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ABSTRACT
Energy efficiency is a primary constraint in modern systems.
Approximate computing is a promising approach that trades
quality of result for gains in efficiency and performance. State-
of-the-art approximate programming models require extensive
manual annotations on program data and operations to guar-
antee safe execution of approximate programs. The need for
extensive manual annotations hinders the practical use of ap-
proximation techniques. This paper describes FlexJava, a
small set of language extensions, that significantly reduces the
annotation effort, paving the way for practical approximate pro-
gramming. These extensions enable programmers to annotate
approximation-tolerant method outputs. The FlexJava com-
piler, which is equipped with an approximation safety analysis,
automatically infers the operations and data that affect these
outputs and selectively marks them approximable while giving
safety guarantees. The automation and the language–compiler
codesign relieve programmers from manually and explicitly an-
notating data declarations or operations as safe to approximate.
FlexJava is designed to support safety, modularity, generality,
and scalability in software development. We have implemented
FlexJava annotations as a Java library and we demonstrate its
practicality using a wide range of Java applications and by con-
ducting a user study. Compared to EnerJ, a recent approximate
programming system, FlexJava provides the same energy sav-
ings with significant reduction (from 2× to 17×) in the number
of annotations. In our user study, programmers spend 6× to
12× less time annotating programs using FlexJava than when
using EnerJ.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Frameworks;
D.2.4 [Software/Program Verification]: Reliability

Keywords
Language design, modular approximate programming

1. INTRODUCTION
Energy efficiency is a primary concern in modern systems. Mo-
bile devices are limited by battery life and a significant fraction

of the data center cost emanates from energy consumption.
Furthermore, the dark silicon phenomenon limits the historical
improvements in energy efficiency and performance [10]. Ap-
proximate computing is a promising approach that trades small
and acceptable loss of output quality for energy efficiency and
performance gains [6, 11, 13, 17, 27, 28, 30, 33]. This approach
exploits the inherent tolerance of applications to occasional error
to execute faster or use less energy. These applications span a
wide range of domains including web search, big-data analytics,
machine learning, multimedia, cyber-physical systems, speech
and pattern recognition, and many more. For instance, a lossy
video codec can tolerate imprecision and occasional errors when
processing pixels of a frame. Practical programming models for
approximation are vital to fully exploit this opportunity. Such
models can provide significant improvements in performance
and energy efficiency in the hardware by relaxing the abstraction
of full accuracy [2,8,24,39].

Safe execution of programs is crucial to the applicability of
such techniques. That is, the programming model needs to guar-
antee that approximation will never lead to catastrophic failures
such as array out-of-bound exceptions. Recent works on approx-
imate programming languages [6, 30] enable these techniques
to provide such safety guarantees. These guarantees, however,
come at the expense of extensive programmer annotations: pro-
grammers need to manually annotate all approximate variable
declarations [30] or even annotate the safe-to-approximate op-
erations [6]. This need for extensive annotations hinders the
practical use of approximation techniques.

In this paper, we propose a small set of language extensions
that significantly lowers the annotation effort and paves the
way for practical approximate programming. To achieve this
goal, we identified the following challenges that need to be ad-
dressed. The extensions should enable programmers to annotate
approximation-tolerant method outputs. The compiler then
should automatically infer the operations and data that affect
these outputs and selectively mark them approximable while
providing safety guarantees. This process should be automatic
and the language–compiler should be codesigned in order to
relieve programmers from manually and explicitly annotating
data declarations or operations. This paper addresses these
challenges through the following contributions:
1. We introduce FlexJava, a small set of extensions that en-

ables safe, modular, general, and scalable object-oriented
approximate programming. It provides these features by
introducing only four intuitive annotations. FlexJava sup-
ports modularity by defining a scope for the annotations
based on the syntactic structure of the program. Scoping and
adherence to program structure makes annotation a natural
part of the software development process (Section 3.).
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Figure 1: A processor that supports fine-grained approxima-
tion. The shaded units perform approximate operations or
store data in approximate storage.

2. The FlexJava annotations are designed to support both
coarse-grained and fine-grained approximation, and enable
programmers to specify a wide range of quality requirements,
quality metrics, and recovery strategies (Section 3.).

3. The language is codesigned with a compiler that automati-
cally infers the safe-to-approximate data and operations from
limited annotations on program or function outputs. The
compiler statically enforces safety using a scalable dataflow
analysis that conservatively infers the maximal set of safe-to-
approximate data and operations. This automated analysis
significantly reduces the number of annotations and avoids
the need for safety checks at runtime (Section 5.).

4. We implemented FlexJava annotations as a library to make
it compatible with Java programs and tools. We extensively
evaluate FlexJava using a diverse set of programs and by
conducting a user study (Section 4. and Section 6.).
The results of our evaluation show that FlexJava reduces

the number of annotations (from 2× to 17×) compared to
EnerJ, a recent approximate programming language. We also
conduct a user study that shows from 6× to 12× reduction
in annotation time compared to EnerJ. With fine-grained ap-
proximation and small losses in quality, FlexJava provides the
same level of energy savings (from 7% to 38%) compared to
EnerJ. With coarse-grained approximation, FlexJava achieves
even higher benefits—2.2× average energy reduction and 1.8×
average speedup—for less than 10% quality loss.

A growing body of work is proposing new approximation
techniques that stand to deliver an order of magnitude benefits
in both energy and performance [2,12,27,28,35]. Our results
suggest that practical programming solutions, such as FlexJava,
are imperative for making these techniques widely applicable.

2. BACKGROUND
Approximation techniques are broadly divided into two types:
(1) fine-grained techniques that apply approximation at the
granularity of individual instructions and data elements, and
(2) coarse-grained techniques that apply approximation at the
granularity of entire code blocks. FlexJava supports both types
of techniques. We review the literature on these techniques
before presenting the design of FlexJava.

Fine-grained approximation. Architectures support fine-grained
approximation by allowing to execute interleaved approximate
and precise instructions [6,11,19,30,34]. As Figure 1 shows,
such architectures support both approximate operations and
approximate storage. A bit in the instruction opcode identi-
fies whether the instruction is the approximate or the precise
version. Current proposals for approximate instructions lack
room for enough bits to encode multiple approximation levels.
As a result, we assume the prevalent binary-level approxima-
tion [6,11,19,30,34], although our approach can take advantage
of multi-level approximation.

In this model, an approximate instruction has probabilistic
semantics: it returns an approximate value with probability p
and the precise value with probability 1−p. The approximate
value may be arbitrary. The architecture also allows approxi-

Table 1: Error probabilities and energy savings for different op-
erations in fine-grained approximation. We consider the three
hardware settings of Mild, Medium, and Aggressive from [30].

Operation Technique Mild Medium Aggressive
Timing Error Probability 10-6 10-4 10-2

Energy Reduction 12% 22% 30%
Mantissa Bits (float) 16 bits 8 bits 4 bits
Mantissa Bits (double) 32 bits 16 bits 8 bits
Energy Reduction 32% 78% 85%
Read Upset Probability 10-16.7 10-7.4 10-3

Write Failure Probability 10-5.6 10-4.9 10-3

Energy Reduction 70% 80% 90%
Per-Second Bit Flip
Probability
Memory Power Reduction 17% 22% 24%

Integer
Arithmetic/Logic

Floating Point
Arithmetic

DRAM (Memory)

Voltage
Overscaling

Bit-width
Reduction

Reduced
Refresh Rate

SRAM Read/Write
(Reg File/Data Cache)

Voltage
Overscaling

10-9 10-5 10-3

mate storage, i.e., program data can be stored in approximate
sections of the memory, cache, or registers. We use three such
probabilistic architecture settings, shown in Table 1, that offer
increasing energy savings with higher error probabilities. These
models are similar to the ones that are used in recent works on
approximate programming [6,30].

Coarse-grained approximation. Coarse-grained approximation
techniques concern approximating entire loop bodies or func-
tions [3,12,33]. Loop perforation [33] is one such technique that
transforms loops to skip a subset of their iterations. Green [3]
substitutes functions with simpler approximate implementations
or terminates loops early. NPUs [12] are a new class of accelera-
tors that replace functions with hardware neural networks to
approximately mimic the functions behavior. More generally, as
the focus of the semiconductor industry shifts to programmable
accelerators [15, 26, 36, 37], coarse-grained approximation can
pave the way for new classes of approximate accelerators that
can deliver significantly better performance and energy savings.

3. FLEXJAVA LANGUAGE DESIGN
We have designed a set of language extensions for approximate
programming that satisfy four key criteria:
1. Safety. The extensions guarantee safe execution. In other

words, approximation can never lead to catastrophic failures,
such as array out-of-bound exceptions.

2. Modularity. The extensions are modular and do not hinder
modular programming and reuse.

3. Generality. The extensions are general and enable utilizing
a wide range of approximation techniques without exposing
their implementation details.

4. Scalability. The extensions are scalable and let program-
mers annotate large programs with minimal effort.
We have incorporated these extensions in the Java language.

This section describes approximate programming in the resulting
language FlexJava using a series of examples. In the examples,
bold-underline highlight the safe-to-approximate data and op-
erations that the FlexJava compiler infers automatically from
the programmer annotations. Section 5. presents the formal
semantics of the annotations and the static analysis performed
by the compiler.

3.1 Safe Programming in FLEXJAVA
Providing safety guarantees is the first requirement for practical
approximate programming. That is, the approximation should
never affect critical data and operations. The criticality of data
and operations is a semantic property of the application that
can only be identified by the programmer. The language must
therefore provide a mechanism for programmers to specify where
approximation is safe. This poses a language-compiler co-design
challenge in order to alleviate the need for manually annotating
all the approximate data and operations. To address this chal-
lenge, we provide two language annotations, called loosen and

746



tighten. These annotations provide programmers with full control
over approximation without requiring them to manually and
explicitly mark all the safe-to-approximate data and operations.

Selectively relaxing accuracy requirements. As discussed above,
not all program data and operations are safe to approximate.
Therefore, FlexJava allows each data and operation in the
program to be either precise or approximate. Approximate data
can be allocated in the approximate sections of memory, and an
approximate operation is a variant that may generate inexact
results. All data and operations are precise by default. The
loosen annotation allows to relax the accuracy requirement on
a specified variable at a specified program point. That is, any
computation and data that exclusively affects the annotated
variable is safe to approximate. For example, in the following
snippet, the programmer uses loosen(luminance) to specify that
the computation of luminance can be safely approximated.

float computeLuminance (float r, float g, float b) {

float luminance = r * 0.3f + g * 0.6f + b * 0.1f;
loosen(luminance);
return luminance; }

From this single annotation, the FlexJava compiler automat-
ically infers that data r, g, b, and luminance can be safely
allocated in the approximate memory. It also infers that all
arithmetic operations, loads, and stores that contribute to calcu-
lating luminance are approximable. To provide memory safety
and avoid null pointer exceptions, operations that calculate
addresses to access r, g, and b are not approximable. A single
annotation thus suffices to relax the accuracy of four variables
and nine operations. Our language-compiler codesign alleviates
the need to manually annotate all these variables and operations.

Control flow safety. To avoid unexpected control flow, Flex-
Java keeps all the computation and data that affects control
flow precise by default. Consider the following example:

int fibonacci(int n) {
int r;
if (n <= 1)

r = n;

else
r = fibonacci(n - 1) + fibonacci(n - 2);

loosen(r);
return r; }

Variable r is annotated as an approximate output and n affects
r. But since n also affects control flow in the conditional, it is
not safe to approximate.

In many cases, conditionals represent simple control flow that
can be converted to data dependence. Programmers can add
explicit loosen annotations to mark such conditionals approxi-
mate. However, to reduce programmer effort, the FlexJava
compiler automatically achieves this effect by conservatively
converting control dependencies into data dependencies using a
standard algorithm [1]. The following example illustrates this
optimization:

double sobel(double[][] p){

double x, y, g, r;
x = p[0][0] + ...;

y = p[0][2] + ...;

g = sqrt(x * x + y * y);

if (g > 0.7) r = 0.7;
else r = g;

loosen(r);
return r; }

double sobel(double[][] p){
double x, y, g, r;
x = p[0][0] + ...;

y = p[0][2] + ...;

g = sqrt(x * x + y * y);

r = (g > 0.7) ? 0.7 : g;
l

loosen(r);
return r; }

In the code snippet on the left, by annotating r, there are only a
few opportunities for approximation since r depends on g which
is used in the conditional. However, the FlexJava compiler
can convert this control dependence to data dependence. This

conversion is illustrated in the snippet on the right using the
ternary ?: operator. After conversion, r is only data dependent
on g, which in turn makes g safe to approximate. Consequently,
as the snippet on the right shows, all data and operations that
affect g are also safe to approximate. As this example shows, this
automation significantly increases approximation opportunities
without the need for extra manual annotations.

Memory safety. Approximating address calculations may lead
to memory access violations or contamination of critical data.
To avoid such catastrophic failures and provide memory safety,
any computation or data that affects address calculations is
precise in FlexJava. Similarly, any computation or data that
affects object allocation size is also precise. However, objects
that do not contribute to address calculations, allocation sizes,
or control flow may be allocated in approximate memory in
accordance with the programmer annotations. Consider the
following example:

int computeAvgRed (Pixel[] pixelArray) {
int sumRed = 0;
for(int i = 0; i < pixelArray.length; i++)
sumRed = sumRed + (int) pixelArray[i].r;

int avgRed = sumRed / pixelArray.length;

loosen(avgRed); return avgRed; }

Variables i and pixelArray are not approximable since they
are used for address calculations. But the contents of the
Pixel objects pointed to by the pixelArray elements, e.g.,
pixelArray[i].r, are approximable due to loosen(avgRed). As
discussed before, programmers can always override the default
semantics and relax these strict safety guarantees.

Restricting approximation. FlexJava provides the tighten an-
notation which is dual to loosen. Annotating a variable with
tighten makes any data or operation that affects the variable
precise, unless a preceding loosen makes a subset of those data
and operations approximable. The following examples illustrate
the interplay between loosen and tighten:

float computeAvg (Pixel p) {
float sum= p.r + p.g + p.b;

tighten(sum);
float avg = sum / 2.0f;
loosen(avg); return avg; }

float computeAvg (Pixel p) {
float sum= p.r + p.g + p.b;
loosen(sum);
float avg = sum / 2.0f;

tighten(avg); return avg; }

In the left example, we relax the accuracy of data and operations
that affect avg except those that affect sum. Conversely, in the
right example, we relax the accuracy of data and operations
that affect sum while keeping the last step of computing avg
precise. The FlexJava compiler automatically introduces tighten
annotations to prevent approximating control flow and address
calculations. The tighten annotation could also be used by pro-
grammers when critical data and operations are intertwined
with their approximate counterparts. No such cases appeared
when annotating the evaluated benchmarks (Section 6.1).

3.2 Modular Approximate Programming
Scoped approximation. Modularity is essential when designing
a language since it enables reusability. To make approximate
programming with FlexJava modular, we define a scope for
the loosen annotation. The default scope is the code block that
contains the annotation; e.g., the function or the loop body
within which the loosen annotation is declared. As the following
example illustrates, data and operations that are outside of the
scope of the loosen annotation are not affected.

int p = 1;
for (int i = 0; i < a.length; i++)
p *= a[i];

for (int i = 0; i < b.length; i++) {
p += b[i];
loosen(p); }
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Since loosen(p) is declared in the second loop that process the
b array, the operations outside of this loop (e.g., p *= a[i])
are not affected and cannot be approximated. Assigning scope
to the loosen annotation provides separation of concerns. That
is, the loosen annotation only influences a limited region of code
that makes it easier for programmers to reason about the effects
of the annotation. Furthermore, the scope of approximation
adheres to the syntactic structure of the program that makes
annotating the code a natural part of the program development.

To ensure safety, the scope for the tighten annotation is the
entire program. All data and operations in the program that
affect the annotated variable in tighten will be precise. The
same principle applies to the conditionals and pointers. The
FlexJava compiler automatically applies these global semantics
and relieves programmers from safety concerns.

Reuse and library support in FLEXJAVA. Composing indepen-
dently developed codes to build a software system is a vital
part of development. Composability must be supported for the
annotations. To this end, we define two variants for the loosen;
the default case and the invasive case (loosen_invasive). These
variants have different semantics when it comes to function calls.
If a function call is in the scope of a loosen annotation and its
results affects the annotated variable, it may be approximated
only if there are loosen annotations within the function. In other
words, the caller’s annotations will not interfere with the annota-
tions within the callee and may only enable them. If the callee
does not affect caller’s annotated variable, its internal loosen
annotations will not be enabled. With this approach, the library
developers can develop general approximate libraries indepen-
dently regardless of the future specific use cases. The users can
use these general libraries without concerning themselves with
the internal annotations of the libraries. The following examples
demonstrate the effects of loosen for function calls.
static int square(int a){
int s = a * a;
loosen(s);
return s; }

public static void main
(String[] args){

int x = 2 + square(3);
loosen(x);
System.out.println(x); }

static int square(int a){

int s = a * a;

loosen(s);
return s; }

public static void main
(String[] args){

int x = 2 + square(3);

System.out.println(x); }

In the left example, as highlighted, loosen(x) declares the local
operations with the main function as safe-to-approximate. The
annotation also enables approximation in the square function
that was called in the scope of the loosen(x) annotation. Within
the square function, the approximation will be based on the
annotations that are declared in the scope of square. As the
right example illustrates, if there are no loosen annotations in
the caller function, main, nothing will be approximated in the
callee function, square.

An expert user may want to apply approximation to the
callee functions even if they do not contain any internal an-
notations. FlexJava provides the loosen_invasive for such cases.
The loosen_invasive enables applying approximation to the con-
ventional libraries that are not annotated for approximation.
Note that loosen_invasive does not cause control flow or memory
address calculations to be approximated as we discussed for
loosen. The only difference is how approximation is enforced in
the callee function as illustrated below.

static int square(int a){

int s = a * a;

return s; }
public static void main

(String[] args){
int x = 2 + square(3);
loosen(x);
System.out.println(x); }

static int square(int a){
int s = a * a;
return s; }

public static void main
(String[] args){

int x = 2 + square(3);
loosen_invasive(x);
System.out.println(x); }

In the left example, the loosen(x) annotation approximates the
local operations in main function but will not lead to any
approximation in the square function since it does not con-
tain any loosen annotations. In contrast, in the right example,
loosen_invasive(x) enforces safe approximation in square since its
return value affects x.

Supporting separate compilation. FlexJava supports separate
compilation [7]. That is, a FlexJava program can link with
both annotated and unannotated pre-compiled code without
having to re-compile it. If the precompiled code is not annotated,
it executes precisely. If the precompiled code is annotated,
its annotations are respected and its data and operations are
approximated accordingly. Moreover, the annotations in the
new program will not approximate any additional operations
and data in the precompiled code other than the ones already
approximated by annotations in them.

3.3 OO Programming in FLEXJAVA
To this point, we have described how to use FlexJava an-
notations to identify approximate data and operations within
methods of a class. This section describes how to declare class
fields as approximate and how inheritance and polymorphism
interplay with the annotations.

Approximating class fields. Since class fields are not declared
in the scope of any of the methods, we allow the programmers
to selectively relax their semantics in the constructor of the
class. The fields will be allocated in the approximate section
of the memory if an outer-level loosen enables approximation
in the constructor. In principle, instantiation of an object
involves a function call to the constructor. The outer-level loosen
annotations have the same effect on constructors as they have
on other function calls.
class A {

float x, y;

A (float x, float y) {

this.x = x;
this.y = y;
loosen(x); }

public static void main() {
A a = new A(1.5f, 2.0f);

float p = 3.5f + a.x;
loosen(p); } }

The annotated p is affected by the instance of A. Therefore,
loosen(p) enables approximation in the constructor. Consequently,
the x field will be allocated in the approximation section of the
memory because of the loosen(x) in the constructor. The y field
will not be allocated in the approximation section since it is not
annotated in the constructor.

Inheritance. When inheriting an annotated class, annotations
are preserved in methods that are not overridden. Naturally, if
the child class overrides a method, the overriding method must
be re-annotated if approximation is desired.

Polymorphism due to approximation. Depending on the anno-
tations, different instances of a class and different calls to a
method may carry approximate or precise semantics. The Flex-
Java compiler generates different versions of such classes and
methods using code specialization [9].
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3.4 Generality in FLEXJAVA: Support for
Coarse-Grained Approximation

The annotations discussed so far enable fine-grained approxi-
mation at the level of single operations and data. This section
describes another form of annotations, the begin_loose–end_loose
pair, that enables coarse-grained approximation in FlexJava.
Any arbitrary code block that is enclosed between this pair
of annotations can be approximated as a whole. Both anno-
tations have a variable argument list. The first argument of
begin_loose, which is a string, identifies the type of approximation
that can be applied to the code block. The compiler or the
runtime system then can automatically apply the corresponding
approximation technique. Some approximation techniques may
require programmers to provide more information. For example,
function substitution [3] requires the programmer to provide
an approximate version of the function. This extra information
can be passed to the compiler or runtime system through the
arguments of begin_loose or end_loose. This approach is flexible
enough to enable a variety of coarse-grained approximation tech-
niques. We describe how to use the approach with two such
techniques: loop perforation [33] and NPUs [12,16,21].

Loop perforation. Loop perforation [33] allows the runtime to
periodically skip iterations of loops. The programmer can set the
initial rate of perforation (skipping the iterations). FlexJava
annotations can be used for loop perforation as the following
example shows.

begin_loose("PERFORATION", 0.10);
for (int i = 0; i < n; i++) { ... }

end_loose();

The begin_loose("PERFORATION", 0.10) and end_loose() annota-
tions identify the loop that can be approximated. The first
argument of begin_loose, "PERFORATION", declares that the de-
sired approximation technique is loop perforation. The second
argument, 0.10, identifies the rate of perforation.

Neural acceleration. Neural Processing Units (NPU) [2,12,13,
16, 21] are a new class of accelerators that replace compute-
intensive functions with hardware neural networks. We give
an overview of the NPU compilation workflow since we use
them to evaluate FlexJava’s coarse-grained annotations. The
compiler first automatically trains a neural network on how an
approximable code block behaves. Then, it replaces the original
block with an efficient hardware implementation of the trained
neural network or the NPU. This automatic code transformation
also identifies the inputs and outputs of the region. The compiler
performs the transformation in four steps:
1. Input/output identification. To train a neural network

to mimic a code block, the compiler needs to collect the
input-output pairs that represent the functionality of the
block. Therefore, the first step is identifying the inputs and
outputs of the delineated block. The compiler uses a combi-
nation of live variable analysis and Mod/Ref analysis [4] to
automatically identify the inputs and outputs of the anno-
tated block. The inputs are the intersection of live variables
at the location of begin_loose("NPU") with the set of variables
that are referenced within the segment. The outputs are the
intersection of live variables at the location of end_loose() with
the set of variables that are modified within the segment. In
the example that follows, this analysis identifies x and y as
the inputs to the block and p and q as the outputs.

2. Code observation. The compiler instruments the program
by putting probes on the inputs and outputs of the block.
Then, it profiles the instrumented program using representa-
tive input datasets such as those from a test suite. The probes

package edu.flexjava;
abstract class QualityMetric {

double acceptableQualityLoss = 0.0;
QualityMetric(double q) { acceptableQualityLoss = q; }
abstract void checkQuality(Object... o);
abstract void recover(Object... o);

}

Figure 2: An abstract class for defining the quality metric.

package edu.flexjava;
class FlexJava {

static void loosen(Object... o) {}
static void loosen_invasive(Object... o) {}
static void tighten(Object... o) {}
static void begin_loose(String type, Object... o) {}
static void end_loose(Object... o) {}

}

Figure 3: FLEXJAVA annotations are implemented as a library.

log the block inputs and outputs. The logged input–output
pairs form the training dataset.

3. Training. The compiler uses the collected input–output
dataset to configure and train a multilayer perceptron neural
network that mimics the approximable block.

4. Code generation. Finally, the compiler replaces the original
block with a series of special instructions that invoke the NPU
hardware, sending the inputs and receiving the computed
approximate outputs.

The following example illustrates the use of FlexJava annota-
tions for NPU acceleration.

Double foo(Double x, Double y) {
begin_loose("NPU");
p = Math.sin(x) + Math.cos(y);
q = 2 * Math.sin(x + y);

end_loose();
return p + q; }

The programmer uses begin_loose–end_loose to indicate that the
body of function foo is a candidate for NPU acceleration. The
first argument of begin_loose("NPU") indicates that the approxi-
mation technique is NPU acceleration.

3.5 Support for Expressing Quality Metrics,
Quality Requirements, and Recovery

Practical and complete approximate programming languages
need to provide a mechanism to specify and express quality
metrics, quality requirements, and recovery mechanisms. As
shown in prior works on approximation, quality metrics are
application dependent [3, 11, 12, 30, 33]. For example, an im-
age processing application may use signal-to-noise ratio as the
quality metric, while the quality metric for web search is rel-
evance of the results to the search query. The quality metric
for machine learning algorithms that perform classification is
the misclassification rate. Consequently, the common practice
in approximate computing is for programmers to specify the
application quality metric and the acceptable level of quality
loss. The FlexJava annotations can be naturally extended to
express quality metrics and requirements.

As Figure 2 shows, we first provide an abstract class as a
template for implementing the quality metric function. The
programmer can implement this abstract class and override the
checkQuality function to implement the quality metric. The
constructor of this class can be used to set the acceptable level
of quality loss, acceptableQualityLoss. The programmer can
also override the recover to implement a recovery procedure
for the occasions that the quality loss is greater than the require-
ments. Note that the quality requirement can be expressed as a
probability if desired. After implementing the QualityMetric
class, the programmer can pass its instance via the last argu-
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(real constant) r ∈R (variable) v ∈V
(real expression) e∈R∪V (operation label) l ∈ L

(statement)s ::=v :=l δ(e1,e2) | loosen(v) | tighten(v)
| assume(v) | s1;s2 | s1+s2 | s∗

Figure 4: Language syntax.

(stack) ρ ∈ V→R (tainted set) T ⊆ V
(state) ω ::= 〈s,ρ,T〉 | 〈ρ,T〉 | error | halt

Figure 5: Semantic domains.

ment of loosen, loosen_invasive, or end_loose to the compiler or the
runtime system. Clearly, the programmer need not specify the
quality metric in each such annotation; it is usually specified
only when annotating the final output or important functions
of the application, as illustrated in the following example.

static int cube (int x) {

int y = x * x * x;
loosen(y);
return y; }

public static void main (String[] args) {
int z = cube(7);
loosen(z, new ApplicationQualityMetric(0.10));
System.out.println(z); }

Notice that the quality requirement is not specified in the func-
tion or library annotations (loosen(y)). It is specified only in
the last annotation on the final output z of the program. In
this example, the acceptable quality loss is 10%, which is passed
to the constructor as 0.10.

4. FLEXJAVA IMPLEMENTATION
FlexJava is a small set of extensions to Java that enables
safe, modular, general, and scalable object-oriented approx-
imate programming. It achieves these goals by introducing
only four intuitive annotations: loosen, tighten, loosen_invasive, and
the begin_loose–end_loose pair. In this section, we describe our
implementation of these annotations and the development envi-
ronment of FlexJava.

Implementation of annotations. We implemented FlexJava
annotations as a library to make it compatible with Java pro-
grams and tools. Figure 3 illustrates this library-based imple-
mentation that provides the interface between the FlexJava
language and compiler. The FlexJava class implements the
annotations as empty variable-length argument functions. Con-
sequently, compiling a FlexJava program with a traditional
compiler yields a fully precise executable. The approximation-
aware compiler, however, can intercept calls to these functions
and invoke the necessary analyses and approximate transforma-
tions.

Integrated highlighting tool. FlexJava is coupled with a static
approximation safety analysis that automatically infers the safe-
to-approximate operations and data from the programmer an-
notations. We have developed an integrated tool that highlights
the source code with the result of this analysis. By visualizing
the result, this tool further facilitates FlexJava programming
and can help programmers to refine their annotations. In its
current form, the integrated tool adds comments at the end of
each line showing which of the line’s operations are safe to ap-
proximate. It is straightforward to convert this visual feedback
to syntax highlighting. In fact, we used the result of this tool
to highlight the examples in Section 3..

5. APPROXIMATION SAFETY ANALYSIS
In this section, we define the formal semantics of approxima-
tion safety for annotated programs in FlexJava. We define

a core language with loosen and tighten annotations. We give a
concrete semantics parameterized by the set of operations to be
approximated in an annotated program in the language. The
semantics determines if a given set of operations is approximable.
As this problem is undecidable, we develop a static analysis that
conservatively infers the largest set of approximable operations
in a given annotated program.

5.1 Core Language
Figure 4 shows the syntax of our core language. It supports
real-valued data and control-flow constructs for sequential com-
position, branches, and loops. We elide conditionals in branches
and loops, executing them nondeterministically and using the
assume(v) construct that halts if v≤0.

We extend the language with annotations loosen(v) and
tighten(v). These annotations arise from their source-level coun-
terparts described in Section 3.. Further, tighten(v) is implicitly
added by the FlexJava compiler before each use of variable
v in a conditional, an array index, a pointer dereference, or
a program output. To statically identify operations that are
approximable under the given annotations, each operation has
a unique label l.

Example. We illustrate the above concepts for the program
on the left below. For now, ignore the sets in annotations next
to each line of the program.

L={1,2,5,6} L={2,6}
1: v1 := input(); {{v1}} {{}}
2: v2 := input(); {{v1,v2}} {{v2}}
3: tighten(v1); {T} {{v2}}
4: while (v1 > 0) { {T} {{v2}}
5: v1 := f(v1); {T} {{v2}}
6: v2 := g(v2); {T} {{v2}}
7: tighten(v1); {T} {{v2}}
8: } {T} {{v2}}
9: loosen(v2); {T} {{}}
10: tighten(v2); {T} {{}}
11: output(v2); {T} {{}}

The compiler introduces tighten(v1) on lines 3 and 7 to en-
sure that v1>0 executes precisely, and tighten(v2) on line 10
to ensure that the value of v2 output on line 11 is precise. The
programmer relaxes the accuracy of v2 on line 9, which allows
the operations writing to v2 on lines 2 and 6 to be approximated
without violating the tighten(v2) requirement on line 10. How-
ever, the operations writing to v1 on lines 1 and 5 cannot be
approximated as they would violate the tighten(v1) requirement
on line 3 or 7, respectively. 2

5.2 Concrete Semantics
We define a concrete semantics to formalize approximation
safety for our language. Figure 5 shows the semantic domains.
Each program state ω (except for special states error and halt
described below) tracks a tainted set T of variables. A variable
gets tainted if its value is affected by an approximate operation,
and untainted if loosen is executed on it.

Figure 6 shows the semantics as a set of rules of the form:

L |= 〈s,ρ1,T1〉 ; 〈ρ2,T2〉 | halt | error
It describes an execution of annotated program s when the set of
approximated operations is L, starting with stack (i.e., valuation
to variables) ρ1 and tainted set T1. The rules are similar to
information flow tracking: approximated operations in L are
sources (rule Asgn), loosen(v) are sanitizers (rule Loosen), and
tighten(v) are sinks (rules TightenPass and TightenFail).
The execution ends in state error if some tighten(v) is executed
when the tainted set contains v, as described by rule Tighten-
Fail. The execution may also end in state halt, which is normal
and occurs when assume(v) fails (i.e., v≤0), as described by
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L |=〈v :=l δ(e1,e2),ρ,T〉;〈ρ[v 7→Jδ(e1,e2)K(ρ)],T ′〉

where T ′=

{
T∪{v} if l∈L or uses(e1,e2)∩T 6=∅
T \{v} otherwise

(Asgn)

L |=〈loosen(v),ρ,T〉;〈ρ,T \{v}〉 (Loosen)

L |=〈tighten(v),ρ,T〉;〈ρ,T〉 [if v /∈T ] (TightenPass)

L |=〈tighten(v),ρ,T〉;error [if v∈T ] (TightenFail)

L |=〈assume(v),ρ,T〉;〈ρ,T〉 [if ρ(v)>0] (AsmPass)

L |=〈assume(v),ρ,T〉;halt [if ρ(v)≤0] (AsmFail)

Figure 6: Concrete semantics of approximation safety.

rules AsmPass and AsmFail. We omit the rules for compound
statements and those that propagate error and halt, as they are
relatively standard and do not affect the tainted set.

We now define approximation safety formally:

Defn 5..1 (Approximation safety) A set of operations L in
a program s is approximable if ∀ρ :L |=〈s,ρ,∅〉 6;error.

To maximize approximation, we seek as large a set of approx-
imable operations as possible. In fact, a unique largest set exists,
as our semantics satisfies the property that if operation sets L1

and L2 are approximable, then so is L1∪L2.

Example. In the example program, the largest set of approx-
imable operations is those on lines 2 and 6. Column L={2,6}
shows the tainted set as per our semantics after each statement
under this set of approximated operations. The error state is
unreachable in any run as the tainted set at each tighten(v) does
not contain v. Hence, this set of operations is approximable. 2

5.3 Static Analysis
The problem of determining if a given set of operations is
approximable in a given annotated program even in our core
language is undecidable. We present a novel static analysis that
conservatively solves this problem, i.e., if the analysis deems a set
of operations as approximable, then it is indeed approximable
according to Defn. 5..1. Further, we apply an efficient algorithm
that uses the analysis to automatically infer the largest set of
approximable operations.

Our static analysis is shown in Figure 7. It over-approxim-
ates the tainted sets that may arise at a program point in the
concrete semantics by an abstract state D, a set each of whose
elements is > or an abstract tainted set π of variables.

The analysis is a set of transfer functions of the formFL[s](D)=
D′, denoting that when the set of approximated operations is
L, the annotated program s transforms abstract state D into
abstract state D′. The element > arises in D′ either if it al-
ready occurs in D or if s contains a tighten(v) statement and an
abstract tainted set incoming into that statement contains the
variable v. Thus, the element > indicates a potential violation
of approximation safety. In particular, an annotated program
does not violate approximation safety if the analysis determines
that, starting from input abstract state {∅}, the output abstract
state does not contain >:

Theorem 5..2 (Soundness) For each program s, if> /∈FL[s]({∅})
then for each state ρ, L |=〈s,ρ,∅〉 6;error.

Example. For our example from Section 5.1, the columns on
the right show the abstract state computed by the analysis
after each statement, under the set of approximated operations
indicated by the column header. For L={1,2,5,6}, the final
abstract state contains >, and indeed the operations on lines 1
and 5 are not approximable. But for L={2,6}, the final abstract
state does not contain >, proving that operations on lines 2 and
6 are approximable. 2

(abstract tainted set) π ∈ Π=2V

(abstract state) D ⊆ D=Π∪{>}

FL[s] : 2D→2D

FL[s1;s2](D) = (FL[s1]◦FL[s2])(D)
FL[s1+s2](D) = FL[s1](D)∪FL[s2](D)

FL[s∗](D) = leastFix λD′.(D∪FL[s](D′))
FL[t](D) = {transL[t](d)|d∈D}

for atomic statement t, where:

transL[t](>) = >

transL[v :=l δ(e1,e2)](π) =

π∪{v} if l∈L ∨uses(e1,e2)∩π 6=∅
π\{v} otherwise

transL[tighten(v)](π) =

{
π if v /∈π
>otherwise

transL[loosen(v)](π) = π\{v}

Figure 7: Approximation safety analysis.

Our static analysis has the useful property that for any anno-
tated program, there exists a unique largest set of operations
that it considers approximable.

Theorem 5..3 (Unique largest solution) ∃ Lmax⊆L :> /∈
FLmax [s]({∅}) ∧ (> /∈FL[s]({∅})⇒L⊆Lmax).

We use a standard algorithm [40] to infer this largest set
of approximable operations. Starting with all operations ap-
proximated, it iteratively finds a largest set of approximable
operations which passes all the tighten checks in the program.

6. FLEXJAVA EVALUATION
This section aims to answer the following research questions.

• RQ1: Can FlexJava significantly reduce the number of
manual annotations?
• RQ2: Can FlexJava significantly reduce the program-

mer effort and annotation time?
• RQ3: Can FlexJava give significant speedup and energy

gains with both fine- and coarse-grained approximation?

As the results of the evaluations show, FlexJava reduces
the number of annotations (between 2× and 17×) compared to
EnerJ, the leading approximation language. We also conduct a
user study that shows from 6× to 12× reduction in annotation
time compared to EnerJ. FlexJava; however, provides the same
level of energy savings (from 7% to 38%) compared to EnerJ with
fine-grained approximation. With coarse-grained approximation,
FlexJava achieves 2.2× energy reduction and 1.8× speedup for
under 10% quality loss.

Benchmarks and quality metrics. As Table 2 shows, we eval-
uate FlexJava using 10 Java programs. Eight are the EnerJ
benchmarks [30]. We use two additional benchmarks, hessian
and sobel. Five of these come from the SciMark2 suite. The rest
are zxing, an Android bar code recognizer; jmeint, an algorithm
to detect intersecting 3D triangles (part of the jMonkeyEngine
game engine); sobel, an edge detection application based on the
Sobel operator; and raytracer, a simple 3D ray tracer. To better
study the scalability of our analysis, we added the hessian appli-
cation from the BoofCV vision library with 10,174 lines of code.
This application uses the Hessian affine region detector to find
interesting points in an image. The code for this application uses
Java generics that is not supported by the EnerJ compiler and
simulator. However, our safety analysis supports Java generics
and was able to analyze this application. Therefore, only for this
specific application, our comparisons are limited to annotation
effort and safety analysis. Table 2 also shows the application-
specific quality metrics. We measure quality by comparing the
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Table 2: Benchmarks, quality metrics, and results of safety analysis: analysis runtime and # of approximable data and operations.

 sor  Avg entry difference
 smm  Avg normalized difference
 mc  Normalized difference
 fft  Avg entry difference
 lu  Avg entry difference
 sobel  Image edge detection  Avg pixel difference
 raytracer  3D image renderer  Avg pixel difference
 jmeint  jMonKeyEngine game: triangle intersection kernel  Percents of correct decisions
 hessian  Interest point detection in BoofCV library  Avg Euclidean distance
 zxing  Bar code decoder for mobile phones  Percents of correct results

 SciMark2 benchmark:
 scientific kernels

Description Quality Metric
Bench Library Inferred Potential Inferred Potential

36 60K 6 8 14 133 282
38 60K 6 9 17 114 278
59 60K 4 7 13 129 184

168 60K 11 11 14 226 485
283 60K 15 12 19 201 600
163 284K 102 2 5 153 416
174 214K 14 4 9 128 264

5,962 216K 296 71 71 832 943
10,174 261K 6,228 73 119 663 4988
26,171 271K 12,722 996 1,053 2,673 8,454

Analysis
Runtime

(sec)

# of Approximable
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Figure 8: Number of annotations required to approximate the
same set of data and operations using EnerJ and FLEXJAVA.

output of the fully precise and the approximated versions of the
program. For each benchmark, we use 10 representative input
datasets such as 10 different images. The quality degradation is
averaged over the input datasets.

6.1 RQ1: Number of Annotations
To answer RQ1, we compare the number of EnerJ annotations
with FlexJava annotations. We use EnerJ as a point of com-
parison because it requires the minimum number of annotations
among existing approximate languages [6,30]. EnerJ requires
programmers to annotate all the approximate data declara-
tions using type qualifiers. Then, the EnerJ compiler infers
the safe-to-approximate operations for fine-grained approxima-
tion. In contrast, our approximation safety analysis infers both
approximate data and operations from a limited number of
FlexJava annotations on the program or function outputs. We
used the Chord program analysis platform [23] to implement
our approximation safety analysis. Compared to EnerJ, our
analysis infers at least as many number of safe-to-approximate
data and operations with significantly fewer number of manual
annotations.

Figure 8 shows the number of annotations with EnerJ and
FlexJava. As Figure 8 illustrates, there is a significant reduc-
tion in the number of annotations with FlexJava. FlexJava
requires between 2× (mc) to 17× (hessian) less annotations than
EnerJ. The largest benchmark in our suite is zxing with 26,171
lines of code. It requires 696 annotations with EnerJ, 109 anno-
tation with FlexJava. Thus, FlexJava reduces the number of
annotations by a factor of 6×. The zxing benchmark needs several
loosen annotations to mark its function outputs as approximable.
Further, many condition variables are safe to approximate and
such variables need to be annotated explicitly. Therefore, zxing
requires a number of FlexJava annotations that is relatively
large compared to all other benchmarks. These results confirm
that FlexJava annotations and its approximation safety analy-
sis can effectively reduce the number of manual annotations.

The results in Figure 8 are with no use of loosen_invasive.
Using loosen_invasive only reduces the number of annotations

with FlexJava. Moreover, in the evaluated benchmarks, there
is no need for any manual tighten annotations. As described
before, FlexJava’s approximation safety analysis automatically
inserts tighten annotations for the critical variables to ensure
control flow and memory safety. The FlexJava highlighting
tool was useful since it effectively visualizes the result of the
automated approximation safety analysis.

Approximation safety analysis. In Table 2, columns “# of Lines”
and “Analysis Runtime (sec)” report the number of lines in each
program and the runtime of the approximation safety analysis.
The analysis analyzes application code and reachable Java library
(JDK) code uniformly although we report their sizes separately
in the table. The analysis was performed using Oracle HotSpot
JVM 1.6.0 on a Linux machine with 3.0 GHz quad-core processors
and 64 GB memory.

The analysis runtime strongly correlates with the number of
potentially approximable data and operations. The potential
approximable elements include all the data declarations and all
the operations that are not address calculations and jump or
branch instructions in the byte code. The number of potential
elements is presented in columns “# of Approximable Data-Potential”
and “# of Approximable Operations-Potential”, respectively. The anal-
ysis determines whether or not each of these elements is safe
to approximate with respect to the programmer annotations.
The number of all the potential approximable elements defines
the search space of the analysis. Thus, the space of possible
solutions that the approximation safety analysis explores for
zxing is of size 2(1053+8454). Automatically finding the largest
set of approximable elements from this huge space justifies the
12,722 seconds (=3 hours and 32 minutes) of running time to analyze
zxing. However, the analysis runtime is not exponential with
respect to the number of potential elements. That is because in
each iteration, the analysis eliminates at least one element from
the potentials list.

Naturally, significantly reducing the number of manual anno-
tations requires an automated analysis that takes some machine
time. That is, the analysis is trading machine time for fewer
annotations, potentially saving programmer time. Furthermore,
we report the pessimistic runtime when all of the libraries and
program codes are analyzed in a single compiler run without
separate compilation. Separate compilation may reduce this
runtime when precompiled approximate libraries are available.

6.2 RQ2: Programmer Effort/Annotation Time
To answer RQ2, we conduct a user study involving ten pro-
grammers. The programmers are asked to annotate three pro-
grams with both languages. To avoid bias in our study toward
FlexJava, we used three programs from the EnerJ benchmark
suite [29]. The benchmarks are not large so that the subjects
can understand their functionality before annotating them. As
presented in Figure 9, we measure the annotation time with
EnerJ and FlexJava and compare the results. The subjects are
computer science graduate students who have prior background
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Figure 9: Annotation time with EnerJ and FLEXJAVA for (a) sor, (b) smm, and (c) fft. The x-axes denotes the user study subjects.

in Java programming but have no experience in approximate
programming. We measured the annotation time using the
following procedure.

First, we orally explain how to annotate the programs with
FlexJava and EnerJ. Then, we demonstrate the annotation
process on a simple benchmark, mc, and show the subjects how
to use the tools for both languages. For this study, the subjects
then annotate three of benchmarks, sor, smm, and fft, using both
languages. Half of the subjects use EnerJ annotations first
and the other half use FlexJava first. The measured time for
EnerJ constitutes annotation plus compilation time. Whereas
the measured time for FlexJava constitutes annotation time,
plus the time for running the approximation safety analysis,
plus the time for analyzing the analysis results using the source
highlighting tool. We provide the unannotated application and
a description of its algorithm for the subjects. We allow the
subjects to review each application code prior to annotating it.
Our current highlighting tool is enough to check whether or not
the analyzed results are equivalent between the two languages.

Figure 9 shows the annotation time. On average the annota-
tion time with FlexJava is 6×, 12×, 8× less than EnerJ for
sor, smm, and fft, respectively. Although we demonstrate how
the subjects can use the languages, they need time to gain ex-
perience while annotating the first program. Once the subjects
acclimate to FlexJava with the first benchmark (sor), they
spend proportionally less time annotating the next benchmark.
The FlexJava annotation time for the second benchmark (smm)
is typically lower than the first benchmark (sor). In contrast, the
annotation time with EnerJ does not reduce beyond a certain
point even after gaining experience. We believe that this is be-
cause EnerJ requires manually annotating all the approximate
variable declarations and more. Using FlexJava, sor and smm
require three loosen annotation, but fft requires six. We believe
that this explains why the time to annotate fft in FlexJava is
greater than the time to annotate sor and smm. In summary,
these results show that FlexJava significantly reduces pro-
grammer effort by providing intuitive language extensions and
leveraging the automated approximation safety analysis.

6.3 RQ3: Energy Reduction and Speedup
To answer RQ3, we study energy gains and speedup of FlexJava
with both fine- and coarse-grained approximation.

6.3.1 Fine-Grained Approximation
Tools and models. We modify and use the EnerJ open-source
simulator [30] for error and energy measurements. The simulator
provides the means to instrument Java programs based on the
result of the analysis. It allows object creation and destruction
in approximate memory space and approximating arithmetic
and logic operations. The runtime simulator is a Java library
that is invoked by the instrumentation. The simulator records
memory-footprint and arithmetic-operation statistics while si-
multaneously injecting error to emulate approximate execution
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Figure 10: (a) Energy reduction and (b) quality loss when ap-
proximating all the safe-to-approximate data and operations.

and measure error. The simulator uses the runtime statistics
to estimate the amount of energy dissipated by the program.
The error and energy measurements are based on the system
models described in Table 1. The models and the simulator
do not support performance measurements. We measured the
error and energy usage of each application over ten runs and
average the results.

Figure 10 shows the energy reduction and the output qual-
ity loss when the safe-to-approximate data and operations are
approximated. These results match those of EnerJ [29]. As
shown, the geometric mean of energy reduction ranges from
16% with the Mild hardware setting to 23% with the Aggressive
hardware setting. The energy reduction is least for jmeint (7%
with Mild) and highest for raytracer (38% with Aggressive). All the
applications show low and acceptable output quality loss with
the Mild setting. However, in most cases, there is a jump in
quality degradation when the hardware setting is changed to
Aggressive. If this level of quality is not acceptable (fft), then the
application should dial down the hardware setting to Medium or
Mild. FlexJava provides the same level of benefits and quality
degradations as EnerJ while significantly reducing the number
of manual annotations.

6.3.2 Coarse-Grained Approximation
To evaluate FlexJava’s generality, we use the NPU coarse-
grained approximation [12]. NPU can only be used to ap-
proximate the benchmarks fft, sobel, raytracer, and jmeint. Each
benchmark has only one function that can be approximated
with NPUs. Each of these functions can be delineated using a
single pair of begin_loose–end_loose annotation.

Tools and models. We measure the benefits of NPUs in con-
junction with a modern Intel Nehalem (Core i7) processor.
We use a source-to-source transformation that instruments the
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Figure 11: Speedup, energy reduction, and output quality loss when the approximate annotated functions using the NPU.

benchmarks’ Java code to emit an event trace including memory
accesses, branches, and arithmetic operations. This source-level
instrumentation is unaffected by the JIT, garbage collection, or
other VM-level systems. Using a trace-based simulator, we gen-
erate architectural event statistics. The architectural simulator
includes a cache simulation. The simulation process outputs
detailed statistics, including the cycle count, cache hit and miss
counts, and the number of functional unit invocations. The
trace-based CPU simulator is augmented with a cycle-accurate
NPU simulator that also generates the statistics required for
the NPU energy estimation. The resulting statistics are sent
to a modified version of McPAT [18] to estimate the energy
consumption of each execution. We model the energy consump-
tion of an eight-processing-engine NPU using the results from
CACTI 6.5 [22], McPAT [18], and [14].

Figure 11 shows the energy reduction, speedup, and quality
loss with the NPU coarse-grained approximation. The baseline
executes the precise version of the benchmark on the CPU
without any NPU approximation. On average, the benchmarks
see a 2.2× energy reduction and a 1.8× speedup. These bene-
fits come for less than 10% quality degradation across all the
benchmarks, which is commensurate with other approximation
techniques [11,16,27,28] and prior NPU works [2,12,21]. The En-
erJ system does not provide any coarse-grained approximation
results for comparison.

These results demonstrate that coarse-grained approximation
may have limited applicability but can provide higher benefits.
Whereas, fine-grained approximation is more widely applicable
with possibly lower gains. FlexJava supports both granularities
as a general language to maximize opportunities for approxima-
tion in a wider range of applications.

7. RELATED WORK
There is a growing body of work on language design, reasoning,
analysis, transformations, and synthesis for approximate com-
puting. These works can be characterized based on (1) static vs.
dynamic, (2) approximation granularity, (3) automation, and
(4) safety guarantees. To this end, FlexJava is a language
accompanied with an automated static analysis that supports
both fine- and coarse-grained approximation and provides for-
mal safety guarantees. We discuss the related work with respect
to these characteristics.

EnerJ [30] is an imperative programming language that stati-
cally infers the approximable operations from approximate type
qualifiers on program variables. In EnerJ, all approximable
variables must be explicitly annotated. EnerJ works at the
granularity of instructions and provides safety but not quality
guarantees. Rely [6] is another language that requires pro-
grammers to explicitly mark both variables and operations as
approximate. Rely works at the granularity of instructions and
symbolically verifies whether the quality requirements are satis-
fied for each function. To provide this guarantee, Rely requires
the programmer to not only mark all variables and operations
as approximate but also provide preconditions on the reliability

and range of the data. Both EnerJ and Rely could be a backend
for FlexJava when it automatically generates the approximate
version of the program. Axilog [39] introduces a set of annota-
tions for approximate hardware design in the Verilog hardware
description language. Verilog does not support imperative pro-
gramming constructs such as pointers, structured data, memory
allocation, recursion, etc. The lack of these features results in
fundamentally different semantics for safe approximation and
annotation design.

Chisel [19] uses integer linear programming (ILP) formula-
tion to optimize approximate computational kernels. A Chisel
program consists of code written in an imperative language
such as C and a kernel function written in Rely that will be
optimized. Several works have focused on approximation at the
granularity of functions or loops. Loop perforation [20,32,33]
is an automated static technique that periodically skips loop
iterations. Even though loop perforation provides statistical
quality guarantees, the technique is not safe and perforated
programs may crash. Green [3] provides a code-centric pro-
gramming model for annotating loops for early termination
and functions for approximate substitution. The programmer
needs to provide the alternative implementation of the function.
Green is also equipped with an online quality monitoring system
that adjusts the level of approximation at runtime. Such run-
time adjustments are feasible due to the coarse granularity of
the approximation. FlexJava provides the necessary language
extensions for supporting these coarse-grained approximation
techniques as well as the fine-grained ones.

Similar to EnerJ, Uncertain<T> [5] is a type system for
probabilistic programs that operate on uncertain data. It im-
plements a Bayesian network semantics for computation on
probabilistic data. Similarly, [31] uses Bayesian networks and
symbolic execution to verify probabilistic assertions.

8. CONCLUSION
Practical and automated programming models for approxima-
tion techniques are imperative to enabling their widespread
applicability. This paper described one such language model
that leverages automated program analysis techniques for more
effective approximate programming. The FlexJava language is
designed to be intuitive and support essential aspects of modern
software development: safety, modularity, generality, and scala-
bility. We implemented FlexJava and its approximation safety
analysis and evaluated its usability across different approxima-
tion techniques that deliver significant energy and performance
benefits. The results suggest that FlexJava takes an effective
and necessary step toward leveraging approximation in modern
software development.
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10. REPLICATION PACKAGE
The FlexJava tool has been successfully evaluated by the
Replication Packages Evaluation Committee and found to meet
expectations. The replication package is available at the follow-
ing link: http://act-lab.org/artifacts/flexjava.

10.1 Overview
The replication package contains the FlexJava compiler that
supports fine-grained and coarse-grained approximation. All
the benchmarks that we used for experiments in the paper are
also included in the package.

For fine-grained approximation, the compiler first takes an
input program annotated with FlexJava annotations and per-
forms the approximation safety analysis, which finds safe-to-
approximate data and operations. The highlighting tool creates
a copy of the input program’s source code and marks the analysis
results on the copied code in a form of comments. Program-
mers can use this tool to observe the analysis results and they
may remove or add annotations if the results do not meet their
expectations. We also provide the modified EnerJ simulator for
quality and energy measurement on which FlexJava binaries
can be executed.

The FlexJava language and compiler can support arbitrary
types of coarse-grained approximation technologies but this
replication package provides the NPU framework as an example
of its use. NPiler [12] requires programmers to specify a pro-
gram region so that the compiler can train the region with a
multi layer perceptron neural network. The FlexJava annota-
tions, begin_loose and end_loose, are capable of delivering all the
information needed by NPiler.

10.2 Download Tools
We have created a VHD (Virtual Hard Disk) on VirtualBox [38]
so that users can readily download the entire image file and run
the experiments without manually installing all the tools and
setting up the environment. The link for the VHD file is provided
at the aforementioned FlexJava page. Users who wish to just
investigate the source code can access it from the Git repositories
on the Bitbucket page: https://bitbucket.org/act-lab.
The Bitbucket page has a detailed README file explaining
how to setup and run the tools. The source code embedded
in the VHD image file has the same version as that in the Git
repositories.

10.3 Instructions
These instructions assume that the user has downloaded the
VHD file (VM image file) and built the VM environment using a
virtualization tool such as VirtualBox. Users who wish to explore
the source code may follow the instructions in the Bitbucket
pages to setup the necessary environment.

10.3.1 Fine-grained Approximation
Build Tools We have already installed and built all source code
necessary to run the analysis and simulation. Users can find
these files in the r2.code directory under the home directory.
The FlexJava compiler is a combination of several tools to-
gether with a series of compilation steps for the tools that can
be executed by running a bash script named build.sh.

Benchmarks All the benchmarks are placed under the r2.apps
directory. The source code has already been annotated with
FlexJava annotations and it is located under the src directory
of each individual benchmark’s directory.

Running the Approximation Safety Analysis The user can next
run the analysis by simply running the analyze.py script. This
script will (1) compile the source code, (2) run the analysis, and

(3) perform the source code highlighting (back annotation) on
a replicated source directory, src-marked. The user can then
observe where approximation was applied in the src-marked
directory. If unsatisfied with the results, the user may update
the annotations under the src directory and rerun the analysis.

Running the Simulation If the analysis results are satisfactory,
the user may proceed to the next step, simulation. The script
for running simulation, runsimulation.py, takes an argument
which specifies a system model to use for the simulation. There
are four system models that are supported by the EnerJ sim-
ulator: (1) aggressive (2) high (3) medium (4) low. Since the
architecture model in the simulator is probabilistic, we ran the
experiments multiple times and averaged to obtain the results
in the paper. For this reason, the results from the simulation
may not exactly match the results provided in the paper.

Adding New Benchmarks Users can add a new benchmark by
following these five steps:

1. create a new directory under the r2.apps directory, named
after the benchmark;

2. place its source code in the src directory;
3. copy a build.xml file from one of the pre-existing bench-

marks into the new directory;
4. replace the benchmark name in the build.xml file (e.g.,

mc) with the new one; and
5. create symbolic links for four python scripts, analyze.py,

runsimulation.py, markJava.py, and Input.py.

10.3.2 Coarse-grained Approximation
Benchmarks The NPU benchmarks and tools used in the pa-
per are based on an approximate computing benchmark suite,
AxBench (http://axbench.org) and they were ported from
C/C++ to Java. The files are under the flexjava.npubench
sub-directory in the home directory of the VHD image. The
application.java directory contains the four benchmarks (fft,
jmeint, sobel, and simpleRaytracer) that have been evaluated in the
paper for coarse-grained approximation (NPU). We have pro-
vided a Makefile for each individual benchmark that performs
the necessary preprocessing and compiles the processed Java
source code.

Running NPU Code We have provided a script that (1) trains
the specified approximable region, (2) algorithmically transforms
the region into a neural network, and (3) runs the transformed
program using a machine learning library, FANN [25]. The
running script, run_java.sh, takes two arguments. For training,
provide run as the first argument and the benchmark directory
name (e.g., sobel) as the second argument. The script will
then show the compilation parameters required for training (e.g.,
learning rate). The user can supply any values to the parameters
to override the following default values:

• Learning rate [0.1-1.0]: 0.1
• Epoch number [1-10000]: 1
• Sampling rate [0.1-1.0]: 0.1
• Test data fraction [0.1-1.0]: 0.5
• Maximum number of layers [3|4]: 3
• Maximum number of neurons per layer [2-64]: 2

Adding New Benchmarks The required steps for adding new
benchmarks in coarse-grained approximation are similar to those
for fine-grained approximation. The current implementation
lacks a well-designed interface that enables programmers to read-
ily introduce a new benchmark without modifying the FlexJava
makefiles and scripts, which will be updated in the near future.
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