• Similar to simulated annealing

Xin Zhang@PKU
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Metropolis Algorithm (Metropolis et al., 1953) 

• A basic algorithm

• Assumption: the proposal distribution is symmetric

• Steps:
• Choose some point as the initial state 𝑧0
• If  the current state is 𝑧𝜏, draw 𝑧∗ from 𝑞 𝑧 𝑧𝜏). Accept 𝑧∗ with probability

• If  𝑧∗ is accepted, 𝑧𝜏+1 = 𝑧∗. Otherwise, 𝑧𝜏+1 = 𝑧𝜏. Loop to the above step.

Xin Zhang@PKU

50Multiple samples of 𝑧𝜏
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Metropolis Algorithm: Why it works?

• Theorem: as long as 𝑞 𝑧𝐴 𝑧𝐵) is always positive, when 𝜏 → ∞, z → 𝑝

• We will prove it using properties of  Markov chains

Xin Zhang@PKU
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Markov Chains

• A first-order Markov chain:

• Transition probability: 𝑇 𝒛 𝑚 , 𝒛 𝑚+1 = 𝑝(𝒛 𝑚+1 |𝒛 𝑚 )

• A Markov chain is called homogeneous if  all transition probabilities are 
the same

• Stationary distribution of  a Markov chain: each step in the chain does 
not change the distribution.
• A step in Markov chain: a variable go to the next one by multiplying the 

transition probability

Xin Zhang@PKU
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More on Stationary Distribution

• For a homogeneous Markov chain, a stationary distribution is

• A Markov chain can have more than one stationary distribution

• Example: identity transition function

• A sufficient condition to make a distribution stationary

Xin Zhang@PKU
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More More on Stationary Distribution

Xin Zhang@PKU
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Detailed balance:

• A Markov chain is said to be reversible if  it satisfies detailed balance

• A ergodic Markov chain converges to the same distribution regardless the 

initial distribution 
• The system does not return to the same state at fixed intervals

• The expected number of  steps for returning to the same state is finite



Proof about Metropolis Algorithm

• Theorem: as long as 𝑞 𝑧𝐴 𝑧𝐵) is always positive, when 𝜏 → ∞, z → 𝑝

• Proof
• The Markov chain is ergodic (omitted)

• The Markov chain satisfies detailed balance
• The transition probability is 

𝑇 𝑧𝑛, 𝑧𝑛+1 = 𝑞 𝑧𝑛+1 𝑧𝑛 × min(1,
𝑝 𝑧𝑛+1
𝑝(𝑧𝑛)

)

𝑝 𝑧𝑛 𝑇 𝑧𝑛, 𝑧𝑛+1 = 𝑞 𝑧𝑛+1 𝑧𝑛 × min(𝑝(𝑧𝑛), 𝑝(𝑧𝑛+1))
= 𝑞 𝑧𝑛 𝑧𝑛+1 × min(𝑝(𝑧𝑛), 𝑝(𝑧𝑛+1))

= 𝑝 𝑧𝑛+1 × 𝑞 𝑧𝑛 𝑧𝑛+1 × min(
𝑝(𝑧𝑛)

𝑝 𝑧𝑛+1
, 1)

= 𝑝 𝑧𝑛+1 𝑇(𝑧𝑛+1, 𝑧𝑛)

Xin Zhang@PKU
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The Metropolis-Hastings algorithm 

• Generalization of  the Metropolis algorithm

• No restriction on the proposal distribution

• Now the accepting probability is defined as 

Xin Zhang@PKU
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MCMC in Probabilistic Programming

• Used widely

Xin Zhang@PKU
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Final Notes on MCMC

• Based on the theory of  Markov chain

• Can handle a wide range of  distributions with high dimensions

• You don’t even need to know p, but just the ratio

• A common choice for proposal distribution: Gaussian centered around the 
current state

• Samples are not independent. What should we do?

Xin Zhang@PKU
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More MCMC Methods

• Gibbs sampling

• Slice sampling

• The Hybrid Monte Carlo Algorithm 

Xin Zhang@PKU
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Summary

• Approximate methods
• Deterministic (variational inference)

• Fast but can never get the precise results

• Stochastic (sampling-based)

• Slower but can converge the precise result if  infinite samples are taken

Xin Zhang@PKU
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Summary

• Variational Inference
• Goal: find a distribution q(Z) that approximates p(Z|X)

• Idea: by maximizing the evidence lower bound( ELBO)

Xin Zhang@PKU
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Summary

• Sample from standard distributions:

• CDF-1(uniform(0,1))

• Rejection sampling

Xin Zhang@PKU
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z ~ q(z), h~ uniform(0, kq(z))

Discard z if  h > 𝑝(𝑧)



Summary

• Importance sampling
• Also based on proposal distribution

• Reweight the samples using ratio of  probabilities in the two distributions

• Markov Chain Monte Carlo
• The proposal distribution is the probability of  next sample given the current 

sample

• Accept a sample if  it satisfies some property

• Forms a Markov Chain

• Converges to the right distribution because the chain is ergodic and satisfies 
detailed balance with the desired distribution 

Xin Zhang@PKU
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Summary

Xin Zhang@PKU
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Metropolis Metropolis-Hasting

Constraints on the 
proposal distribution

Symmetric None

Accepting probability min(1,
𝑝 𝑧′

𝑝 𝑧
)

min(1,
𝑝 𝑧′ 𝑞(𝑧′|𝑧)

𝑝 𝑧 𝑞(𝑧|𝑧′)
)



Next Class

• Theoretical foundations of  probabilistic programming
• Before moving to inference in probabilistic programming, we first 

need to understand the problem

Xin Zhang@PKU
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