Semantics of Probabilistic
Programming

Xin Zhang
Peking University

Most of the content is from “Semantics of Probabilistic Programming:
A Gentle Introduction” by Fredrik Dahlqvist, Alexandra Silva, and Dexter Kozen

Recap: Problem and Motivation

* Evaluate P(Z | X) and related expectations

e Problem with exact methods

* Curse of dimensionality

* P(Z|X) has a complex form making expectations analytically intractable

Recap: Variational Inference

* Functional: a function that maps a function to a value
Hlp| = /p(a:) Inp(x)dz
* Variational method: find an input function that maximizes the functional

* Variational inference: find a distribution q(z) to approximate p(Z | X) so a
functional 1s maximized

Xin Zhang@PKU

Recap: Variational Inference
Inp(X) = L(q) + KL(qp)

Bl <o - [aon{"2) 0
ki) = - [az)w{"TA} az

It q can be any distribution, then variational inference 1s precise.

But in practice, it cannot

Is the following statement right?

* Probability p(Z,X) 1s usually easier to evaluate
compared to P(Z | X).

Recap: Sampling Methods

* Stochastic methods

e Also called Monte Carlo methods

L
":Lf] = / f(z)p(z) dz —> f = % Z f(Z(l)) Z; ... zy are samples from p
[=1

Recap: Sampling Methods

* Transformation method: CDF-!(uniform(0,1))

* Rejection sampling
* A proposal distribution q(z)
* Choose k, such that k*q(z) >= p(z), for any x
* Sampling process:
* Sample 7z, from q(z)
* Sample h from uniform(0, k*q(z))
* If h > p(zy), discard 1t; otherwise, keep it

Is the following statement correct?

* All primitive distributions can be constructed using
the inverse CDFE.

Is the following statement right?

* In rejection sampling, given k, the probability whether a
sample 1s accepted does not depend on the proposal
distribution

Is the following statement correct?

* The etficiency of rejection sampling depends on the
choice of the proposal distribution

Recap: Sampling Methods

* Importance sampling

* Used to evaluate f(z) where z is from p(z)

h

(2) 1
B = [rewaz = | F S iz ZZ p(z 2 (21

=1

* How to get real samples: create a new discrete distribution using the above
samples and set their probabilities using the importance weights

Recap: Sampling Methods

e Markov Chain Monte Carlo

* A sampling method that works with a large family of distributions and high
dimensions

e Workflow

* Start with some sample Z,
* Suppose the current sample is z* . Draw next sample z* from q(z | z%)

* Decide whether to accept z*as the next state based some ctiteria. If accepted,

z't1 = z*. Otherwise, z't1 = 27

* Samples form a Markov chain

Xin Zhang@PKU

Recap: Sampling Methods

Constraints on the
proposal distribution

Symmetric None

p(z")q(z'|z)

p(z") min(1, (2 (217)

p(2))

)

Accepting probability min(1,

13

Recap: Why MCMC works?

* Markov chain: p(z™ Dz M) = p(z(mHD|z(M),

)

* Stationary distribution of a Markov chain: each step in the chain does not
change the distribution.

. Detailed balance: p*(2)T(z, z’) — p*(z’)T(z’, z)

e p*(2) is a stationary distribution
y

— e A ergodz’c Markov chain converges to the same distribution regardless the initial

distribution
* The system does not return to the same state at fixed intervals

* The expected number of steps for returning to the same state is finite

Is the following statement right?

* The samples drawn using MCMC are independent

Is the following statement right?

* A Markov chain can have more than one stationary
distribution

Use MCMC to solve the problem below

* Super optimization
* There 1s a straight-line program
* A set of test cases are given

* The program can be moditfied by deleting a statement, inserting a
statement from the initial program at a given place

* Optimize the program by using the above operations

Motivations

* In order to reason about properties of a program, we need formal tools

* Example questions
* Is the postcondition satisfied?
* Does this program halt on all inputs?
* Does it always halt in polynomial time?

Xin Zhang@PKU

Motivations

* In order to reason about properties of a program, we need formal tools

* Example questions
* What 1s the probability that the postcondition is satisfied?
* What is the probability that this program halts on all inputs?
* What 1s the probability that it halts in polynomial time?

19

Motivations

* When designing a language, rigorous semantics is needed to guarantee its
correctness

* An example that didn’t have rigorous semantics: Javascript
* https://javascriptwtf.com

We can decompose the semantics of a
Exam pIeS program into semantics of statements

< =0 What i1s the probability that It runs through n iterations?
' | What is the expected number of iterations?
while x == 0do What is the probability that the program halts?
x:=co1n()
12:x:=0

l2:x:=1
start —| [x — 7] > [x — 0] >

Examples

maln{ ; What is the probability that the program halts?
u:=0;
v:=0;
f;ﬁ%éu{;&o || v1=0 do The program is a two-dimensional random walk.
step(u,v) According to probability theory, the probability
, that it returns to the origin is 1.
step(u,v) {
x=coin(); By relating to concepts in probabillities,
y:=coin(); we can simplify the reasoning
w=ut+(x-y);
v:=v+(x+y-1)

Examples

1:=0; What does this program compute?
n:=0; .
o How to reason about it?

while 1<1e9 do
x:=rand();
y:=rand(); - ~
it (X*X‘|‘y*y> <1 then n:=n+1; Measure Theory
o The mathematical foundation of
=1+1 probabilities and integration

: - /

i:=4*n/1e9;

Uniform(0,1) is called a Lebesgue measure

This Class

* Syntax of a simple imperative probabilistic language

* Operational semantics

* Measure theory & denotational semantics (brief)

A Simple Imperative Language

* Highly simplified version

nou o explain the core concepts
* Enough to explain th pt

Syntax

* Deterministic terms (expressions)
* Terms (Deterministic + Probabilistic)
* Tests (expression that evaluate to Booleans)

. Programs

Syntax — Deterministic Terms

(i) Deterministic terms:

d:.=a a € R, constants
| x x € Var, a countable set of variables

| dopd op € {+,—,*,+}

Syntax - Terms

(ii) Terms:

ti=d d a deterministic term
| coin() | rand () sample in {0, 1} and [0, 1], respectively
|t opt op € {+,—*,+}

Syntax - Tests

(iii) Tests:

b ::= true | false
|ld==d|d<d|d>d comparison of deterministic terms
|b&& b | b || b| b Boolean combinations of tests

Syntax - Program

(iv) Programs:

e .:= skip
X =t assignment
e, e sequential composition
if b theneelsee conditional
whilebdoe while loop

Syntax - Example Program

it coin() == 1 then

x := rand() * 5
else

X:=0
if x > 4.5 then

y := coin() + 2
else

y := 100

Operational Semantics

* Model the step-by-step executions of a program on a machine

* Tracks the memory-state
* Values assigned to each variable
* Values of each random number generator
* A stack of instructions

Random Number Generators

e Modeled as infinite streams of numbers:
* coin(): MoMmy ... are 1.1.d from Bernoulli(0.5)
* rand(): pgpy ... are 1.1.d from uniform(0, 1)

* When invoking the generator, a number is taken from the stream

* Pseudo-random generators

Operational Semantics: Machine States

* A memory-state is a triple (s, m, p)
* A store S:n — R, where there are n variables in the program
« m € {0,1}% is the current stream of available random Boolean values
* p € |0,1]? is the current stream of available random real values

* A machine-state is a 4-tuple (e,s,m,p)
* e corresponds to a stack of instructions

* (s,m,p)isa memory-state

Xin Zhang@PKU

Machine States: Example

(e, {x —»1},61001011...,0.20.50.9 0.21...)

if coin() == 1 then

(x := rand() *5, {x =1}, 001011...,0.20.50.9 0.21...)
x :=rand() ¥ 5

(skip, {x = 1},001011...,0.50.9 0.21...)

else

35

Operational Semantics: Introduction

* We now talk about how a program modities the machine state

* Type of the operational semantics
(e,s,m,p) = (e, s, m',p’)

* Before talking about the reduction, we need to define semantics of terms
and tests

Semantics of Terms
[t]l: R"XN®xXxR® > RxXN® xR®

71l : (s,m,p) — (r,m, p)
[[xl : (Samap) = (S(l)amap)

[coinO] : (s,m, p) — (hdm,tlm, p)
[rand O] : (s,m,p) — (hd p,m,tl p)
[t1 0p 2] : (s,m,p) — let (a1,m’,p’) = [[t1]I(s,m, p) in

let (ap,m”,p”) = [L2]l(s,m’,p’) in
(a1 op az,m"”,p”)

opn € {+,0,x,+} hd(m;m,,...) = my

Semantics of Tests
[b]]: R™ x N® X R® - {true, false}

true if [[tl]](s,m,p) — [[tZ]](Samap)
false otherwise

[[tl —= t2]] : (Samap) = {

.

true if [[Il]](S, map) < [[IZ]](Sa msp)

<t :(s,mp) <
I (P) \false otherwise

‘true if [t11(s,m,p) > [&21(s, m, p)
\false otherwise

[b1 && b2]| : (s,m,p) — [b1]I(s,m, p) A [b2]I(s,m, p)

bl ” b2]] : (Sa map) = [[bl]](samap) \% [[bZ]](Samap)

Ib]] . (Samap) > _'[[b]](sa map)

[t > 6] : (s,m,p) — 1

Operational Semantics: Reduction

Assignment:

[1(s,m, p) = (a,m’, p’)
(x; :=t,s,m,p) — (skip, s[i — a],m’,p")

Sequential composition:

(e1,s,m,p) — (e}, s’,m’,p’)

(e1 ; e2,8,m,p) —> (€] ; e2,s",m’,p’) (skip ; e,s,m,p) — (e,s,m, p)

Operational Semantics: Reduction

Conditional:

[b]l(s,m, p) = true
(1f b then e; else ey, s,m,p) — (e1,s,m,p)

[b]l(s,m,p) = false
(if b then e else ey, s,m,p) —> (e, s,m, p)

while loops:

(while bdoe,s,m,p) — (if b then (e ; while b do e) else skip, s,m,p)

Operational Semantics: Reduction

Reflexive-transitive closure:

(6’1,51,m1,P1) — (62, Szamz,Pz)

%
(e,5,m,p) — (e,s,m,p) (e1,81,m1,P1) — (€2, 52, M2, p2)

* %
(elaslamlapl) — (629 S29m29p2) (629 S29m29p2) — (639 S39m39p3)

%
(619 51 mlapl) — (639 53, m39p3)

Operational Semantics: Termination

* A program e terminates from (s, m,p) if

(e, s,m, p) —> (skip,s’,m’, p’).

* We say e diverges from (s, m, p) if it does not terminate

Operational Semantics: Examples

X :=0 What iIs the probability that the program halts?
while x == 0 do
X:=coIn()

(x :=0,s,m, p) — (skip, s[x — 0], m, p)

(x :=0;e,s,m,p) — (skip; e,s[x = 0],m,p) (skip; e, s[x— 0],m, p) — (e, s[x — 0], m, p)

(x :=03;e,s,m,p) — (skip ; e, s[x — 0], m,p) (skip ; e, s[x — 0], m, p) — (e, s[x > 0], m, p)

(x :=0; e,s,m, p) — (e, s[x - 0], m, p)

Operational Semantics: Examples

X :=0 What Is the probability that the program halts?
while x == 0 do
x:=coin() (x :=0;e,s,m,p) — (e s[x — 0], m, p)
(e, s[x — 0],m, p) s (x := coin() ; e, s[x — 0],m, p)

(while b doe,s,m,p) — (if b then (e ; while b do ¢) else skip, s, m, p)

[61l(s,m, p) = true
(if b then e else ey, s,m,p) —> (e1, s, m, p)

Operational Semantics: Examples

X :=0 What iIs the probability that the program halts?
while x == 0 do

. (x :=0; e,s,m, p) — (e, s[x — 0], m, p)
x:=coin()

(e, s[x > 0],m,p) —> (x := coin() ; e,s[x ~ 0],m, p)

(x :=coin() ; e¢,s[x — 0],m,p) =, (e,[s — hdm],tim,p). hd(mm,..) =my
tl(m1m2) = m, ...

The loop continues until it reaches m inf the form of 1m’

(e,s[x — 1],m’,p) N (skip, s[x — 1],m’, p)

(x :=0; e,s,m,p) N (skip, s[x — 1],m’, p)

Operational Semantics: Examples

P I:Em, X .= O y €, Samap) i) (Skip,s[x = 1]9m,9p):|

ll
a°,
L]

(
kK>03m m= Oklm']

Operational Semantics: Examples

main {
w:=0;

v:=0;

step(u,v);
Whli)l<e u!>:O | | vI=0 do

step(u,v)

step(u,v) {
x:=coin();
y:=coin();
w=u+(x-y);
v:=v+(x+y-1)

What Is the probability that the program halts?

(step, s,00m, p) 5 (skip, s
(step, s,01m, p) = (skip, s
(step, s, 10m, p) = (skip, s

(step,s, 11m, p) = (skip, s

:(uv V) = (07_1)5 (Xa Y) = (07 O)]vmvp)
:(ua V) = (_190)3 (Xa Y) = (Oa 1)]amap)
(u,v) = (1,0),(x,y) = (1,0)],m, p)

(W, v) = (0,1),(%y) = (1,1)],m,p)

Operational Semantics: Examples

main{ What is the probability that the program halts?
w:=0;
vi=0; We define 1.1.d variables X1, X, ... on Z % such that
step(u,v);
Whlle UI:O | | V!:O dO Xi € {(011)1 (O; _1); (170)) (_110)}
step(u,v) -
} Sn — z Xi
=1
step(u,v) { _ %
x:=coin(); (main, s, m, p) —
y:=coin(); (while !(u==0) || !(v == 0) do step(u, V), s[(u,v) — (@)],t1*@m),p)
w=u+(x-y);
vi=v+(x+y-1)

Operational Semantics: Examples

main What Is the probability that the program halts?
w:=0;
v:=0; ,
\s;ﬁ%(ellﬁx!r)z;o | %120 do The program halts if In.S,, = (0,0)
step(u,v)] *] An
\ (main, s, m, p) — (skip, s[(u,v) = (0,0)], 1" (m), p).
step(u,v) { P [Eln (main, s, m, p) = (skip, s[(u, V) — (0,0)],t1**(m), p)]
x:=coin(); -
y:=coin(); _ _
w=u+(x-y); =F n\:/OSZn B (O, O)]
v:=v+(x+y-1)

Operational Semantics: Examples

main{ What is the probability that the program halts?

w:=0;

VZ:O<;)

step(u,v); n

while ul=0 | | v!=0 do Y (2n)!

P[S2, = (0,0)] = 47"
step(u,v) [S2 = (0,0)] n;) m!m!(n — m)!(n — m)!
h 2 n 2
_ 4—21’1 n Z n

step(u,v) { nJ o= \m

x:=coin(); 2

y:=coin(); — 4~2n (2n))

w=u+(x-y); n

v:=v+(x+y-1)

Operational Semantics: Examples

1:=0; Given € > 0, whatis P(]i — | < €)?
n:=0; .
while 1<1e9 do (prog, s,m,p) —> (skip, s[i — 4n/N,n — n,...],m,t*" (p))
x:=rand();
:=rand(); . .
y:=rand(); n/N is the expectation of

if (x*x+y*y) <1

i:=4*n/1e9; -

then n:=n+1;
=1 1 ifX?2+Y%2<1
0 else

Operational Semantics: Examples

1:=0; Given € > 0, whatis P(]i — | < €)?
n:=0; (
1 ifX?+Y%2<1
while 1<1e9 do n/N is the expectation of Z = ¢ !
x:=rand(); 0 else
y:=rand();
if (x*x+y*y) <1 , Vi
then n:=n+1; P [X = t] =P [X = \/E] - [; To,1(x) dx = &
1:=1+1 [)]
:=4*n/1e9; oP [X< <t 1
)= ——1jo,11(?)

ot R/,

Operational Semantics: Examples

1:=0; Given € > 0, whatis P(]i — | < €)?
n:=0; (
1 ifX?+Y%2<1
while 1<1e9 do n/N is the expectation of Z = ¢
x:=rand(); \O else
:=rand(); . .
gff (%% +<}>7*Y) <1 The density of X% + Y2 is
then n:=n+1; 0 1
— Fe 0= [5=l = lon(e -2 ds
:=4*n/1e9; fft 1 .
’ d f0<tr<l1
_ N A[x\t — x rol
B 1
dx ifl<t<?2
\[—1 4‘\/%\/1‘ - X o)

Operational Semantics: Examples

1:=0; Given € > 0, whatis P(]i — | < €)?
n:=0; (
1 ifX?+7°<1
while 1<1e9 do n/N is the expectation of Z = ¢ !
x:=rand(); \O else
y:=rand(); .
if (x*x+y*y) <1 exp(Z) is
then n:=n+1; o | 1 L 7
B ,/0 e dx = 0 VT2 du = E(sm (1) —sin” " (0)) = 1

:=4*n/1e9; 1 1
P[X2+Y251]:/(f*f)(t)dt:/ “ar=2
0 o 4 4

Xin Zhang@PKU

Operational Semantics: Examples

1:=0; Given € > 0, whatis P(]i — | < €)?
ﬁ':O' (
1 ifX2+7%2<1

while 1<1e9 do n/N is the expectation of Z = ¢ !

x:=rand(); k0 else

y:=rand(); . .

then n:=n+1; 0 0o 4 4
ii=i+1 nom o 2
— < — 2 _T_(F

i:=4*n/1e9; P [N 4 > 8] — Ng2’ Whete 0% = 4 (4)

Chebyshev’s
inequality
55

This Class

* Syntax of a simple imperative probabilistic language

* Operational semantics

* Measure theory & denotational semantics (brief)

Denotational vs. Operational Semantics

* Consider x := coin(), in operational semantics:
(x := coin(),s,m,p) — (skip, s[x — 0],tlm, p)

(x := coin(),s,m,p) — (skip, s[x — 1],tim,p)

e Denotational semantics:
* Model all possible executions together

* States: probability distribution over memory states

. %S[X - 0] -I-%S[X - 1]

Denotational Semantics: Introduction

* State S can be identified with the Dirac measure 0, then the semantics

of x:=coin() can be viewed as g5 — %S[x - 0] + %S[x - 1]

* In general, a program is interpreted as an operator mapping probability
distributions to (sub)probability distributions

Denotational Semantics: Definition

» Assume there are n real variables, then a state is a distribution on R™

* A program e: MR"™ - MR"

* An operator called a state transformer

Measure Theory

* Measures: generalization of concepts like length, area, or volume

Measure Example: Length

* What subsets of R can meaningfully be assigned a length?

* What properties should the length function [satisfy?

Measure Example: Length

t(la1, b1] U laz, b2]) = €([a1, b1]) + €([az, b2]) = (b1 — a1) + (b2 — a2).

(U A;) Z f(A) A; and Aj are disjoined .l is called additive

=1

(o8] (o8]
4 (U Ai) — Z f(Al) A; and A; are disjoined .The set is countable.

i—0 =0 l is called countably additive or o — additive

[(R) = oo, but we are only going to talk about finite measures

f(B \ A) = f(B) — f(A) Domain should be closed under complementation

b1<a2

Measure Example: Length

* Can we extend the domain of length [to all subsets of R?

* No. Counterexample: Vitali sets
* V € [0,1], such that for each real number 1, there exists exactly one number v €
V such that v — 7 1s rational
* Let qq, 5, ... be the rational numbers in [—1,1], construct sets V, =V + g,

« [0,1] € U, V) € [-1,2]
* [(V}) = I(V), and there are infinitely many V},

* | is called the I.ebesgue measure on real numbers

Measurable Spaces and Measures

* (S, B) is a measurable space

e Sisaset

* B 1s a g-algebra on S, which 1s a collection of subsets of S
* It contains @
* Closed under complementation in S

* (Closed under countable union

* The elements of B are called measurable sets

* If Fis a collection of subsets of S, 0(F) is the smallest g-algebra
containing F, or o(F) £ N{A | F € A and A is a c-algebra} . We say (S,
o(F)) is generated by F.

Measurable Functions

* (S, Bg) and (T, By) are measurable spaces. A function f: 8 = T is
measurable if f~1(B) = {x € S|f(x) € B} for every B € By is a

measurable subset of S

1, s € B,

o YB(5) = {0 s¢B

Measures: Definitions

* A signed (finite) measure on (S, B) is a countably additive map yu: B —
R such that u(@) =0

* Positive signed measure: u(A) = 0 forall A € B
* A positive measure is a probability measure if u(S) =1

* ...is a subprobability measure if u(S) <1

Measures: Definitions

o If u(B) = 0, then B is a y-nullset

* A property is said to hold p-almost surely (everywhere) if the sets of
points on which it does not hold 1s contained in nullset

* In probability theory, measures are sometimes called distributions

Measures: Discrete Measures

* For s € §, the Dirac measure, or Dirac delta, or point mass on s:
(
1, s € B,

Os(B) = «
(B) \O, s ¢ B.

* A measure is discrete if it 1s a countable weighted sum of Dirac measures
* If the weights add up to one, then it is a discrete probability measure

* Continuous measure: ({s}) = 0 for all singleton sets {s} in B of (S, B)

Measures: Pushforward Measure and Lebesgue Integration

* Given f: (S, Bg) — (T, By) measurable, an a measure U on By, the
pushfoward measure u(f ~*(B)) on By is defined as

f(u)(B) = u(f~(B)), B € Br.

* Lebesgue integration: given (S,B), u: B - R, f: S = R, where m <
f<M
[fdu= lim Sy f(s)u(B)
where By, .., B, is a measurable partition of §, and the value of f does
not vary more than (M — m)/n in any B; and s; € B;

Markov Kernels

* Given (8, Bg) and (T, By), P: S X By — R is called a Markov kernel if

* For fixed A € By, the map As. P(s,A) = R is a measurable function on (S, By)
* For fixed s € §, the map A4. P(s,A) — R is a probability measure on (T, Br)

* Composition of two Markov kernels
e Given P:S > T,Q:T - U (P; Q)s,A) = / P(s,dt) - O(t, A).
teT

* Given U on By, its push forward under the Markov Kernel P is

P.(1)(B) = f P(s, B) u(ds)

SES

More on Markov Kernels
*(§,Bg):x=... (x>0
* (T,B7): y = uniform(0,x)

* Markov kernel P(x, UZ¥[a;, b;]) = Y=V length([a;, b;] N [0,x])/x

More on Markov Kernels
* (§,Bg):x=... (x>0
* (0,Byp): y = uniform(0,x)

(T, Br): z = uniform(0,y)

* Composition: (P; Q)(x, 10, z]) = fy €[0,00]P(x dy) * Q(y, [0, z])
7 <X B f dy length([0,z] N [0, y])
ye[ox] X Y

d dy z z z
=f —y*z f —y*—=—+—(lnx—lnz)
ye[o,z] X YV Jyezx* Y X X

More on Markov Kernels

* (S, Bg): x = uniform(0.1, 1.1) u([a, b]) = length([a, b] N [0.1,1.1])

* (T, By): v = uniform(0,x)

e Markov kernel P(x, U=[a;, b;]) = =¥ length([a;, b;] N [0, x])/x
e s pushforward under P is

P.(1)(By) = f By 0 [0, x] * u(dx)

x€[0.1,1.1]

More on Markov Kernels

e We can use Markov kernels to define the meanings of statements

* A term can be seen as a Markov kernel that links the input variables (can
be a distribution) with the output distribution

Summary

* To reason about properties and correctness of probabilistic programs,
we need semantics

* To define semantics, we can
* Decompose it into semantics of program structures
* Link it with mathematical concepts

	Slide 1: Semantics of Probabilistic Programming
	Slide 2: Recap: Problem and Motivation
	Slide 3: Recap: Variational Inference
	Slide 4: Recap: Variational Inference
	Slide 5: Is the following statement right?
	Slide 6: Recap: Sampling Methods
	Slide 7: Recap: Sampling Methods
	Slide 8: Is the following statement correct?
	Slide 9: Is the following statement right?
	Slide 10: Is the following statement correct?
	Slide 11: Recap: Sampling Methods
	Slide 12: Recap: Sampling Methods
	Slide 13: Recap: Sampling Methods
	Slide 14: Recap: Why MCMC works?
	Slide 15: Is the following statement right?
	Slide 16: Is the following statement right?
	Slide 17: Use MCMC to solve the problem below
	Slide 18: Motivations
	Slide 19: Motivations
	Slide 20: Motivations
	Slide 21: Examples
	Slide 22: Examples
	Slide 23: Examples
	Slide 24: This Class
	Slide 25: A Simple Imperative Language
	Slide 26: Syntax
	Slide 27: Syntax – Deterministic Terms
	Slide 28: Syntax - Terms
	Slide 29: Syntax - Tests
	Slide 30: Syntax - Program
	Slide 31: Syntax - Example Program
	Slide 32: Operational Semantics
	Slide 33: Random Number Generators
	Slide 34: Operational Semantics: Machine States
	Slide 35: Machine States: Example
	Slide 36: Operational Semantics: Introduction
	Slide 37: Semantics of Terms
	Slide 38: Semantics of Tests
	Slide 39: Operational Semantics: Reduction
	Slide 40: Operational Semantics: Reduction
	Slide 41: Operational Semantics: Reduction
	Slide 42: Operational Semantics: Termination
	Slide 43: Operational Semantics: Examples
	Slide 44: Operational Semantics: Examples
	Slide 45: Operational Semantics: Examples
	Slide 46: Operational Semantics: Examples
	Slide 47: Operational Semantics: Examples
	Slide 48: Operational Semantics: Examples
	Slide 49: Operational Semantics: Examples
	Slide 50: Operational Semantics: Examples
	Slide 51: Operational Semantics: Examples
	Slide 52: Operational Semantics: Examples
	Slide 53: Operational Semantics: Examples
	Slide 54: Operational Semantics: Examples
	Slide 55: Operational Semantics: Examples
	Slide 56: This Class
	Slide 57: Denotational vs. Operational Semantics
	Slide 58: Denotational Semantics: Introduction
	Slide 59: Denotational Semantics: Definition
	Slide 60: Measure Theory
	Slide 61: Measure Example: Length
	Slide 62: Measure Example: Length
	Slide 63: Measure Example: Length
	Slide 64: Measurable Spaces and Measures
	Slide 65: Measurable Functions
	Slide 66: Measures: Definitions
	Slide 67: Measures: Definitions
	Slide 68: Measures: Discrete Measures
	Slide 69: Measures: Pushforward Measure and Lebesgue Integration
	Slide 70: Markov Kernels
	Slide 71: More on Markov Kernels
	Slide 72: More on Markov Kernels
	Slide 73: More on Markov Kernels
	Slide 74: More on Markov Kernels
	Slide 75: Summary

