
Semantics of  Probabilistic 
Programming

Xin Zhang

Peking University

Most of  the content is from “Semantics of  Probabilistic Programming: 

A Gentle Introduction” by Fredrik Dahlqvist, Alexandra Silva, and Dexter Kozen



Recap: Problem and Motivation

• Evaluate P(Z|X) and related expectations

• Problem with exact methods
• Curse of  dimensionality

• P(Z|X) has a complex form making expectations analytically intractable 

Xin Zhang@PKU

2



Recap: Variational Inference

• Functional: a function that maps a function to a value

• Variational method: find an input function that maximizes the functional

• Variational inference: find a distribution q(z) to approximate p(Z|X) so a 
functional is maximized

Xin Zhang@PKU

3



Recap: Variational Inference

Xin Zhang@PKU

4

If  q can be any distribution, then variational inference is precise. 

But in practice, it cannot

Between p(Z|X) 
and q(Z)



Is the following statement right?

•Probability p(Z,X) is usually easier to evaluate 
compared to P(Z|X).

Xin Zhang@PKU

5



Recap: Sampling Methods

• Stochastic methods

•Also called Monte Carlo methods

Xin Zhang@PKU

6

z1, …, zl are samples from p



Recap: Sampling Methods

• Transformation method: CDF-1(uniform(0,1))

• Rejection sampling
• A proposal distribution q(z)

• Choose k, such that k*q(z) >= p(z), for any x

• Sampling process:

• Sample z0 from q(z)

• Sample h from uniform(0, k*q(z0))

• If  h > p(z0), discard it; otherwise, keep it

Xin Zhang@PKU

7



Is the following statement correct?

•All primitive distributions can be constructed using 
the inverse CDF.

Xin Zhang@PKU

8



Is the following statement right?

• In rejection sampling, given k, the probability whether a 
sample is accepted does not depend on the proposal 
distribution

Xin Zhang@PKU

9



Is the following statement correct?

•The efficiency of  rejection sampling depends on the 
choice of  the proposal distribution

Xin Zhang@PKU

10



Recap: Sampling Methods

• Importance sampling

• Used to evaluate f(z) where z is from p(z)

• How to get real samples: create a new discrete distribution using the above 
samples and set their probabilities using the importance weights

Xin Zhang@PKU

11

𝐸 𝑓 = න𝑓 𝑧 𝑝 𝑧 𝑑𝑧 = න𝑓 𝑧
𝑝 𝑧

𝑞 𝑧
𝑞 𝑧 𝑑𝑧 ≈

1

𝐿


𝑙=1

𝐿
𝑝 𝑧𝑙

𝑞 𝑧𝑙
𝑓 𝑧𝑙



Recap: Sampling Methods

• Markov Chain Monte Carlo

• A sampling method that works with a large family of  distributions and high 
dimensions

• Workflow

• Start with some sample 𝑧0
• Suppose the current sample is 𝑧𝜏 . Draw next sample 𝑧∗ from 𝑞 𝑧 𝑧𝜏)

• Decide whether to accept 𝑧∗as the next state based some criteria. If  accepted, 
𝑧𝜏+1 = 𝑧∗. Otherwise, 𝑧𝜏+1 = 𝑧𝜏

• Samples form a Markov chain

Xin Zhang@PKU

12



Recap: Sampling Methods

Xin Zhang@PKU

13

Metropolis Metropolis-Hasting

Constraints on the 
proposal distribution

Symmetric None

Accepting probability min(1,
𝑝 𝑧′

𝑝 𝑧
)

min(1,
𝑝 𝑧′ 𝑞(𝑧′|𝑧)

𝑝 𝑧 𝑞(𝑧|𝑧′)
)



Recap: Why MCMC works?

• Markov chain:

• Stationary distribution of  a Markov chain: each step in the chain does not 
change the distribution.

• Detailed balance:
• 𝑝∗ 𝒛 is a stationary distribution

• A ergodic Markov chain converges to the same distribution regardless the initial 
distribution 
• The system does not return to the same state at fixed intervals
• The expected number of  steps for returning to the same state is finite

Xin Zhang@PKU

14



Is the following statement right?

•The samples drawn using MCMC are independent

Xin Zhang@PKU

15



Is the following statement right?

•A Markov chain can have more than one stationary 
distribution

Xin Zhang@PKU

16



Use MCMC to solve the problem below 

• Super optimization
• There is a straight-line program

• A set of  test cases are given

• The program can be modified by deleting a statement, inserting a 
statement from the initial program at a given place

• Optimize the program by using the above operations

Xin Zhang@PKU

17



Motivations

• In order to reason about properties of  a program, we need formal tools

• Example questions
• Is the postcondition satisfied?

• Does this program halt on all inputs?

• Does it always halt in polynomial time?

Xin Zhang@PKU

18



Motivations

• In order to reason about properties of  a program, we need formal tools

• Example questions
• What is the probability that the postcondition is satisfied?

• What is the probability that this program halts on all inputs?

• What is the probability that it halts in polynomial time?

Xin Zhang@PKU

19



Motivations

• When designing a language, rigorous semantics is needed to guarantee its 
correctness

• An example that didn’t have rigorous semantics: Javascript
• https://javascriptwtf.com

Xin Zhang@PKU

20



Examples

x :=0

while x == 0 do

x:=coin()

Xin Zhang@PKU

21

What is the probability that It runs through n iterations?
What is the expected number of iterations?
What is the probability that the program halts?

We can decompose the semantics of a 
program into semantics of statements



Examples

main{

u:=0; 

v:=0;
step(u,v);
while u!=0 || v!=0 do

step(u,v) 

} 

step(u,v){

x:=coin(); 

y:=coin();

u:=u+(x-y);

v:=v+(x+y-1) 

} 

Xin Zhang@PKU

22

What is the probability that the program halts?

The program is a two-dimensional random walk. 
According to probability theory, the probability 
that it returns to the origin is 1.

By relating to concepts in probabilities, 
we can simplify the reasoning



Examples

i:=0;
n:=0;
while i<1e9 do

x:=rand();
y:=rand();
if  (x*x+y*y) < 1 then n:=n+1; 

i:=i+1 

i:=4*n/1e9;

Xin Zhang@PKU

23

What does this program compute?

How to reason about it?

Measure Theory
The mathematical foundation of 

probabilities and integration

Uniform(0,1) is called a Lebesgue measure



This Class

• Syntax of  a simple imperative probabilistic language

• Operational semantics

• Measure theory & denotational semantics (brief)

Xin Zhang@PKU

24



A Simple Imperative Language

• Highly simplified version

• Enough to explain the core concepts

Xin Zhang@PKU

25



Syntax

• Deterministic terms (expressions)

• Terms (Deterministic + Probabilistic)

• Tests (expression that evaluate to Booleans)

• Programs

Xin Zhang@PKU

26



Syntax – Deterministic Terms

Xin Zhang@PKU

27



Syntax - Terms

Xin Zhang@PKU

28



Syntax - Tests

Xin Zhang@PKU

29



Syntax - Program

Xin Zhang@PKU

30



Syntax - Example Program

if  coin() == 1 then

x := rand() * 5

else

x := 6

if  x > 4.5 then

y := coin() + 2

else

y := 100

Xin Zhang@PKU

31



Operational Semantics

• Model the step-by-step executions of  a program on a machine

• Tracks the memory-state

• Values assigned to each variable

• Values of  each random number generator

• A stack of  instructions

Xin Zhang@PKU

32



Random Number Generators

• Modeled as infinite streams of  numbers:

• coin(): 𝑚0𝑚1… are i.i.d from Bernoulli(0.5)

• rand(): 𝑝0𝑝1… are i.i.d from uniform(0, 1)

• When invoking the generator, a number is taken from the stream
• Pseudo-random generators

Xin Zhang@PKU

33



Operational Semantics: Machine States

• A memory-state is a triple 𝑠,𝑚, 𝑝
• A store 𝑠: 𝑛 → 𝑅, where there are 𝑛 variables in the program

• 𝑚 ∈ 0,1 𝜔 is the current stream of  available random Boolean values

• 𝑝 ∈ 0,1 𝜔 is the current stream of  available random real values

• A machine-state is a 4-tuple 𝑒, 𝑠,𝑚, 𝑝
• 𝑒 corresponds to a stack of  instructions

• 𝑠,𝑚, 𝑝 is a memory-state

Xin Zhang@PKU

34



Machine States: Example

(e, {𝑥 →⊥}, 1001011…, 0.2 0.5 0.9 0.21…)

if  coin() == 1 then

(x := rand() * 5, {𝑥 →⊥}, 001011…, 0.2 0.5 0.9 0.21…)

x := rand() * 5

(skip, {𝑥 → 1}, 001011…, 0.5 0.9 0.21…)

else

x := 6

Xin Zhang@PKU

35



Operational Semantics: Introduction

• We now talk about how a program modifies the machine state

• Type of  the operational semantics
𝑒, 𝑠,𝑚, 𝑝 → 𝑒′, 𝑠′, 𝑚′, 𝑝′

• Before talking about the reduction, we need to define semantics of  terms 
and tests

Xin Zhang@PKU

36



Semantics of Terms

Xin Zhang@PKU

37
𝑜𝑝𝑛 ∈ +, 0,∗,÷ ℎ𝑑 𝑚1𝑚2, … = 𝑚1

𝑹𝑛 × 𝑵𝜔 × 𝑹𝜔 → 𝑹 × 𝑵𝜔 × 𝑹𝜔



Semantics of Tests

Xin Zhang@PKU

38

𝑹𝑛 × 𝑵𝜔 × 𝑹𝜔 → {𝒕𝒓𝒖𝒆, 𝒇𝒂𝒍𝒔𝒆}



Operational Semantics: Reduction

Xin Zhang@PKU

39



Operational Semantics: Reduction

Xin Zhang@PKU

40



Operational Semantics: Reduction

Xin Zhang@PKU

41



Operational Semantics: Termination

• A program 𝑒 terminates from (𝑠,𝑚, 𝑝) if

• We say 𝑒 diverges from (𝑠,𝑚, 𝑝) if  it does not terminate

Xin Zhang@PKU

42



Operational Semantics: Examples

Xin Zhang@PKU

43

x :=0
while x == 0 do

x:=coin()

What is the probability that the program halts?



Operational Semantics: Examples

Xin Zhang@PKU

44

x :=0
while x == 0 do

x:=coin()

What is the probability that the program halts?



Operational Semantics: Examples

Xin Zhang@PKU

45

x :=0
while x == 0 do

x:=coin()

What is the probability that the program halts?

ℎ𝑑 𝑚1𝑚2… = 𝑚1

t𝑙 𝑚1𝑚2… = 𝑚2…

The loop continues until it reaches 𝑚 inf  the form of  1𝑚′



Operational Semantics: Examples

Xin Zhang@PKU

46



Operational Semantics: Examples

Xin Zhang@PKU

47

main{

u:=0; 

v:=0;
step(u,v);
while u!=0 || v!=0 do

step(u,v) 

} 

step(u,v){

x:=coin(); 

y:=coin();

u:=u+(x-y);

v:=v+(x+y-1) 

} 

What is the probability that the program halts?



Operational Semantics: Examples

Xin Zhang@PKU

48

main{

u:=0; 

v:=0;
step(u,v);
while u!=0 || v!=0 do

step(u,v) 

} 

step(u,v){

x:=coin(); 

y:=coin();

u:=u+(x-y);

v:=v+(x+y-1) 

} 

What is the probability that the program halts?

We define i.i.d variables 𝑋1, 𝑋2… on 𝑍2 such that 
𝑋𝑖 ∈ { 0,1 , 0, −1 , 1,0 , (−1,0)}

S𝑛 =

𝑖=1

𝑛

𝑋𝑖



Operational Semantics: Examples

Xin Zhang@PKU

49

main{

u:=0; 

v:=0;
step(u,v);
while u!=0 || v!=0 do

step(u,v) 

} 

step(u,v){

x:=coin(); 

y:=coin();

u:=u+(x-y);

v:=v+(x+y-1) 

} 

What is the probability that the program halts?

The program halts if  ∃𝑛. 𝑆2𝑛 = (0,0)



Operational Semantics: Examples

Xin Zhang@PKU

50

main{

u:=0; 

v:=0;
step(u,v);
while u!=0 || v!=0 do

step(u,v) 

} 

step(u,v){

x:=coin(); 

y:=coin();

u:=u+(x-y);

v:=v+(x+y-1) 

} 

What is the probability that the program halts?



Operational Semantics: Examples

Xin Zhang@PKU

51

i:=0;
n:=0;
while i<1e9 do

x:=rand();
y:=rand();
if  (x*x+y*y) < 1 

then n:=n+1; 

i:=i+1 

i:=4*n/1e9;

Given 𝜖 > 0,  what is P( i − 𝜋 ≤ 𝜖)?

𝑛/𝑁 is the expectation of  



Operational Semantics: Examples

Xin Zhang@PKU

52

i:=0;
n:=0;
while i<1e9 do

x:=rand();
y:=rand();
if  (x*x+y*y) < 1 

then n:=n+1; 

i:=i+1 

i:=4*n/1e9;

Given 𝜖 > 0,  what is P( i − 𝜋 ≤ 𝜖)?

𝑛/𝑁 is the expectation of  



Operational Semantics: Examples

Xin Zhang@PKU

53

i:=0;
n:=0;
while i<1e9 do

x:=rand();
y:=rand();
if  (x*x+y*y) < 1 

then n:=n+1; 

i:=i+1 

i:=4*n/1e9;

Given 𝜖 > 0,  what is P( i − 𝜋 ≤ 𝜖)?

𝑛/𝑁 is the expectation of  

The density of  𝑋2 + 𝑌2 is 



Operational Semantics: Examples

Xin Zhang@PKU

54

i:=0;
n:=0;
while i<1e9 do

x:=rand();
y:=rand();
if  (x*x+y*y) < 1 

then n:=n+1; 

i:=i+1 

i:=4*n/1e9;

Given 𝜖 > 0,  what is P( i − 𝜋 ≤ 𝜖)?

𝑛/𝑁 is the expectation of  

exp 𝑍 is



Operational Semantics: Examples

Xin Zhang@PKU

55

i:=0;
n:=0;
while i<1e9 do

x:=rand();
y:=rand();
if  (x*x+y*y) < 1 

then n:=n+1; 

i:=i+1 

i:=4*n/1e9;

Given 𝜖 > 0,  what is P( i − 𝜋 ≤ 𝜖)?

𝑛/𝑁 is the expectation of  

Where 𝜎2 =
𝜋

4
−

𝜋

4

2

Chebyshev’s 

inequality



This Class

• Syntax of  a simple imperative probabilistic language

• Operational semantics

• Measure theory & denotational semantics (brief)

Xin Zhang@PKU

56



Denotational vs. Operational Semantics

• Consider x := coin(), in operational semantics:

• Denotational semantics:

• Model all possible executions together

• States: probability distribution over memory states

•
1

2
𝑠 𝑥 ↦ 0 +

1

2
𝑠[𝑥 ↦ 1]

Xin Zhang@PKU

57



Denotational Semantics: Introduction

• State 𝑠 can be identified with the Dirac measure 𝜎𝑠, then the semantics 

of  x:=coin() can be viewed as 𝜎𝑠 →
1

2
𝑠 𝑥 ↦ 0 +

1

2
𝑠[𝑥 ↦ 1]

• In general, a program is interpreted as an operator mapping probability 
distributions to (sub)probability distributions

Xin Zhang@PKU

58



Denotational Semantics: Definition

• Assume there are 𝑛 real variables, then a state is a distribution on 𝑅𝑛

• A program 𝑒:𝑀𝑅𝑛 → 𝑀𝑅𝑛

• An operator called a state transformer

Xin Zhang@PKU

59



Measure Theory

• Measures: generalization of  concepts like length, area, or volume

Xin Zhang@PKU

60



Measure Example: Length

• What subsets of  R can meaningfully be assigned a length?

• What properties should the length function 𝑙 satisfy?

Xin Zhang@PKU

61



Measure Example: Length

Xin Zhang@PKU

62

𝑏1 < 𝑎2

𝐴𝑖 𝑎𝑛𝑑 𝐴𝑗 𝑎𝑟𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑒𝑑 . 𝑙 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒

𝐴𝑖 𝑎𝑛𝑑 𝐴𝑗 𝑎𝑟𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑒𝑑 . 𝑇ℎ𝑒 𝑠𝑒𝑡 𝑖𝑠 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒.

𝑙 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑦 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑜𝑟 𝜎 − 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒

𝑙 𝑅 = ∞, but we are only going to talk about finite measures

Domain should be closed under complementation



Measure Example: Length

• Can we extend the domain of  length 𝑙 to all subsets of  R?

• No. Counterexample: Vitali sets
• 𝑉 ⊆ [0,1], such that for each real number 𝑟, there exists exactly one number 𝑣 ∈
𝑉 such that 𝑣 − 𝑟 is rational

• Let 𝑞1, 𝑞2, … be the rational numbers in [−1,1], construct sets 𝑉𝑘 = 𝑉 + 𝑞𝑘
• 0,1 ⊆ 𝑘ڂ 𝑉𝑘 ⊆ [−1,2]

• 𝑙 𝑉𝑘 = 𝑙(𝑉), and there are infinitely many 𝑉𝑘

• 𝑙 is called the Lebesgue measure on real numbers

Xin Zhang@PKU

63



Measurable Spaces and Measures

• (S, B) is a measurable space

• S is a set

• B is a 𝜎-algebra on S, which is a collection of  subsets of  S

• It contains ∅

• Closed under complementation in S

• Closed under countable union

• The elements of  B are called measurable sets

• If  F is a collection of  subsets of  S, 𝜎(𝑭) is the smallest 𝜎-algebra 
containing F, or                                                                     . We say (S, 
𝜎(𝑭)) is generated by F.

Xin Zhang@PKU

64



Measurable Functions

• 𝑺, 𝑩𝑺 and 𝑻,𝑩𝑻 are measurable spaces. A function 𝑓: 𝑺 → 𝑻 is 
measurable if  𝑓−1 𝑩 = {𝑥 ∈ 𝑆|𝑓 𝑥 ∈ 𝐵} for every 𝑩 ∈ 𝑩𝑻 is a 
measurable subset of  𝑆

Xin Zhang@PKU

65

Example:



Measures: Definitions

• A signed (finite) measure on (𝑺, 𝑩) is a countably additive map 𝜇: 𝑩 →
𝑹 such that 𝜇 ∅ = 0

• Positive signed measure: 𝜇 𝐴 ≥ 0 for all 𝐴 ∈ 𝑩

• A positive measure is a probability measure if  𝜇 𝑆 = 1

• …is a subprobability measure  if  𝜇 𝑆 ≤ 1

Xin Zhang@PKU

66



Measures: Definitions

• If  𝜇 𝐵 = 0, then 𝐵 is a 𝜇-nullset

• A property is said to hold 𝜇-almost surely (everywhere) if  the sets of  
points on which it does not hold is contained in nullset

• In probability theory, measures are sometimes called distributions

Xin Zhang@PKU

67



Measures: Discrete Measures

• For 𝑠 ∈ 𝑆, the Dirac measure, or Dirac delta, or point mass on s:

• A measure is discrete if  it is a countable weighted sum of  Dirac measures

• If  the weights add up to one, then it is a discrete probability measure

• Continuous measure: 𝜇 𝑠 = 0 for all singleton sets {s} in 𝑩 of  (𝐒, 𝑩)

Xin Zhang@PKU

68



Measures: Pushforward Measure and Lebesgue Integration

• Given 𝑓: 𝑺, 𝑩𝑺 → (𝑻,𝑩𝑻) measurable, an a measure 𝜇 on 𝑩𝑺, the 
pushfoward measure 𝜇(𝑓−1(𝐵)) on 𝑩𝑻 is defined as 

• Lebesgue integration: given 𝑺, 𝑩 , 𝜇: 𝑩 → 𝑹, 𝑓: 𝑺 → 𝑹, where m <
𝑓 < 𝑀

 where 𝐵0, . . , 𝐵𝑛 is a measurable partition of  𝑺, and the value of  𝑓 does 
not vary more than (𝑀 − 𝑚)/𝑛 in any 𝐵𝑖 and 𝑠𝑖 ∈ 𝐵𝑖

Xin Zhang@PKU

69

 𝑓 𝑑𝜇 = lim
𝑛→𝑚𝑎𝑥

σ𝑖=0
𝑛 𝑓 𝑠𝑖 𝜇(𝐵𝑖)



Markov Kernels

• Given (𝑺, 𝑩𝑺) and 𝑻,𝑩𝑻 , 𝑃: 𝑺 × 𝑩𝑻 → 𝑹 is called a Markov kernel if

• For fixed 𝐴 ∈ 𝑩𝑻, the map 𝜆𝑠. 𝑃 𝑠, 𝐴 → 𝑹 is a measurable function on (𝑺, 𝑩𝑺)

• For fixed 𝑠 ∈ 𝑺, the map 𝜆𝐴. 𝑃 𝑠, 𝐴 → 𝑹 is a probability measure on 𝑻,𝑩𝑻

• Composition of  two Markov kernels
• Given 𝑃: 𝑆 → 𝑇, 𝑄: 𝑇 → 𝑈

• Given 𝜇 on 𝑩𝑺, its push forward under the Markov Kernel P is

Xin Zhang@PKU

70



More on Markov Kernels

• (𝑺, 𝑩𝑺): x = …  (x>0)

• 𝑻,𝑩𝑻 : y = uniform(0,x)

• Markov kernel 𝑃(𝑥,ڂ𝑖=1
𝑖=𝑀 𝑎𝑖 , 𝑏𝑖 ) = σ𝑖=1

𝑖=𝑀 𝑙𝑒𝑛𝑔𝑡ℎ( 𝑎𝑖 , 𝑏𝑖 ∩ [0, 𝑥])/𝑥

Xin Zhang@PKU

71



More on Markov Kernels

• (𝑺, 𝑩𝑺): x = …  (x>0)

• 𝑶,𝑩𝑶 : y = uniform(0,x)

• 𝑻,𝑩𝑻 : z = uniform(0,y)

• Composition: 𝑃;𝑄 𝑥, 0, 𝑧 = 𝑦∈[0,∞]
𝑃 𝑥, 𝑑𝑦 ∗ 𝑄(𝑦, [0, 𝑧])

= න
𝑦∈[0,𝑥]

𝑑𝑦

𝑥
∗
𝑙𝑒𝑛𝑔𝑡ℎ 0, 𝑧 ∩ 0, 𝑦

𝑦

= න
𝑦∈[0,𝑧]

𝑑𝑦

𝑥
∗
𝑦

𝑦
+න

𝑦∈[𝑧,𝑥]

𝑑𝑦

𝑥
∗
𝑧

𝑦
=
𝑧

𝑥
+
𝑧

𝑥
(𝑙𝑛𝑥 − 𝑙𝑛𝑧)

Xin Zhang@PKU

72

z < x



More on Markov Kernels

• (𝑺, 𝑩𝑺): x = uniform(0.1, 1.1)  𝜇 𝑎, 𝑏 = length( a, b ∩ [0.1,1.1])

• 𝑻,𝑩𝑻 : y = uniform(0,x)

• Markov kernel 𝑃(𝑥, 𝑖=1ڂ
𝑖=𝑀 𝑎𝑖 , 𝑏𝑖 ) = σ𝑖=1

𝑖=𝑀 𝑙𝑒𝑛𝑔𝑡ℎ( 𝑎𝑖 , 𝑏𝑖 ∩ [0, 𝑥])/𝑥

• 𝜇’s pushforward under P is

𝑃∗ 𝜇 𝐵𝑇 = න
𝑥∈[0.1,1.1]

𝐵𝑇 ∩ [0, 𝑥] ∗ 𝜇(𝑑𝑥)

Xin Zhang@PKU

73



More on Markov Kernels

• We can use Markov kernels to define the meanings of  statements

• A term can be seen as a Markov kernel that links the input variables (can 
be a distribution) with the output distribution

Xin Zhang@PKU

74



Summary

• To reason about properties and correctness of  probabilistic programs, 
we need semantics

• To define semantics, we can
• Decompose it into semantics of  program structures

• Link it with mathematical concepts

Xin Zhang@PKU

75


	Slide 1: Semantics of Probabilistic Programming
	Slide 2: Recap: Problem and Motivation
	Slide 3: Recap: Variational Inference
	Slide 4: Recap: Variational Inference
	Slide 5: Is the following statement right?
	Slide 6: Recap: Sampling Methods
	Slide 7: Recap: Sampling Methods
	Slide 8: Is the following statement correct?
	Slide 9: Is the following statement right?
	Slide 10: Is the following statement correct?
	Slide 11: Recap: Sampling Methods
	Slide 12: Recap: Sampling Methods
	Slide 13: Recap: Sampling Methods
	Slide 14: Recap: Why MCMC works?
	Slide 15: Is the following statement right?
	Slide 16: Is the following statement right?
	Slide 17: Use MCMC to solve the problem below 
	Slide 18: Motivations
	Slide 19: Motivations
	Slide 20: Motivations
	Slide 21: Examples
	Slide 22: Examples
	Slide 23: Examples
	Slide 24: This Class
	Slide 25: A Simple Imperative Language
	Slide 26: Syntax
	Slide 27: Syntax – Deterministic Terms
	Slide 28: Syntax - Terms
	Slide 29: Syntax - Tests
	Slide 30: Syntax - Program
	Slide 31: Syntax - Example Program
	Slide 32: Operational Semantics
	Slide 33: Random Number Generators
	Slide 34: Operational Semantics: Machine States
	Slide 35: Machine States: Example
	Slide 36: Operational Semantics: Introduction
	Slide 37: Semantics of Terms
	Slide 38: Semantics of Tests
	Slide 39: Operational Semantics: Reduction
	Slide 40: Operational Semantics: Reduction
	Slide 41: Operational Semantics: Reduction
	Slide 42: Operational Semantics: Termination
	Slide 43: Operational Semantics: Examples
	Slide 44: Operational Semantics: Examples
	Slide 45: Operational Semantics: Examples
	Slide 46: Operational Semantics: Examples
	Slide 47: Operational Semantics: Examples
	Slide 48: Operational Semantics: Examples
	Slide 49: Operational Semantics: Examples
	Slide 50: Operational Semantics: Examples
	Slide 51: Operational Semantics: Examples
	Slide 52: Operational Semantics: Examples
	Slide 53: Operational Semantics: Examples
	Slide 54: Operational Semantics: Examples
	Slide 55: Operational Semantics: Examples
	Slide 56: This Class
	Slide 57: Denotational vs. Operational Semantics
	Slide 58: Denotational Semantics: Introduction
	Slide 59: Denotational Semantics: Definition
	Slide 60: Measure Theory
	Slide 61: Measure Example: Length
	Slide 62: Measure Example: Length
	Slide 63: Measure Example: Length
	Slide 64: Measurable Spaces and Measures
	Slide 65: Measurable Functions
	Slide 66: Measures: Definitions
	Slide 67: Measures: Definitions
	Slide 68: Measures: Discrete Measures
	Slide 69: Measures: Pushforward Measure and Lebesgue Integration
	Slide 70: Markov Kernels
	Slide 71: More on Markov Kernels
	Slide 72: More on Markov Kernels
	Slide 73: More on Markov Kernels
	Slide 74: More on Markov Kernels
	Slide 75: Summary

