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Abstract

Probabilistic programming languages provide syntax to define and condition gen-
erative models but lack mechanisms for counterfactual queries. We introduce
OMEGAC : a causal probabilistic programming language for constructing and
performing inference in counterfactual generative models. In OMEGAC , a counter-
factual generative model is a program that combines both conditioning and causal
interventions to represent queries such as “given that X is true, what if Y were
the case?”. We define the syntax and semantics of OMEGAC and demonstrate
examples in population dynamics, inverse planning and causation.

1 Introduction

Probabilistic programming languages provide syntax to define and condition generative models.
However, conditioning alone is insufficient to express counterfactuals. Counterfactuals combine
both conditioning and intervention in order to represent the what-if scenarios found in the sciences,
law, medicine and various aspects of everyday life. Existing languages lack generic mechanisms for
counterfactual inference.

In this paper we introduce OMEGAC , a programming language for constructing counterfactual
generative models and performing inference in these models. A counterfactual generative model
combines both conditioning and intervention, taking the general structure: “given that X is true, what
if Y were the case?”. Crucially, Y being the case can invalidate the truth of X . A simple example is:
given that a drug treatment was not effective on a patient, would it have been effective at a stronger
dosage. In OMEGAC , a generative model is a functional program that computes the output of random
variables from random inputs; conditioning a model (e. g. by observing that X is true) restricts those
outputs to be consistent with data, and an intervention Y modifies the structure of the model.

To illustrate the expressive power of our approach, consider the scenario of a team of ecologists
who arrive at a forest to find it overrun with invasive rabbits. The ecologists may want to know
whether introducing a pair of wolves a few months back could have prevented this situation. Given
a model of population dynamics such as the Lotka-Volterra model, it is possible to make forward
predictions about the effect of an intervention. The problem is that in order to use this model, the
ecologists would have to know the exact state of the ecosystem before the intervention, from which
the model could be run forward with and without the intervention. With a traditional probabilistic
programming language, the ecologists could define a prior distribution over the initial state of the
ecosystem, and then condition on the observed number of rabbits to infer the posterior. But they
cannot easily explore the effect of the intervention on this posterior, since the observation they are
conditioning on is directly affected by the intervention. Causal graphs could in principle be used to
answer such a counterfactual question, but they are not expressive enough to capture the details of the
Lotka-Volterra model.

Causal graphs were introduced by Pearl to formalize causal relationships, using edges to connect
cause and effect [1]. In causal graphs, interventions are manipulations to the graph structure. One
reason causal graphs are not sufficiently expressive for our running example is that causal graphs
are static; they have a fixed number of edges and nodes, and interventions are limited to a fixed
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static edge. They effectively represent straight-line programs, in a language which lacks recursion,
and where the intervenable variables are bounded in number and static, and where the functions are
defined externally to the system. By contrast, OMEGAC supports models that include recursion, and
interventions can be dynamically determined, e. g. instead of introducing a wolf at a specific time,
the intervention can introduce the wolf when the rabbit population reaches a given threshold.

OMEGAC extends a prior probabilistic language [2] with a version of Pearl’s do operator:

X | do(Θ→ Z) (1)

do performs a dynamic program transformation such that Expression 1 evaluates to a value that
X would have taken had Θ been bound to Z at the point X was defined. This allows us change
the internal structure of previously defined random variables (such as X) without apriori having to
know what interventions (such as Θ → Z) we might like to make. For example, if Θ = N (0, 1)
and X = N (Θ, 1) then X | do(Θ)→ Beta(10, 1) has a beta distribution as its mean, rather than a
normal distribution. This simple example can be expressed in a causal graph. OMEGAC supports a
much richer class of models, conditions, interventions and counterfactuals as a result.

In summary, we (i) present the syntax and semantics of the first universal probabilistic language
for counterfactual generative models (Section 3); and (ii) demonstrate examples in competitive
population models, inverse planning and but-for causation (Section 4). Regarding scope, causal
inference includes problems of both (i) inferring a causal model from data, and (ii) given a (partially-
specified) causal model, predicting the result of interventions and counterfactuals on that model. This
work focuses solely on the latter.

2 Example: Pendulum Dynamics

Here we give a brief tour of OMEGAC . We construct the counterfactual: given a pendulum of length
` (whose angle θ dynamics are governed by θ̈ = −(g/`) sin(θ)) and an observation of θ at some
time, what would the dynamics have been if ` or g were different. Figure 1 shows trajectories.
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Figure 1: (a) Time series of pendulum
angle θ computed with sim. (b) samples
given prior over θ and θ̇ at t0, (c) poste-
rior given θ = 0.5 at t10, (d, e) counter-
factuals: given θ = 0.5, what if `→ 2.0
or g → 4.35

In OMEGAC , variables are bound with let:

1 let g = 9.8, l = 1, w = - g * l

Functions (e.g., θ̈) are defined with λ.x, y, . . . . . . . :

2 let θ’’ = λθ . - w * sin(θ)

sim solves the ODE. It returns (θt, θt+∆t, . . . , θtmax):

3 let sim = λθ, θ’, t, tmax, ∆t.
4 if t < tmax

5 let θ’n = θ’ - ∆t * θ’’(θ)
6 θn = θ + ∆t * θ’ in

7 cons(θn, sim(θn, θ’n, t + ∆t, tmax, ∆t))

8 else

9 emptylist,

Parametric families are a way to create random variables:

10 let u0 = uniform(0, 1), u’0 = uniform(0, 1)

rand returns a sample from a random variable:

11 let u0sample = rand(u0)

sim applied to u0 and u’0 is also a random variable.

12 let simrv = sim(u0, u’0, 0, 10, 0.001}

x | y is x conditioned on y. To observe θtmax = 0.5:

13 let simrvcond = simrv | last(simrv) == 0.5

do intervenes. It enables the counterfactuals: given θtmax
= 0.5, what if ` or g were different?

14 let simcf1 = (simrv | do(l → 2.0)) | last(simrv) == 0.5,
15 simcf2 = (simrv | do(g → 2.0)) | last(simrv) == 0.5
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3 A Calculus for Counterfactuals

Our language OMEGAC augments the functional probabilistic language OMEGA [2] with counter-
factuals. We achieve this with two modifications: (1) the syntax is augmented with a do operator,
and (2) the language evaluation is changed from eager to lazy, which is the key to the mechanism of
handling interventions.

In this section, we introduce λC , a core calculus of OMEGAC , in which we omit language features
that are irrelevant to explaining counterfactuals. We build the language up in pieces: first showing
the standard/deterministic features, then features for deterministic interventions, and finally the
probabilistic ones. Together, intervention and randomness/conditioning give the language the ability
to do counterfactual inference. Appendix A gives a more formal definition of the entire λC language.

3.1 Deterministic Fragment

Variables x, y, z ∈ Var
Type τ ::= Int | Bool | Real | τ1 → τ2

Term t ::= n | b | r | t1 ⊕ t2 | x | let x = t1 in t2 | λx : τ.t | t1(t2) | if t1 then t2 else t3

Figure 2: Abstract Syntax for λC , deterministic fragment

We begin by presenting the the fragment of λC for deterministic programming. This part of the
language is standard in many calculi. Fig. 2 gives the abstract syntax.

A common formal way to specify the executions of a program is with an operational semantics [3],
which defines a language’s semantics as a relation of how one expression in the language reduces to
another. Appendix A provides a complete operational semantics for OMEGAC . Here, we describe
these relations through concrete examples. The execution of an expression is defined both in terms of
the expression as well as the current program state. In λC , this program state is an environment Γ,
which is a mapping from variables to values.

The deterministic fragment is standard, so we will explain it briefly. λC has integer numbers (denoted
n), booleans {True,False} (denoted b) , and real numbers (r). ⊕ represents a mathematical binary
operator such as +, ∗, etc. let x = t1 in t2 binds variable x to expression t1 when evaluating
t2. Lambda expressions are used to create functions. Function applications and if-statements are
standard.

The first example demonstrates the semantics of binary operators and the let statement. The let
expression first evaluates the expression 2 + 1 and then binds x to the result in the environment.
Finally, x is evaluated by looking up its value in the environment.{

Γ : ∅
let x = 2 + 1 in x

}
→

{
Γ : ∅

let x = 3 in x

}
→

{
Γ : x 7→ 3

x

}
→

{
Γ : x 7→ 3

3

}
The next example explains function applications, which are done by substitution, as in other variants
of the lambda calculus.{

Γ : ∅
(λx : Int .(x+ 1) ∗ x)(2)

}
→

{
Γ : ∅

(2 + 1) ∗ 2

}
→

{
Γ : ∅
3 ∗ 2

}
→

{
Γ : ∅

6

}
The above semantics is eager: let x = t1 in t2 first evaluates t1 and then binds the result to x. We next
show how this is problematic for implementing counterfactuals and how we address it by changing
the semantics to lazy.

3.2 Causal/Counterfactual Fragment

We introduce our causal fragment in the context of the above deterministic fragment, which enables
intervention. In the next subsection, we will discuss how this fragment interacts with the probabilistic
fragment to naturally support counterfactual inference.
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Term t ::= · · · | t1 ||| do(x→ t2)

Figure 3: Abstract Syntax for λC , causal fragment

Our causal fragment adds one new term: the do expression (Fig. 3). t1 ||| do(x→ t2) evaluates t1 to
the value that it would have evaluated to, had x been defined as t1 at point of definition. One idea is
to define do similarly to let: t1 ||| do(x→ t2) rebinds x to t2 when evaluating t1. However, this does
not take into account transitive dependencies. For example, let x = 0 in let y = x in y ||| do(x→ 1)
evaluates to 1. However, by the time the execution evaluates the do, y has already been bound to 0,
so that rebinding x does nothing. To overcome this, we need to redefine let to use lazy evaluation,
which naturally tracks the provenance of all values.

Lazy evaluation works as follows: instead of storing the value of a variable in the environment, the
execution stores its defining expression. Moreover, since a variable can be redefined, which can
change the variable definitions using it in unexpected ways, the execution also tracks the environment
when each variable is defined. So, while environments for eager evaluation stored mappings x 7→ v
from each variable x to a value v, in lazy evaluation, the environments store mappings x 7→ (Γ, e),
which map each variable x to a closure containing both its defining expression e and the environment
Γ in which it was defined. A variable, such as x, is evaluated by evaluating its definition under the
environment where it is defined, which potentially involves evaluating other variables similarly.

It is now straightforward to define do: the intervention y ||| do(x → −1) evaluates y under a new
environment which is created by mapping all x in the current environment to −1. This not only
includes the binding of x at the top level but also the bindings in an environment that is used in any
closure. The following example demonstrates this process.{

Γ : ∅
let x = 0 in let y = x+ 1 in y + (y ||| do(x→ −1))

}
→

{
Γ : x 7→ (∅, 0)

let y = x+ 1 in y + (y ||| do(x→ −1))

}

→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

y + (y ||| do(x→ −1))

}
→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1){

Γ:x 7→(∅,0)
x+1

}
+ (y ||| do(x→ −1))

}

→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 + (y ||| do(x→ −1))

}
→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 +
{

Γ:x 7→(∅,0),y 7→(x 7→(∅,0),x+1)
(y|||do(x→−1))

} }

→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 +
{

Γ:x 7→(∅,−1),y 7→(x 7→(∅,−1),x+1)
y

} }
→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 +
{

Γ:x7→(∅,−1)
x+1

} }

→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 + 0

}
→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1

}

3.3 Probabilistic Fragment

Type τ ::= · · · | Ω Term t ::= · · · | ⊥ | t1 ||| t2 | rand(t)

Figure 4: Abstract Syntax for λC , probabilistic fragment

In measure-theoretic probability theory, a random variable is defined as a function from a sample
space Ω to some domain of values τ . λC defines random variables similarly: as functions of type
Ω→ τ . Doing so separates the source of randomness of a program from its main body, which leads
to a clean definition of counterfactuals.

Fig. 4 shows the abstract syntax of the probabilistic fragment. It introduces a new type Ω, representing
the sample space. Ω is left unspecified, save that it may be sampled from uniformly. In most
applications, Ω will be a hypercube, with one dimension for each independent sample. To access
the values of each dimension of this hypercube, one of the ⊕ operators from Section 3.1 must be the
indexing operator [], where ω[i] evaluates to of the ith componentt of ω.

Random variables are constructed as a normal function. If Ω = [0, 1], and a < b are fixed integer
constants, then R = λω : Ω.ω ∗ (b − a) + a represents a random variable uniformly distributed
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Figure 5: Lotka-Volterra Predator-Prey differential equations. (a, c) Samples from timeseries
conditioned too many rabbits, (b) Effect of action: increasing number of prey at tnow, (d) Sample from
counterfactual model: conditioned model with intervention in past (e) Treatment effect of culling
prey (f) Treatment effect of increasing predators

in [a, b]. The rand operator then samples from a random variable: randR returns a random value
uniformly drawn from [a, b].

To support conditioning, we use ⊥ to denote the undefined value. Any non-rand expression that
depends on a ⊥ value will result in another ⊥ value. A program execution is invalid if it evaluates to
⊥. One can imagine the execution of a λC program as a rejection sampling process: we ignore all
samples from rand that would make the program evaluate to ⊥. In the implementation, we use a
much more efficient inference algorithm [4].

Conditioning can now be defined as syntactic sugar: t ||| P desugars to λω.if P (ω) then t(ω) else ⊥.

Let Ω = {1, 2, . . . , 10}, and consider the program randλω.ω ∗ 2 ||| λω.ω < 4. If ω >= 4, then
evaluating the random variable results in ⊥. The rand operator hence runs the variable with ω drawn
uniformly from {1, 2, 3}, resulting in 2, 4, or 6, each with 1

3 probabiliity.

Conditioning and intervention compose naturally to yield counterfactuals. Consider the following
program to depict a game where a player chooses a number c, and then a number ω is drawn randomly
from a sample space Ω = {0, 1, . . . , 6}, and the player wins iff c is within 1 of ω. The query asks:
given that the player chose 1 and did not win, what would have happened had the player chosen 4?

let c = 1 in let x = λω. if (ω-c)*(ω-c)≤ 1 then 1 else -1

in rand((x | do(c → 4)) | λω. x(ω) == -1)

As before, the inner rand expression is evaluated in the context Γ1 = {c 7→ (∅, 1), x 7→ (c 7→
. . . , λω.if . . . )}. Its argument, a conditioning term, desugars to λω′.if x(ω′) == −1 then (x |||
do(c → 4))(ω′) else ⊥. This random variable evaluates to ⊥ for ω′ ∈ {0, 1, 2}, so the program is
evaluated with ω′ drawn uniformly from {3, 4, 5, 6}. The do expression x ||| do(c→ 4) is reduced to
evaluating x in the context Γ2 = {c = . . . , x = (c 7→ (∅, 4), λω.if . . . )}. This is then applied to ω′,
and the overall computation hence evaluates to 1 with probability 3

4 and −1 with probability 1
4 .

4 Experiments

Here we demonstrate counterfactual reasoning in OMEGAC through three case studies.

Experimental Setup All experiments were performed using predicate exchange [4], the default
inference procedure in OMEGA, on a single workstation. Simulation parameters and code for all
examples are in the supplementary material.

Predator-Prey Population Dynamics The Lotka-Volterra model is a pair of differential equations
which represent interacting populations of predators (e.g. wolves) and prey (e.g. rabbits): ẋ =
αx − βxy and ẏ = δxy − γy. x(t) and y(t) represents the prey and predator populations. α, β, δ
and γ represent growth rates.

After observing for 10 days until tnow = 20, we discover that the rabbit population is unsustainably
high. We want to ask counterfactual questions: how would an intervention now affect the future; had
we intervened in this past, could we have avoided this situation?
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To solve the differential equations we define the function euler which implements Euler’s method
[5]. euler maps the derivative f’ and initial conditions u0 to a time series of pairs u1, . . . , un where
ui = (xi, yi), sampled at timesteps tmin, tmin + ∆t, tmin + 2∆t, ..., tmax

1 let euler = λ f’, u, t, tmax, ∆t.
2 if t < tmax

3 let unext = u + f’(t + ∆t, u) * ∆t in

4 cons(u, euler(f’, unext, t + ∆t, tmax, ∆t))

5 else

6 emptylist,

We put priors on initial conditions and parameters:

7 u0 = (normal(0, 1), normal(0, 1)), α = normal(0, 1), β = normal(0, 1), γ = normal(0, 1), δ
= normal(0, 1),

Next, we construct lk’: a random variable over derivative functions following Equation ??, where
α, β, δ and γ are the previously defined random variables. In other words, a sample from lk’ is a
function which maps a pair u = (x, y) and current time t to the derivative with respect to time.

8 getx = λ u. first(u),

9 gety = λ u. second(u),

10 lk’ = λω. λ t, u. let x = getx(u), y = gety(u) in

11 (α(ω)*x - β(ω)*x*y, -γ(ω)*y + δ(ω)*x*y),

Next, we complete the unconditional generative model. Since lk’ is a random variable, so is series.

12 series = euler(lk’, u0, 0, 20, 0.1),

Next, we condition the prior on the observation that an average of 5 rabbits have been observed over
the last 10 days. We use a function lastn(seq, n) to extract the last n elements of a seq, mean to
compute the average, and map to extract only the rabbit values from each pair. Figure 5 (a) shows a
conditional sample.

13 last10 = lastn(series, 10),

14 rabbits10 = map(gety, last10),

15 toomanyrabbits = mean(rabbits10) == 5,

16 series_cond = series | toomanyrabbits,

Next, we examine the effect of action1. In particular, if we were to increase the prey population by 5 at
tnow, would the rabbit population be reduced (Figure 5 (b))? First, we construct an alternative version
of euler, one which modifies the value of u at some time t_int by applying a function u_int. We
will call this function eulerint. Since we will soon perform another similar intervention in the next
subsection for counterfactuals, we construct here a template function eulergen which parameterizes
over t_int and u_int:

17 eulergen = λ t_int, u_int

18 λ f’, u, t, tmax, ∆t.
19 let u = if t == t_int then u_int(u) else u in

20 if t < tmax

21 let unext = u + f’(t + ∆t, u) * ∆t,

22 eul = eulergen(t_int, u_int) in

23 cons(u, eul(f’, unext, t + ∆t, tmax, ∆t))

24 else

25 emptylist,

The next snippet intervenes on series using do to replace euler with an alternative version eulerint

which increases the number of prediators. Figure 5 (b) shows a sample.

26 inc_pred = λ u.(getx(u)/2, gety(u)),

27 eulerint = eulergen(20, inc_pred),

28 series_act = series_cond | do(euler → eulerint),

Next, we consider the counterfactual: had we made an intervention at some previous time t < tnow,
would the rabbit population have been less than it actually was over the last 10 days? Choosing
a fixed time to intervene (e.g. t = 5) is likely undesirable because it corresponds to an arbitrary
(i.e.: parameter dependent) point in the predator-prey cycle. Instead, the following snippet selects

1According to Pearl, action means intervening on the random variable being observed, which does not affect
the past.
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(a) Three islands S, N , E without (left) and
with (right) border under consideration

(b) Sample from population counts after n
timesteps of MDP based migration. (Left)
Unconditional sample, (b) Conditional sam-
ple (c) Counterfactual

(c) Four samples of migration patterns un-
der different conditions. Each figure shows
the migration from islanders born in S, N ,
or E (y-axis) to S, N , E, W (water) or B
(barrier) on the x-axis. We accumulate all
states in each persons’ trajectory, not only
the final state. (Top) Prior samples, (Middle)
Conditioned on observations, (Bottom) coun-
terfactual: conditioned on observations with
intervention (border)

the intervention dynamically as a function of values in the non-intervened world. maxindex is an
auxilliary function which selects the index of the largest value and hence tmostwolves is a random
variable over such values.

29 tmostwolves = maxindex(series),

30 inc_wolves = λ u.(getx(u), gety(u)+2),

31 inc_euler = eulergen(t_mostwolves, inc_wolves),

32 series_cf = λω.(series_cond | do(euler → inc_euler(ω)))(ω)

The primary purpose of using probailistic models is to capture uncertainty over estimates. Figure 5 (e)
and (f) are sample histograms showing the treatment effect [1] of the action (culling at tnow), and the
counterfactual (increasing predators in the past). While the samples in (e) are from sum(series_act)

- sum(series_cond), those in (f) are from sum(series_cf) - sum(series_cond).

Counterfactual Planning Consider a migration dispute between three hypothetical island nations
(Figure 6a Left): S to the South, E to the East and N to the North. The government of S considers
a barrier between S and N (Figure 6a Right), asking the counterfactual: given an observation of
migration patterns, how would they differ had a border been constructed.

We model this as a population of agents each acting according in accordance to a Markov Decision
Process [6] (MDP) model. Each grid cell is a state in a state space S = {(i, j) | i = 1 . . . 7, j =
1 . . . 6}. The action space moves an agent a single cell: A = {up, down, left, right). Each agent
acts according to a reward function that is a function of the state they are in only R : S → R. This
reward function is normally distributed, conditional on the country the agent originates from. For
t = 100 timesteps we simulate the migration behavior of each individual using value iteration and
count the amount of time spent in each country over the time period. Figure 6b shows population
counts according to these dynamics. Figure 6c shows migration in the prior, after conditioning on an
observed migration pattern (constructed artificially), and the counterfactual cases (adding the border).

But-for Causality in Occlusion In this experiment, we use interventions to implement “but-for”
causation to determine (i) whether a projectile’s launch-angle is the cause of it hitting a ball, and (ii)
occlusion, i.e. whether one object is the cause of an inability to see another. An event C is the but-for
cause of an event E if had C not occurred, neither would have E [7]. But-for judgements cannot
be resolved by conditioning on the negation of C, since this fails to differentiate cause from effect.
Instead, we must find a alternative world where C does not hold. But-for is a form of token causality
[8] since it refers to concrete events. In OMEGAC , a value ω ∈ Ω encompases all the uncertainty,
and hence we define but-for causality relative to a concrete value ω.

Definition 1. Let C1, . . . Cn be a set of random variables and c1, . . . , cn a set of values. With
respect to a world ω, the conjunction C1 = c1 ∧ · · · ∧ Cn = cn is the but-for cause of a predicate
E : Ω→ Bool if (i) it is true wrt ω and (ii) there exists ĉ1, . . . , ĉn such that:

(E | do(C1 → ĉ1, . . . , Cn → ĉn))(ω) = False (2)

E(ω) = True is a precondition, i.e., the effect must actually have occured for but-for to be defined.
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Figure 7: But-for causality. Left to Right: stages of optimization to infer that grey-sphere is cause of
inability to see yellow sphere, and launch-angle is cause of projectile colliding with ball.

But-for is defined existentially. To solve it we rely on predicate relaxation [4] that underlies inference
in OMEGAC . That is, E is a predicate that in (i) is true iff the projectile hits the ball, and in (ii) is
true iff the yellow object is occluded in the scene, computed by tracing rays from the viewpoint and
checking for intersectections. Predicate relaxation transforms E into soft predicate Ẽ which returns a
value in [0, 1] denoting how close we are to satisfying E. Using this, we use gradient descent over
ĉ1, . . . , ĉn to minimize (Ẽ | do(C1 → ĉ1, . . . , Cn → ĉn))(ω). In (i) ĉi is the launch-angle and in (ii)
ĉx,y,z is the position of the occluder. Finding ĉi such that softE(ĉi) = 0 confirms a but-for cause. In
Figure 7 we visualize the optimization, which ultimately infers that the angle is the cause of collision
and the grey-sphere is the cause of our inability to see the yellow sphere.

5 Related Work

Operators resembling do appear in existing probabilistic programming languages. Venture [9] has
a force expression [FORCE <expr> <literal-value>] which modifies the current trace so that the
simulation of <expr> takes on the value <literal-value>. It is intended as a tool for for controlling
initialization and debugging. RankPL [10] is a language similar to probablistic programming
languages, but uses ranking functions in place of numerical probability. It advertises support for
causal inference, as a user can manually modify a program to change a variable definition. Baral
et al. [11] described a recipe to encode counterfactuals in P-log, a probabilistic logic programming
language. However, no language construct is provided to automate this process. There are also
several libraries for doing causal inference on traditional causal graphs [12, 13, 14, 15, 16].

There has also been work on adding causal operators to deterministic programming paradigms.
Halpern and Moses [17] investigated counterfactuals in the context of knowledge-based programming.
They show that the counterfactual conditional can be used to specify that a system’s actions may
depend on predicted future events, even when those future events themselves depend on the system’s
actions. Cabalar [18] investigated causal explanations in answer-set programming, arguing that an
explanation for a derived fact is best given by a derivation tree for that fact. Pereira et al. [19]
proposed a process of implementing counterfactuals in logic programming using abduction and
updating, and applied it to model agent morality.

6 Discussion

Invariants in counterfactuals. An important property of counterfactual inference is that obser-
vations in the factual world carry over to the counterfactual world. This property is easy to satisfy
in conventional causal graphs as all exogenous and endogenous variables are created and accessed
statically. However, this is not true in OMEGAC as variable creation and access can be dynamic. Con-
cretely, interventions can change the control-flow of a program, which in turn can cause mismatches
between variable accesses in the factual world and ones in the counterfactual world. To address this
issue, we tie variable identities to program structures. Appendix B discusses this in detail.

Validity of interventions. Not every intervention should be considered valid. For instance, a
program may have been written assuming a variable x is positive; intervening to set it negative may
cause the program to behave erratically, or perform an invalid operation such as an out-of-bounds array
access. Existing work addresses how to check if a probabilistic program meets certain correctness
specifications [20]. We can extend any such correctness condition to define whether an intervention
is valid. Briefly, any OMEGAC program with interventions can be rewritten to a vanilla probabilistic
program without do through a systematic transformation. Specifically, for t1 ||| do(x→ t2), one can
manually copy the definition of t1 and replace all occurrences of x with t2. An intervention is correct
if and only if the corresponding transformed program meets its correctness criteria.

8



Limitations. Procedures such as the PC algorithm [21] handle situations where a causal relationship
exists, but nothing is known about the relationship other than that it is an arbitrary function. Like
other probabilistic programming languages, OMEGAC cannot reason about such models.
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