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Abstract
We present OMEGAC, a probabilistic program-
ming language with support for counterfactual
inference. Counterfactual inference means to ob-
serve some fact in the present, and infer what
would have happened had some past intervention
been taken, e.g. “given that medication was not
effective at dose x, how likely would it have been
effective at dose 2x?” We accomplish this by in-
troducing a new operator to probabilistic program-
ming akin to Pearl’s do, define its formal seman-
tics, provide an implementation, and demonstrate
its utility by examples in population dynamics,
inverse planning, and graphics.

1. Introduction
In this paper we introduce OMEGAC: a Turing-universal pro-
gramming language for causal reasoning. OMEGAC allows
us to automatically derive causal inferences about phenom-
ena that can only be modelled faithfully through simulation.
We focus on counterfactuals – what-if inferences about the
way the world could have been, had things been different.

OMEGAC programs are simulation models augmented with
probability distributions to represent any uncertainty. In a
similar vein to other probabilistic languages, OMEGAC pro-
vides primitive operators for conditioning, which revises the
model to be consistent with any observed evidence. Counter-
factuals, however, cannot be expressed through probabilistic
conditioning alone. They take the form: "Given that some
evidence E is true, what would Y have been had X been
different?" For example, given that a drug treatment was
not effective on a patient, would it have been effective at a
stronger dosage? Although one can condition on E being
true, attempting to condition on X being different to the
value it actually took is contradictory, and hence impossible.
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Figure 1: A speeding driver (Left: driver’s view) crashes
into a pedestrian (yellow) emerging from behind an ob-
struction (blue). Given a single frame of camera footage
(Right), OMEGAC infers whether driving below the speed
limit would have prevented the crash.

To construct counterfactuals, OMEGAC introduces a do op-
erator for constructing interventions:

Y ||| do(X → x) (1)

This evaluates to what Y would have been had X been
bound to x when Y was defined. Consequently, if Y is a
random variable and we define Yx = Y ||| do(X → x),
then P (Yx = y) is the probability Y would have been y
had X had been x. A counterfactual is then simply Yx | E.
Note, if E depends on X , conditioning on it affects X’s
factual, non-intervened value, which is critical to capturing
the semantics of counterfactuals.

To illustrate the potential of counterfactual reasoning within
a universal programming language, consider the scenario of
an expert witness called to determine, from only a frame of
recorded video (Figure 1), whether a driver was to blame
for them crashing into a pedestrian. Using OMEGAC, the ex-
pert could first construct a probabilistic model that includes
the car dynamics, the driver and pedestrian’s behaviour,
and a rendering function that relates the three dimensional
scene structure to two dimensional images. She could then
condition the model on the captured images to infer the
conditional distribution over the drivers velocity, determin-
ing the probability that the driver had been speeding. Us-
ing OMEGAC she could then pose a counterfactual, asking
whether the crash would have still occurred even if the driver
had obeyed the speed limit. If she later wanted to investi-
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gate the culpability of another candidate cause, such as the
placement of the crosswalk, she could do so by adding a
single-line, and without modifying her underlying models
at all.

Causal reasoning is currently done predominantly using
causal graphical models (20): graphs whose vertices are
variables, and whose directed edges represent causal de-
pendencies. Despite widespread use, causal graphs cannot
easily express many real-world phenomena. One reason
for this is that causal graphs are equivalent to straight-line
programs: programs without conditional branching or loops
– just finite sequences of primitive operations. Straight-line
languages are not Turing-complete; they cannot express un-
bounded models with an unknown number of variables. In
practice, they lack many of the features (composite func-
tions, data types, polymorphism, etc.) necessary to express
the kinds of simulation models we would like to perform
causal inference in.

Counterfactual reasoning in OMEGAC alleviates many of
these limitations. In an OMEGAC intervention X → x, x
can be a constant, function, another random variable, or even
refer to its non-intervened self, e.g. X → 2X . Moreover,
users can construct various forms of stochastic interventions,
and even condition the corresponding interventional worlds.
This allows users to model experimental error, or scenarios
where observers are unsure about which intervention has
taken place.

A generic do operator that composes systematically with
conditioning presents several challenges. In particular, to
construct YX , we must be able to copy Y in such a way that
the code that defines it is retroactively modified. This goes
beyond the capabilities of existing programming languages,
probabilistic or otherwise, and hence OMEGAC requires a
non-standard semantics and implementation.

In summary, we (i) present the syntax and semantics of a uni-
versal probabilistic language for counterfactual generative
models (Section 3); (ii) provide a complete implementation
of OMEGAC, and (iii) demonstrate counterfactual genera-
tive modelling through a number of examples (Section 4).
Regarding scope, causal inference includes problems of
both (i) inferring a causal model from data, and (ii) given
a causal model, predicting the result of interventions and
counterfactuals on that model. This work focuses on the
latter.

2. Overview of Counterfactuals
Counterfactual claims assume some structure is invariant
between the original factual world and intervened hypothet-
ical world. For instance, the counterfactual “If I had trained
more, I would have won the match” is predicated on the
invariance of the opponent’s skill, the existence of the game,

laws of physics, etc. Any system for counterfactual rea-
soning must provide mechanisms to construct hypothetical
worlds that maintain invariances (and hence share informa-
tion) with the factual world, so that for instance the fact that
I actually lost the match helps predict whether I would have
won the match had I trained harder.

These requirements have been resolved in the context of
causal graphical models. Causal interventions are “surgical
procedures” which modify single nodes but leave functional
dependencies intact. Pearl’s twin-network construction (20)
of counterfactuals duplicates the model into one twice the
size. One half is the original model. The other half is a
duplicate, modified to express the counterfactual interven-
tions. These halves are joined via a shared dependence on
the background facts. Hence, conditioning a variable in the
factual world influences the counterfactual world.

To generalize the twin-network construction to arbitrary pro-
grams, OMEGAC runs two copies of a program, one factual
execution, and one counterfactual execution which shares
some variables, but where others have been given alternate
definitions. It is folklore that programs doing this can be
built by hand, but, as in the twin-network construction, each
intervention requires writing a separate model, and each
counterfactual included doubles the size of the program.
The solution in OMEGAC is to provide a new do operator
which removes the need to modify an existing program to
add a counterfactual execution. Instead, t1 ||| do(x→ t2) is
defined to be the value that a term t1 would take if x had
been set to This works even if any dependencies of t1 on x
are indirect. For instance, if y = 2x, then y2 ||| do(x→ f)
is equivalent to (2f)2. And note that the variable x can be
any variable, even one that is bound to a function, meaning
users can compactly define interventions which are substan-
tial modifications. Finally, combining the operator with
conditioning automatically gives counterfactual inference.

Our examples show that OMEGAC’s do operator enables
compact definition of many counterfactual inference prob-
lems. Indeed, in Appendix B, we prove that the do operator
is not expressible as syntactic sugar (as defined by program-
ming language theory).

3. A Calculus for Counterfactuals
Our language OMEGAC augments the functional probabilis-
tic language OMEGA (31) with counterfactuals. To achieve
this: (1) the syntax is augmented with a do operator, and
(2) the language evaluation is changed from eager to lazy,
which is key to handling interventions. In this section, we
introduce λC , a core calculus of OMEGAC. We build the
language up in pieces: first showing the standard/determin-
istic features, then features for deterministic interventions,
and finally the probabilistic ones. Together, intervention and
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conditioning give the language the ability to do counterfac-
tual inference. Appendix A gives a more formal definition
of the entire λC language. A Haskell implementation which
provides complete execution traces of terms in λC is avail-
able from https://tinyurl.com/y3cusyoe.

Variables x, y, z ∈ Var
Type τ ::= Int | Bool | Real | τ1 → τ2

Term t ::= n | b | r | t1 ⊕ t2 | x | let x = t1 in t2 |
λx : τ.t | t1(t2) | if t1 then t2 else t3

Figure 2: Abstract Syntax for λC , deterministic fragment

Deterministic Fragment We begin by presenting the
fragment of λC for deterministic programming; Fig. 2 gives
the syntax. A common formal way to specify the executions
of a program is with an operational semantics (23), which
defines how one expression reduces to another. Appendix
A provides a operational semantics for OMEGAC. Here, we
describe these reductions through examples. The execution
of an expression is defined both in terms of the expression as
well as the current program state. In λC , this program state
is an environment Γ: a mapping from variables to values.

The deterministic fragment is standard, so we will explain
it briefly. λC has integer numbers (denoted n), Booleans
{True,False} (denoted b) , and real numbers (r). ⊕ rep-
resents a mathematical binary operator such as +, ∗, etc.
let x = t1 in t2 binds variable x to expression t1 when eval-
uating t2. Lambda expressions create functions: λx.2 ∗ x
defines a mapping x 7→ 2x. Function application and if-
statements are standard.

Next, we demonstrate the semantics of operators and the
let. The notation

{
Γ
e

}
denotes a pair of an environment Γ

and an expression e, and
{

Γ1

e1

}
→

{
Γ2

e2

}
indicates that e1

with environment Γ1 steps to e2 with environment Γ2. The
let expression first binds x to 3, creating a new environ-
ment. Finally, x is evaluated by looking up its value in the
environment.{

Γ : ∅
let x = 3 in x

}
→

{
Γ : x 7→ 3

x

}
→

{
Γ : x 7→ 3

3

}

Function applications are done by substitution, as in other
variants of the lambda calculus:{

Γ : ∅
(λx.(x+ x)(2)

}
→

{
Γ : ∅
2 + 2

}
→

{
Γ : ∅

4

}

The above semantics is eager: let x = t1 in t2 first evalu-
ates t1 and then binds the result to x, creating a new envi-
ronment in which to then evaluate t2. We next show how
this is problematic for counterfactuals.

Causal Fragment Our causal fragment adds one new
term: the do expression (Fig. 3). t1 ||| do(x → t2) eval-
uates t1 to the value that it would have evaluated to, had
x been defined as t2 at point of definition. Here, x can
be any variable that is in scope, bound locally or globally,
and t can be any any term denoting a value. One idea is
to define do similarly to let: t1 ||| do(x → t2) would re-
bind x to t2 when evaluating t1. However, this does not
take into account transitive dependencies. For example,
let x = 0 in let y = x in y ||| do(x → 1) evaluates to 1.
However, by the time the execution evaluates the do, y has
already been bound to 0, so that rebinding x does nothing.
To overcome this, we redefine let to use lazy evaluation.

In lazy evaluation, instead of storing the value of a variable
in the environment, the execution stores its defining expres-
sion as well as the environment when the variable is defined.
So, while environments for eager evaluation store mappings
x 7→ v from variable x to value v, in lazy evaluation, the
environments store mappings x 7→ (Γ, e), which map each
variable x to a closure containing both its defining expres-
sion e and the environment Γ in which it was defined. A
variable, such as x, is evaluated by evaluating its definition
under the environment where it is defined.

We can now define do: y ||| do(x→ −1) evaluates y under
a new environment which is created by recursively mapping
all bindings for x in the current environment to −1. This in-
cludes both the binding of x at the top level and the bindings
in an environment that is used in any closure. The following
example demonstrates this process:

{
Γ : ∅

let x = 0 in let y = x+ 1 in y + (y ||| do(x→ −1))

}

→

{
Γ : x 7→ (∅, 0)

let y = x+ 1 in y + (y ||| do(x→ −1))

}

→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

y + (y ||| do(x→ −1))

}

→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1){

Γ:x 7→(∅,0)
x+1

}
+ (y ||| do(x→ −1))

}

→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 + (y ||| do(x→ −1))

}

→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 +
{

Γ:x 7→(∅,0),y 7→(x 7→(∅,0),x+1)
(y|||do(x→−1))

} }

→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 +
{

Γ:x 7→(∅,−1),y 7→(x 7→(∅,−1),x+1)
y

} }

→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 +
{

Γ:x7→(∅,−1)
x+1

} }

https://tinyurl.com/y3cusyoe
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Term t ::= · · · | t1 ||| do(x→ t2)

Figure 3: Abstract Syntax for λC , causal fragment

→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 + 0

}

→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1

}

The program is evaluated under an empty environment. (1)
Evaluating the outermost let binds x to a closure (∅, 0) (con-
sisting of the initial environment and x’s definition). (2)
y is bound to a closure, containing the environment from
step (1) and y’s definition. The left operand of the addition
is then evaluated, by first (3) looking up its closure in the
environment, and then (4) evaluating its definition under
the corresponding environment in the closure. To evaluate
the do in the right operand, (5) the current environment is
copied, and then (6) modified to rebind all definitions of x
to −1. The right operand of the addition is a do expression
of y, which the execution tries to evaluate under the current
environment, by (7) looking up the closure of y in this “in-
tervened” environment, and then (8) evaluating it. (9) The
final result of the program is then 1.

Type τ ::= · · · | Ω Term t ::= · · · | ⊥ | t1 ||| t2 | rand(t)

Figure 4: Abstract Syntax for λC , probabilistic fragment

Probabilistic Fragment In probability theory, a random
variable is a function from a sample space Ω to some domain
τ . λC defines random variables similarly: as functions of
type Ω→ τ . This separates the source of randomness of a
program from its main body, leading to a clean definition of
counterfactuals.

Fig. 4 shows the abstract syntax of the probabilistic frag-
ment. It introduces a new type Ω, representing the sample
space. Ω is left unspecified, save that it may be sampled
from uniformly. In most applications, Ω will be a hypercube,
with one dimension for each independent sample. To access
the values of each dimension of this hypercube, one of the
⊕ operators must be the indexing operator [], where ω[i]
evaluates to the ith component of ω.

Random variables are normal functions. If Ω = [0, 1], and
a < b are integer constants, then R = λω : Ω.ω ∗ (b −
a) + a is a random variable uniformly distributed in [a, b].
The rand operator then samples from a random variable:
randR returns a random value drawn uniformly from [a, b].
Note that unlike in other probabilistic languages, we sepa-
rate the construction of random variables from their sam-

pling. Consequently, rand does not occur in the definition
of a random variable itself.

To support conditioning, we use ⊥ to denote the undefined
value. Any non-rand expression that depends on a ⊥ value
will result in another ⊥ value. A program execution is
invalid if it evaluates to⊥. One can imagine the execution of
a λC program as a rejection sampling process: we ignore all
samples from rand that would make the program evaluate
to ⊥. In the implementation, we use a much more efficient
inference algorithm (30).

Conditioning can now be defined as syntactic sugar: t ||| E
is defined as λω.if E(ω) then t(ω) else ⊥.

Let Ω = {1, 2, . . . , 10}, and consider the program
randλω.ω ∗ 2 ||| λω.ω < 4. If ω ≥ 4, then evaluating the
random variable results in ⊥. The rand operator hence
runs the variable with ω drawn uniformly from {1, 2, 3},
resulting in 2, 4, or 6, each with 1

3 probability.

Counterfactuals A counterfactual is a random variable
of the form (t1 ||| do(x→ t2)) | E. Consider the following
program depicting a game where a player chooses a number
c, and then a number ω is drawn randomly from a sample
space Ω = {0, 1, . . . , 6}. He wins iff c is within 1 of ω. The
query asks: given that the player chose 1 and did not win,
what would have happened had the player chosen 4?

let c = 1 in

let x = λω . if (ω-c)*(ω-c)<= 1

then 1 else -1 in

let cfx = (x | do(c → 4)) | λω. x(ω) == -1)

in rand(cfx)

As before, the rand expression is evaluated in the context
Γ1 = {c 7→ (∅, 1), x 7→ (c 7→ . . . , λω.if . . . )}. Its argu-
ment, a conditioning term, desugars to λω′.if x(ω′) ==
−1 then (x ||| do(c → 4))(ω′) else ⊥. This random vari-
able evaluates to ⊥ for ω′ ∈ {0, 1, 2}, so the program is
evaluated with ω′ drawn uniformly from {3, 4, 5, 6}. The
do expression x ||| do(c→ 4) is reduced to evaluating x in
the context Γ2 = {c = . . . , x = (c 7→ (∅, 4), λω.if . . . )}.
This is then applied to ω′, and the overall computation hence
evaluates to 1 with probability 3

4 and −1 with probability 1
4 .

Syntactic Sugar OMEGAC introduces some syntactic
conveniences on top of λC . Random variables are func-
tions but it is convenient to treat them as if they were the
values in their domains. To support this, OMEGAC inter-
prets the application of a function to one or more random
variables pointwise – if both X and Y are random variables
and x is a constant, thenX+Y is also a random variable de-
fined as λω.X(ω) + Y (ω) and X = x is λω.X(ω) = x. In
addition, OMEGAC represents distribution families as func-
tions from parameters to random variables. For instance,
bern = λp.λω.ω[1] < p represents the Bernoulli family
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by mapping a parameter p ∈ [0, 1] to a random variable
that is true with probability p. Finally, since λC is purely
functional, if X = bern(0.5) and Y = bern(0.5), then X
and Y are not only i.i.d. but the very same random variable,
which is not often what we want. OMEGAC defines the syn-
tax ∼ X , so that in let X ∼ bern(0.5), Y ∼ bern(0.5), X
and Y are independent.

3.1. Other Composite Queries

Conditioning and intervening can be composed arbitrarily.
This allows us to a variety of causal queries.

To demonstrate, we adapt an example from (20), whereby
(i) with probability p, a court orders rifleman A and B to
shoot a prisoner, (ii) A’s calmness C ranges uniformly from
1 (cool) to 0 (manic), (iii) if C falls below a threshold q (and
hence with probability q) A nervously fires regardless of the
order, and (iv) the prisoner dies (D = 1) if either shoots. In
OMEGAC:

let p = 0 .7, q = 0 .3,
E = ~ bern(p), -- Execution order

C = ~ unif(0, 1), -- Calmness

N = C < q -- Nerves

A = E or N, -- A shoots

B = E, -- B shoots on order

D = A or B in -- Prisoner Dies

Counterfactual queries condition the real world and con-
sider the implications in a hypothetical world:

-- Given D, would D be true had A not fired?

(D | do(A → 0)) | D

Non-atomic Interventions Atomic interventions, which
replace a random variable with a constant, often do not
reflect the kinds of interventions that have, or even could
have, taken place in the real-world. Various non-atomic
interventions are easily expressed in OMEGAC:

Conditional interventions (8) replace a variable with a de-
terministic function of other observable variables:

-- if A’s nerves had spread to B, would D occur?

D | do(B → C < q)

A mechanism change (32) alters the functional dependencies
between variables.

-- Would D occur if it took both shots to kill him?

{D | do(D → A and B)} | D

Parametric Interventions (9) alter, but do not break, causal
dependencies. They are expressible by intervening a vari-
able to be a function of its non-intervened self.

Figure 5: Traces of counterfactual scenarios through time.
Each figure is a single sample from (Left) the posterior – the
car crashes into the pedestrian, (Middle) the counterfactual
on intervening the obstacle position, and (Right) intervening
the driver speed. Each image shows the driver and car at (in
decreasing transparency) at times 1, 9, and 19.

-- If A were more calm, would D have occurred?

D | do(C → C * 1 .2)

Partial compliance () is where an intervention fails to have
any effect with some probability:

-- Would D have occurred had we attempted (and failed

-- with probability s) to prevent A shooting?

D | do(A → if ~ bern(s) then 0 else A)

“Fat-hand” interventions (9) inadvertently (and probabilisti-
cally) affect some variables other than the intended ones:

-- Would D be dead if we stopped A from firing and

-- (with probability r) also prevented B, too?

D | do(A → 0, B → if ~ bern(r)

then 0 else B)

4. Experiments
Here we demonstrate counterfactual reasoning in OMEGAC
through three case studies. All experiments were performed
using predicate exchange (30). Simulation parameters and
code are in the supplementary material.

Car-Crash Model Continuing from the introduction, this
example asks whether a crash would have occurred had
a car driven more slowly, given observed camera footage.
Let S be the space of scenes, where each scene s ∈ S
consists of the position, velocity, and acceleration of the
car, pedestrian and an obstacle. A ray-marching based (1)
rendering function r : S → I maps a scene to an image.
The driver acts according to a driver model – a function
mapping s ∈ S to a target acceleration:

let

drivermodel = λ car, ped, obs .
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Figure 6: Histograms of causal effect of interventions. How
close would the car have come to the pedestrian had (Left)
had the acceleration been reduced (CarV→ 14), or (Right)
had the obstacle been removed. Even at the speed limit, the
driver still would have crashed with high probability.

if cansee(car, ped, obs) -- if ped is visible

then -9 -- decelerate

else 0, -- else maintain

The expert witness maintains random variables over the
car’s acceleration, velocity, and position at t = 0. The func-
tion simulate returns state space trajectories of the form
(st, st+1, . . . , sn). Since the initial scene is a random vari-
able, Traj is a random variable over trajectories. Applying
render to each scene in Traj yields a random variable over
image trajectories.

CarV = ~ normal(12, 4),

CarP = ~ normal(30, 5),

PedV = ~ normal(3, 1),

PedP = ~ normal(1, 2)

InitScene = (CarV, CarP, PedV, PedP, obs),

Traj = simulate(InitScene, drivermodel),

Images = map(render, Traj),

We then ask the counterfactual, conditioning the tobsth
image on observed data (Figure 1 right) and intervening
CarV→ 14.

Ev = Images[t] == data and crashed(Traj)

in (Traj | do(CarV → 14)) | Ev

We can also ask: would the crash have occurred had the
obstacle not been there?

in (Traj | do(InitScene →
(CarV, CarP, PedV, PedP))) | Ev

Figure 5 and 6 visualize and explain the results.

Glucose Modelling This example queries whether a hy-
poglycemic episode could have been avoided in a diabetic
patient. We first construct an ODE over variables captured
in the Ohio Glucose dataset (17): (1) CGM: continuously
monitored glucose measurements, (2) Steps: steps walked
by patient, (3) Bolus: insulin injection events, and (4) Meals:

calorie intake. The recursive function euler implements Eu-
ler’s method to solve the ODE, taking as input an initial state
u and derivative function f’, and producing a time-series
(ut, ut+∆t, ut+2∆t, . . . , utmax).

let t0 = 0, ∆t = 0 .1, tmax = 1,

τ = λ u, t . u, -- to intervene u

euler = λ f’, u, t .
let u = τ(u, t), tnext = t + ∆t in

if t < tmax

then let unext = u + f’(tnext, u) * ∆t

in cons(u, euler(f’, unext, tnext))

else u,

We pre-trained a neural network for the derivative function,
and added normally distributed noise to the weights to in-
troduce uncertainty, yielding F’, a random variable over
functions. Given F’ as input, euler produces a random
variable over time-series.

Series = euler(F’, u, t0),

Now we can ask, had we eaten (increased food) at t = 0.2,
would the hypoglycemic event have occurred? We use the
function τ to intervene. It maps u at every time t to a new
value, since u is internal to euler.

τint = λ u, t . if t == 0 .5
then [u[1], u[2], inc(u[3])] else u,

Series = Series | do(τ → τint),

Suppose we are told that someone has intervened, and hy-
poglycemia was avoided, but we do not know when the
intervention occurred. We construct a distribution over the
intervention time , then condition the intervened world.

CGM = first(Series),

Hypo = any(map(λ x . x < thresh, CGM))

T = ~ unif(0, 1)

Tint2 = λ ω . λ u, t . if t == T(ω)

then [u[1], u[2], inc(u[3])] else u

HC = λ ω . (Hypo | do(τ → Tint2(ω)))(ω)

in CGM | HC

As shown in Figure 7(c), intervening earlier in the day makes
a substantial difference.

Counterfactual Planning Consider a dispute between
three hypothetical islands (Figure 10): S (South), E (East)
and N (North). The people of S consider a barrier between
S and N , asking the counterfactual: given observed migra-
tion patterns, how would they differ had a border existed.

We model this as a population of agents each acting ac-
cording in accordance to a Markov Decision Process (24)
(MDP) model. Each grid cell is a state in a state space
S = {(i, j) | i = 1 . . . 7, j = 1 . . . 6}. The action space
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Figure 7: Glucose time series model. Dots are datapoints, trajectories sampled from prior. (Left) Prior samples, (Middle)
Samples from interventional distributions Meal→ 5 at t = 0.20, (Right) Posterior over time time T of intervention given
hypoglycemia did not occur after intervention.

Figure 8: Map (i) without / (ii) with boundary. Sample from
population counts after n timesteps of MDP based migra-
tion. (iii) unconditional sample, (iv) conditional sample (v)
counterfactual sample.

Figure 9: Three samples of migration under three conditions.
Each figure shows the migration from islanders born in S,
N , or E (y-axis) to S, N , E, W (water) or B (barrier)
on the x-axis. We accumulate all states visited in each
persons’ trajectory. (Plots 1 to 3 from left) Prior samples, (4
to 6) Conditioned on observations, (7 to 9) counterfactual:
conditioned and with intervention (border).

moves an agent a single cell: A = {up, down, left, right).
Each agent acts according to a reward function that is a func-
tion of the state they are in only R : S → R. This reward
function is normally distributed, conditional on the country
the agent originates from. For t = 100 timesteps we simu-
late the migration behavior of each individual using value
iteration and count the amount of time spent in each country
over the time period. Figure 8 shows population counts
according to these dynamics. Figure 9 shows migration in
the prior, after conditioning on an observed migration pat-
tern (constructed artificially), and the counterfactual cases
(adding the border).

But-for Causality in Occlusion In this experiment, we
implement “but-for” (13) causation to determine (i) whether
a projectile’s launch-angle is the cause of it hitting a ball,
and (ii) occlusion, i.e. whether one object is the cause of
an inability to see another. An event C is the but-for cause
of an event E if had C not occurred, neither would have E

(12). But-for judgements cannot be resolved by conditioning
on the negation of C, since this fails to differentiate cause
from effect. Instead, the modeler must find an alternative
world where C does not hold. In OMEGAC, a value ω ∈ Ω
encompasses all the uncertainty, and hence we define but-for
causality relative to a concrete value ω.

Definition 1. Let C1, . . . Cn be a set of random variables
and c1, . . . , cn a set of values. With respect to a world ω,
the conjunction C1 = c1 ∧ · · · ∧ Cn = cn is the but-for
cause of a predicate E : Ω→ Bool if (i) it is true wrt ω and
(ii) there exist ĉ1, . . . , ĉn such that:

(E | do(C1 → ĉ1, . . . , Cn → ĉn))(ω) = False (2)

E(ω) = True is a precondition, i.e., the effect must actually
have occur ed for but-for to be defined.

But-for is defined existentially. To solve it, OMEGAC re-
lies on predicate relaxation (30), which underlies infer-
ence in OMEGAC. That is, E is a predicate that in (i)
is true iff the projectile hits the ball, and in (ii) is true
iff the yellow object is occluded in the scene, computed
by tracing rays from the viewpoint and checking for in-
tersections. Predicate relaxation transforms E into soft
predicate Ẽ which returns a value in [0, 1] denoting how
close E is to being satisfied. Using this, our implemen-
tation uses gradient descent over ĉ1, . . . , ĉn to minimize
(Ẽ | do(C1 → ĉ1, . . . , Cn → ĉn))(ω). In (i) ĉi is the
launch-angle and in (ii) ĉx,y,z is the position of the occluder.
Finding ĉi such that softE(ĉi) = 0 confirms a but-for cause.
In Figure 10 we present a visualization of the optimization,
which ultimately infers that the angle is the cause of colli-
sion and the grey-sphere is the cause of the viewer’s inability
to see the yellow sphere.

5. Related Work and Discussion
Related work. Operators resembling do appear in ex-
isting PPLs. Venture (16) has a force expression [FORCE
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Figure 10: But-for causality. Left to Right: stages of op-
timization to infer that grey-sphere is cause of inability to
see yellow sphere, and launch-angle is cause of projectile
colliding with ball.

<expr> <value>] which modifies the current trace object (a
mapping from random primitives to values) so that the simu-
lation of <expr> takes on the value <value>. It is intended as
a tool for initialization and debugging. Pyro (5) and Angli-
can (34) have similar mechanisms. This can and has (18; 22)
been used to compute counterfactuals by (i) approximating
the posterior with samples, (ii) revising the model with an
intervention, and then (ii) simulating the intervened model
using the posterior samples instead of priors.

The fundamental distinction is that in OMEGAC, the opera-
tors to condition and intervene both produce new random
variables, which can then be further conditioned or inter-
vened to produce counterfactual variables, which in turn
can be either sampled from or reused in some other process.
The Pyro approach, in contrast, computes counterfactual
queries by performing inference first and then changing
the model second. This has several practical consequences.
Counterfactual queries in OMEGAC tend to be significantly
more concise, and require none of the manual hacks. More
fundamentally, OMEGAC does not embed an inference pro-
cedure into the counterfactual model itself, which muddles
the distinction between modelling and inference. In this
vein, Pyro is similar to Metaverse (22), a recent Python
based system, which mirrors Pearl’s three steps of abduc-
tion, action and prediction, using importance sampling for
inference. A downside of this approach is that it is difficult
to create the kinds of composite queries we have demon-
strated. We explore this in more detail in the Appendix.

RankPL (26) uses ranking functions in place of numerical
probability. It advertises support for causal inference, as
a user can manually modify a program to change a vari-
able definition. Baral et al. (4) described a recipe to encode
counterfactuals in P-log, a probabilistic logic programming
language. However, no language construct is provided to
automate this process, which they call “intervention”. There
has also been work in adding causal operators to knowledge-
based programming (11), answer-set programming (7), and
logic programming (21). There are several libraries for
causal inference on causal graphs (6; 27; 33; 3; 2). Whit-
temore (6) is an embedded Clojure DSL implementing the
do-calculus (20). It can estimate the results of interventions,
but not counterfactuals, from a dataset.

Ibeling and Icard (14) introduce computable structural equa-
tion models (SEMs) to support infinite variable spaces, and

prove that an axiomatization of counterfactuals is sound and
complete. OMEGAC similarly supports open-world mod-
els, but our approach is constructive rather than axiomatic
– we provide primitives to construct and compute counter-
factuals. Ness et al. (19) relates SEMs to Markov process
models, which are naturally expressible in OMEGAC. They
introduce a novel kind of intervention that finds a change to
induce a target post-equilibrium value. A version of this is
expressible within OMEGAC– first construct a distribution
over interventions, then condition that distribution on the
target post-equilibrium value occurring.

Alternative approaches. Some languages have inbuilt
mechanisms for reflection – the ability to introspect and
dynamically execute code, Python for instance includes
getsource(foo) which returns the source code of a function
foo. By extracting the source code of a model, transforming
it, and reexecuting the result with eval, a system of inter-
ventions could be formulated. This could be a useful way to
bring counterfactuals to existing languages such as Python
which cannot support lazy evaluation.

While we have presented a minimal language here,
OMEGAC is also implemented in Julia. Since Julia is not
lazy, it is less flexible than OMEGAC, suffering some of the
limitations of Pyro. We detail this in the Appendix.

Invariants in counterfactuals. An important property of
counterfactual inference is that observations in the factual
world carry over to the counterfactual world. This prop-
erty is easy to satisfy in conventional causal graphs as all
exogenous and endogenous variables are created and ac-
cessed statically. However, this is not true in OMEGAC as
variable creation and access can be dynamic. Concretely, in-
terventions can change the control-flow of a program, which
in turn can cause mismatches between variable accesses
in the factual world and ones in the counterfactual world.
To address this issue, we tie variable identities to program
structures. Appendix B discusses this in detail.

Limitations. Procedures such as the PC algorithm (29)
handle situations where a causal relationship exists, but
nothing is known about the relationship other than that it is
an arbitrary function. Like other probabilistic programming
languages, OMEGAC cannot reason about such models.

In some cases the variable we want to intervene is internal
to some function and not in scope at the point where we
want to construct an intervention. In other cases, the value
we want to intervene (e.g. (x+2) in 2*(x + 2) is not bound
to a variable at all. While it is always possible to manually
modify the program to expose these inaccessible values,
future work is to increase the expressiveness of OMEGAC to
be able to automatically intervene in such cases. Since our
formalism relies on variable binding, this would require an
entirely different mechanism to what we have presented.
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The Appendix is structured as follows:

1. Section A presents the full operational semantics of
λC .

2. Section B details issues around invariance that can
occur in dynamic OMEGAC programs.

3. Section C provides a proof that our intervention opera-
tor is not a superficial syntactic change.

4. Section D provides more details on OMEGAC that go
beyond the core calculus λC .

5. Section E provides a comparisons between OMEGAC
and Pyro, Multiverse and the Julia implementation.

An interpreter for the core calculus can be found at the
following anonymized repository:

https://anonymous.4open.science/r/

46bc0fa9-0981-4131-8031-573d997adb3d

The Julia implementation, as well as all the code for the
examples, can be found in the following anonymized repos-
itory:

https://anonymous.4open.science/r/

85c827a4-f725-44c1-891d-3ce93e28f3b0

A. The Full Semantics of λC

In this section, we outline the full semantics of our core
calculus, λC .

Variables x, y, z ∈ Var
Type τ ::= Int | Bool | Real | τ1 → τ2 | Ω
Term t ::= n | b | r | ⊥ | x | λx : τ.t |

if t1 then t2 else t3 | t1 ⊕ t2 |
t1(t2) | let x = t1 in t2 |

(prob. terms) t1 ||| t2 |
(causal terms) t1 ||| do(x→ t2) |

Query rand(t)

Figure 11: Abstract Syntax for λC

Fig. 11 shows the abstract syntax for λC . n represents inte-
ger numbers, b are Boolean values in {True,False}, and r
are real numbers. ⊕ represents a mathematical binary oper-
ator such as +, ∗, etc. We assume there is a countable set of
variables Var = {ω, x, y, z, . . . }; x represents a member in
this set. ⊥ represents the undefined value. Finally, there is a
sample space Ω, which is left unspecified, save that it may
be sampled from uniformly. In most applications, Ω will
be a hypercube, with one dimension for each independent
sample.

Overall λC is a normal lambda calculus with booleans, but
with three unique features: conditioning (on arbitrary pred-
icates), intervention, and sampling. Together, these give
counterfactual inference.

Closure c ::= clo(Γ, t)
Env Γ ∈ Var ⇀ Closure

Figure 12: Runtime environments of λC

Semantics Fig. 13 gives the big-step operational seman-
tics of λC . A λC expression e is evaluated in an environment
Γ, which stores previously-defined random variables as clo-
sures. Fig. 12 defines closures and environments: a closure
is a pair of an expression and an environment, while an
environment is a partial map of variables to closures. The
notation Γ, x 7→ c refers to some environment Γ extended
with a mapping from x to c. The judgement Γ ` t ⇓ v
means that, in environment Γ, completely evaluating t re-
sults in v. We explain each rule in turn.

Integers, booleans, and real numbers, are values in λC ,
and hence evaluate to themselves, as indicated by the INT,
BOOL, and REAL rules. Evaluating a lambda expression
captures the current environment and the lambda into a
closure (LAMBDA rule). The BINOP rule evaluates the
operands of a binary operator left-to-right and then com-
putes the operation. The IFTRUE and IFFALSE rules are
also completely standard, evaluating the condition to either
True or False, and then running the appropriate branch.

The VAR rule is the first nonstandard rule, owing to the lazy
evaluation. When a variable x is referenced, its defining
closure clo(Γ′, e) is looked up. x’s defining expression e
is then evaluated in environment Γ′. Correspondingly, the
LET rule binds a variable x to a closure containing its defin-
ing expression and the current environment. Note that the
closure for x does not contain a binding for x itself, pro-
hibiting recursive definitions. LET also has a side-condition
prohibiting shadowing.

As an example of the LET and VAR rules, consider the term
let x = 1 in let y = x+x in y+y. The LET rule first binds
x to clo(∅, 1), where ∅ is the empty environment, and then
binds y to clo({x 7→ clo(∅, 1)}, x+ x). It finally evaluates
y + y in the environment {x 7→ clo(∅, 1), y 7→ clo({x 7→
clo(∅, 1)}, x+x)}. Each reference to y is evaluated with the
VAR rule, which evaluates x+ x in the environment {x 7→
clo(∅, 1)}. Each such reference to x is again evaluated with
the VAR rule, which evaluates 1 in the environment ∅. The
overall computation results in the value 4.

We are now ready to introduce the DO rule, which lies at
the core of λC . The term t1 ||| do(x → t2) evaluates t1

https://anonymous.4open.science/r/46bc0fa9-0981-4131-8031-573d997adb3d
https://anonymous.4open.science/r/46bc0fa9-0981-4131-8031-573d997adb3d
https://anonymous.4open.science/r/85c827a4-f725-44c1-891d-3ce93e28f3b0
https://anonymous.4open.science/r/85c827a4-f725-44c1-891d-3ce93e28f3b0
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Γ ` n ⇓ n Int
Γ ` b ⇓ b Bool Γ ` r ⇓ r Real

Γ ` λx : τ.t ⇓ clo(Γ, λx : τ.t)
Lambda

Γ ` t1 ⇓ v1 Γ ` t2 ⇓ v2 v3 = v1 ⊕ v2

Γ ` t1 ⊕ t2 ⇓ v3
Binop

Γ ` t1 ⇓ True Γ ` t2 ⇓ v
Γ ` if t1 then t2 else t3 ⇓ v

IfTrue
Γ ` t1 ⇓ False Γ ` t3 ⇓ v
Γ ` if t1 then t2 else t3 ⇓ v

IfFalse

Γ′ ` e ⇓ v
Γ, x 7→ clo(Γ′, e) ` x ⇓ v V ar

Γ ` t1 ⇓ clo(Γ′, λx : τ.t3) Γ ` t2 ⇓ v1 Γ′ ` t3[v1/x] ⇓ v2

Γ ` t1(t2) ⇓ v2

App

x 6∈ dom(Γ) Γ, x 7→ clo(Γ, t1) ` t2 ⇓ v
Γ ` let x = t1 in t2 ⇓ v

Let
Γ′ = RetroUpd(Γ, x, clo(Γ, t2)) Γ′ ` t1 ⇓ v

Γ ` t1 ||| do(x→ t2) ⇓ v Do

Γ ` λω : Ω.if t2(ω) then t1(ω) else ⊥ ⇓ v
Γ ` t1 ||| t2 ⇓ v

Cond

Γ ` t(ω) ⇓ v
Γ ` rand(t) ⇓ v Rand

where ω is uniformly drawn
from {ω ∈ Ω | Γ 6` t(ω) ⇓ ⊥}.

Γ ` ⊥ ⇓ ⊥ ⊥V al
Γ ` t1 ⇓ ⊥

Γ ` t1 ⊕ t2 ⇓ ⊥
⊥Binop1

Γ ` t1 ⇓ v Γ ` t2 ⇓ ⊥
Γ ` t1 ⊕ t2 ⇓ ⊥

⊥Binop2

Γ ` t1 ⇓ ⊥
Γ ` t1(t2) ⇓ ⊥

⊥App1
Γ ` t1 ⇓ v Γ ` t2 ⇓ ⊥

Γ ` t1(t2) ⇓ ⊥
⊥App2

Γ ` t1 ⇓ ⊥
Γ ` if t1 then t2 else t3 ⇓ ⊥

⊥If

Figure 13: Operational semantics for λC

RetroUpd : Env× Var× Closure→ Env

RetroUpd(Γ, x, c)(y) = c

if y = x ∧ x ∈ dom(Γ)

RetroUpd(Γ, x, c)(y) = clo(RetroUpd(Γ′, x, c), t′)

if y 6= x ∧ (y 7→ clo(Γ′, t′)) ∈ Γ

Figure 14: The RETROUPD procedure

to the value that it would have taken had x been bound to
t2 at its point of definition. It does this by creating a new
environment Γ′, which rebinds x in all closures to t2. This
Γ′ is created by the retroactive-update function RETROUPD
(Fig. 14).

For example, consider the term let x = 1 in let y = x +
x in (y + y ||| do(x→ 2)). The first part of the computation
is pthe same as in the previous example, and results in
evaluating y + y ||| do(x → 2) in the environment Γ1 =
{x 7→ clo(∅, 1), y 7→ clo({x 7→ clo(∅, 1)}, x + x)}. The
DO rule recursively updates all bindings of x, and evaluates
y + y in the environment {x 7→ clo(Γ1, 2), y 7→ clo({x 7→
clo(Γ1, 2)}, x+ x)}. The computation results in the value
8.

APP is the standard application rule for a semantics with clo-
sures. Unlike the LET rule, it is strict, so that t1(t2) forces t2
to a value before invoking t1. This destroys the provenance
of t2, meaning that it will be consider exogeneous to the
computation of t1, and unaffected by any do operators.
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The final rules concern randomness and conditioning. The
special ⊥ value indicates an undefined value, and any term
which strictly depends on ⊥ is also ⊥, as indicated by
⊥VAL, ⊥BINOP1, and similar rules. Conditioning one ran-
dom variable t1 on another random variable t2 is then de-
fined via the COND rule as a new random variable which
is t1 when t2 is true, and ⊥ otherwise. Finally, the RAND
rule samples from a random variable by evaluating it on a
random point in the sample space Ω.

As our final example in this section, we show how to com-
bine the RAND, COND, and DO rules to evaluate a coun-
terfactual. This program depicts a game where a player
chooses a number c, and then a number ω is drawn ran-
domly from a sample space Ω = {0, 1, . . . , 6}, and the
player wins iff c is within 1 of ω. The query asks: given
that the player chose 1 and did not win, what would have
happened had the player chosen 4?

let c = 1 in

let X = λω. if (ω-c)*(ω-c)<= 1

then 1 else -1

in rand((X | do(c → 4)) | λω. X(ω) == -1)

As before, the LET rule causes the inner rand expression to
evaluate in the context Γ1 = {c 7→ clo(∅, 1), X 7→ clo(c 7→
. . . , λω.if . . . )}. The COND rule will essentially replace
the argument to rand with λω′.if X(ω′) == −1 then (X |||
do(c→ 4))(ω′) else ⊥. This random variable evaluates to
⊥ for ω′ ∈ {0, 1, 2}, so the RAND rule evaluates it with
ω′ drawn uniformly from {3, 4, 5, 6}. The do expression
evaluates to clo({c 7→ clo(Γ1, 4)}, λω.if . . . ). This is then
applied to ω′, and the overall computation hence evaluates
to 1 with probability 3

4 and −1 with probability 1
4 .

B. Invariants in Counterfactuals
In an expression ω[e], e is an ordinary expression. In-
terventions may change e, and hence ω[e] in unexpected
ways. This can lead to undesirable results for counterfactual
queries. For example, take the following program, which
centers on a function digits which computes a random
n-digit base-10 number:

1 let

2 digits = λω, d .
3 if d == 0

4 then 0

5 else floor(10*ω[d]) + 10*digits(ω, d-1),

6 n = 5,

7 f = λω.digits(ω, n) * ω[n+1] in

8 rand((f | do(n → 4)) | λω.f(ω) < 10)

The function f is a random variable over 5-digit numbers
whose digits are based on ω[1], . . . , ω[5], and then scales
it by ω[6]. The counterfactual query asks what the corre-
sponding scaled 4 digit number would be, given that the
5-digit number. The user likely desired that this counter-

factual will be a 4-digit number whose digits are based on,
ω[1], . . . , ω[4], and then scale it by the same factor, ω[6]. In
fact, the counterfactual execution will scale by ω[5], which
was not intended to be a scale factor. The factual and coun-
terfactual executions both used the same value ω[5], but at
completely different points in the program!

The conceptual problem is that the value ω[5] is intended to
represent differs between the original and intervened model.
This occurred because the intervention changed the control
flow of the program, and does not occur in static models
(where the number of variables is fixed).

Following this intuition, OMEGAC provides a macro uid
for indexing ω, which is processed at compile time. The
implementation keeps a separate counter for each program
point, and uses the counter and program point to compute a
unique index to access ω. In addition, since a function can
be used to define different random variables, it resets the
counter whenever it starts sampling a new random variable.
Consider the following program:

let uniform = λ a. λ b. λω.(a-b)*ω[uid]+b in

rand(uniform(1,2))

Conceptually, it is translated into

let uniform = λ a. λ b. λω.
push_counters();

(a-b)*ω[h(#pc,get_and_increase(#pc))]+b;

pop_counters()

in

rand(uniform(1,2))

The language runtime maintains a stack of maps from pro-
gram points to counters. Whenever a random variable is
sampled from, built-in function push_counters is invoked to
push a map of new counters to the stack. And when the sam-
pling finishes, built-in function pop_counters is invoked to
pop the map. Macro #pc returns the current program point.
Built-in function increase_and_get returns the counter cor-
responds to the current program point and increases it by
one. The hash function h returns a unique number for ev-
ery pair of numbers. Note now, a exogenous variable is
identified by the program point where it is accessed and the
counter corresponds to this program point.

C. The do Operator is Foundational
In this section, we connect the do operator with foundational
research in programming languages.

C.1. Lazy Dynamic Scope

As we developed the semantics of do, we realized that it was
far too elegant to not already exist. After much reflection,
we realized that it’s an unknown variant of a well-studied
language construct.

Dynamic scope refers to variables referenced in a function
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which may be bound to a different value each time the
function is called. It’s best known as the default semantics
of variables in Emacs Lisp, and has also been used to model
system environmental variables such as $PATH (15).

All known uses of dynamic scope are strict, and, in the only
reference to lazy dynamic scope we found, a blogger writes
that laziness and dynamic scope are “not compatible" due
to its surprising behavior (28).

But, as we’ve shown, lazy dynamic scope is not unpre-
dictable. It expresses counterfactuals.

C.2. Why do is not syntactic sugar

In his influential thesis work, Felleisen (10) addressed the
question of when a language construct is mere “syntac-
tic sugar,” vs. when it increases a language’s power. In
this, he provided the notions of expressibility and macro-
expressibility. A language construct F is expressible in
terms of the rest of the language if the minimal subprograms
containing F can be rewritten to not use F while preserving
program semantics. Macro-expressibility further stipulates
that these rewrites must be local.

With these, he also provided an ingeniously simple proof
technique: a construct is not macro-expressible if there
are two expressions which are indistiguishable without the
language construct (i.e.: they run the same when embedded
into any larger program), but distinguishable with it.

In the following theorem, we prove that we cannot imple-
ment the do operator as a syntactic sugar (i.e., macro) in the
original OMEGA language.

From our literature search, this is also the first time any vari-
ant of dynamic scope has been proven not macro-expressible
in a language without dynamic scope.

Theorem 1. The do operator is not macro-expressible in
λC without do.

Proof. According to the proof technique of Felleisen (10),
to show do is not macro-expressible in λC without do, it
suffices to find two expressions P and P ′ such that, for any
evaluation context C λC without do, C[P ] = C[P ′], but
such that there is an evaluation context C in λC with do
such that C[P ] 6= C[P ′].

Let P = λf.λx.(f 0), and P ′ = λf.(λa.λx.a)(f 0).

Note that all constructs of λC except do and rand are macro-
expressible in terms of the pure lambda calculus. After
fixing a random seed, rand is also deterministic. Hence,
with a fixed seed, λC without do respects beta equivalence.
Hence, since P ≡β P ′, for any context C which does not
contain do, C[P ] = C[P ′].

Now pick:

C[e] = (λg.g 0 ||| do(p→ 1))(e(λx.p))) ||| do(p→ 0)

Then C[P ] ⇓ 1, but C[P ′] ⇓ 0.

D. OMEGAC Details
D.1. Ids and independent random variables

OMEGAC includes a ∼ operator, allowing us to construct
an copy of a random variable that is independent but
identically distributed. For example, if we have a stan-
dard Bernoulli distribution flip = λ ω . w[1] > 0 .5 then
flip2 = 2 ~ flip will be i.i.d. with �flip. More over we
can avoid specifying the id manually and simply write
flip2 = ~flip.

To describe this, first we represent ω values as functions
from an integer id to a value in the unit interval, and hence
ω[i] is simply a syntactic convenience for the function ap-
plication ω(i). The operator ∼ is then a binary function
mapping an id and a random variable X to a new random
variable that is i.i.d.:

-- Constructs idth i .i .d . copy of X

~ = λ ω id, X . λ ω . X(project(w, id))

It works by projecting any ω that is input to X onto a new
space prior to applying X to it. A projection of ω onto id is
a new value ω′ such that ω′(i) = ω(j) where j is a unique
combination of i and id.

project = λ ω, id1 .
λ id2 → ω(pair(id1, id2))

Such a unique combination can be constructed using a pair-
ing function pair, which is a bijection from N × N to N.
Many pairing functions exist, below we define Cantor’s
pairing function:

pair = λ k1, k2 . 1/2(k1+k2)(k1+k2+1)+k2 .

If an id is not explicity provided, as in flip2 = ~ flip, it is
automatically generated using the macro uid as described
above.

D.2. Nesting

OMEGAC allows us to express flattened versions of nested
let, do, and l expressions.

In the case of let, this means that the following OMEGAC:

let A = a,

B = b,

C = c

in t
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is equivalent to the following λC code:

let A = a in

(let B = b in

(let C = c in t))

In the case of do this means that the following OMEGAC
code:

Y | do(A → a, B → b, C → c)

is equivalent to the λC code:

((Y | do(A → a)) | do(B → b)) | do(C → c)

Note that do is not commutative, the first intervention is
applied first to produce a new variable, upon which the
second intervention is applied. Reversing the order would
not in general produce the same result if the interventions
affect overlapping variables.

In the case of λ this means that the OMEGAC code:

λ a b x . a + b + c

is equivalent to the λC code:

λ a . λ b . λ c . a + b + c

E. Comparison With Other Languages
E.1. Multiverse

Below is an example taking from the Multiverse (22) docu-
mentation, translated into OMEGAC:

let

x = bern(0 .0001),
z = bern(0 .001),
x_or_z = x or z,

y = if bern(0 .00001)
then not x_or_z else x_or_z,

in (y | do(x → 0) | y == 1

The corresponding Multiverse code is:

def cfmodel():

x = BernoulliERP(prob=0 .0001, proposal_prob=0 .1)
z = BernoulliERP(prob=0 .001, proposal_prob=0 .1)
y = ObservableBernoulliERP(

input_val=x .value or z .value,
noise_flip_prob=0 .00001,
depends_on=[x, z]

)

observe(y, 1)

do(x, 0)

predict(y .value)
results = run_inference(cfmodel, 10000)

E.2. Pyro

Pyro is popular python based probabilistic programming
language, with some support for causal queries. Below is
the rifleman example taken from Pearl expressed in both
OMEGAC and Pyro.

In OMEGAC:

let p = 0 .7,
q = 0 .3,
Order = ~ bern(p),

Anerves = ~ bern(q),

Ashoots = Order or Anerves,

Bshoots = Order,

Dead = Ashoots or Bshoots,

Dead_cf = (Dead | do(Ashoots → 0)) | Dead,

in rand(Dead_cf)

In Pyro:

p = 0 .7
q = 0 .3
exogenousδists = {

"order": Bernoulli(torch .tensor(p)),
"Anerves": Bernoulli(torch .tensor(q))

}

def rifleman(exogenousδists):
order = pyro .sample("order",

exogenous_dists["order"])

Anerves = pyro .sample("Anerves",
exogenous_dists["Anerves"])

Ashoots = torch .logical∨(order, Anerves)

Bshoots = order

dead_ = dead = torch .logical∨(Ashoots,
Bshoots)

dead = pyro .sample("dead",
dist .Delta(dead))

return {"order" : order,

"Anerves" : Anerves,

"Ashoots" : Ashoots,

"Bshoots" : Bshoots,

"dead" : dead}

cond = condition(rifleman,

data={"dead": torch .tensor(1 .0)})

posterior = Importance(

cond,

numσamples=100) .run(exogenousδists)

order_marginal = EmpiricalMarginal(posterior,

"order")
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order_samples = [order_marginal() .item()
for _ in range(1000)]

Anerves_marginal = EmpiricalMarginal(posterior,

"Anerves")

Anerves_samples = [Anerves_marginal() .item()
for _ in range(1000)]

cf_model = pyro .do(rifleman,
{’Ashoots’: torch .tensor(0 .)})

updated_exogenous_dists = {

"order": dist .Bernoulli(
torch .tensor(mean(order_samples))),

"Anerves": dist .Bernoulli(
torch .tensor(mean(Anerves_samples)))

}

samples = [cf_model(updated_exogenous_dists)

for _ in range(100)]

b_samples = [float(b["dead"]) for b in samples]

print("CF prob death is", mean(b_samples))

In short, this example samples from the posterior of the
exogenous variables, then constructs a new model where
(i) these exogenous variables take their posterior values,
and (ii) the model structure has been changed through an
intervention.

E.3. Differences

The main differences are:

1. Pyro performs sampling to construct a posterior, then
intervenes, and then resimulates. That it, it computes
the (approximate) posterior at an intermediate state. In
contrast, in OMEGAC one constructs a counterfactual
generative model, which is itself a first class random
variable. One then later performs inference (such as
sampling) on that model. The disadvantage of the Pyro
approach is that it ties an inference procedure to the
definition of a counterfactual. A practical limitation
from this is that composite queries, such as intervening
both the counterfactual and factual world become prob-
lematic. It is not clear how this could be expressed in
Pyro, and evven if possible would involve performing
inference twice, and the accumulation of approxima-
tion errors that would entail.

2. Multiverse is built around an importance sampling ap-
proach, whereas OMEGAC is entirely agnostic to the
probabilistic inference procedure used.

3. Multiverse specifies the interventions and conditioning
through imperative operations. As shown in the exam-
ple above, observe(y, 1); do(x, 0) first observes y
and then intervenes x. It is not clear, without a seman-

tics or some other guide, whether other compositions
are expressible and sound, such as conditioning the
intervened world (or both), intervening a value to be a
function of its non-intervened (and posterior) self, or
stochastic interventions.

4. Although it can be emulated as shown in the example
above, Pyro does not enforce the exogenous/endoge-
nous divide. In Pyro, the primitives are actually dis-
tribution families, such as Normal(µ, σ), whereas in
OMEGAC the primitives are parameterless exogenous
variables, and distribution families are transformations
of these primitives. This is important because it allows
OMEGAC to give meaning to an expression such as
let μ = 0, X = normal(μ,1) in X | do(μ → 2), be-
cause the process by which X is generated is fully
specified. This would not make sense in Pyro, where
families are primitives.

5. Pyro and Multiverse can only intervene named ran-
dom variables, whereas in OMEGAC can intervene any
variable bound to a value. More fundamentally, inter-
vening in OMEGAC is not a probabilistic construct at
all.

6. As a cosmetic (but important for practical usage) mat-
ter, since Pyro was not designed from the ground up
for counterfactual reasoning, it is very cumbersome
and verbose to do. If one advances to more advanced
queries, this only exacerbates. Multiverse is less ver-
bose, but requires that you explicitly specify what vari-
ables every variable depends on (see depends_on in the
example), whereas those dependencies are automatic
in an OMEGAC program.

E.4. OMEGAC vs Julia implementation

The Julia implementation follows the basic structure of
OMEGAC. That is, in Julia:

• Random variables are pure functions of Ω, that is, any
value f of type T is a random variable if f(ω::Ω) is
defined.

• Conditioning is performed through a function cond,
which maps one random variable into another one
which is conditioned. It is defined as:

cond(x, y) = ω→ y(ω) ? x(ω) : error()

• Interventions are performed by an operation intervene,
which maps one random variable into one which is
intervened.

However, as mentioned in the introduction, conventional
programming language do not provide a mechanism to re-
define a program variables retroactively, making it difficult
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to implement intervene. To circumvent this, we take ad-
vantage of recent developments in Julia which permit users
to write dynamic compiler transformations (25), which en-
ables us to perform certain kinds of non-standard execution.
To demonstrate, consider the following example:

c = 5

X(ω) = ~ unif(ω)

Y(ω) = X(ω) + c

Y = intervene(Y, X, 10)

Here, Y is a random variable. Using Julia’s dynamic com-
piler transformations, we are able to modify the standard
interpretation of Y(ω) to intercept the application X(ω) within
Y, such that it instead returns the constant 10. Hence Y will
be a constant random variable that always returns 15.

Our Julia implementation shares two key properties with
OMEGAC: (i) that random variables are pure functions on
a single probability space, and (ii) that the conditioning
and intervention operators are higher-order transformations
between variables. This allows us to preserve many of the
important advantages of OMEGAC, such as the ability to sys-
tematically compose different operators to construct a wide
diversity of the different causal questions outlined in Section
3. The main limitation of this approach is that only random
variables can be intervened, unlike any bound variable in
OMEGAC. If we want a variable to be intervened, such as
the constant c in the above example, we must explicitly
construct a constant random variable c(ω) = 5.


