
Automatic Parameter Recommendation for Practical API Usage

Cheng Zhang1∗, Juyuan Yang2, Yi Zhang2, Jing Fan2, Xin Zhang2, Jianjun Zhao2∗, Peizhao Ou2

1Department of Computer Science and Engineering, 2School of Software
Shanghai Jiao Tong University, China

{cheng.zhang.stap, zhao-jj}@sjtu.edu.cn, {juyuanyang, yizhang1990.mail, j.fan, hyperzh, peizhao.ou}@gmail.com

Abstract—Programmers extensively use application pro-
gramming interfaces (APIs) to leverage existing libraries and
frameworks. However, correctly and efficiently choosing and
using APIs from unfamiliar libraries and frameworks is still a
non-trivial task. Programmers often need to ruminate on API
documentations (that are often incomplete) or inspect code
examples (that are often absent) to learn API usage patterns.
Recently, various techniques have been proposed to alleviate
this problem by creating API summarizations, mining code
examples, or showing common API call sequences. However,
few techniques focus on recommending API parameters.

In this paper, we propose an automated technique, called
Precise, to address this problem. Differing from common
code completion systems, Precise mines existing code bases,
uses an abstract usage instance representation for each API
usage example, and then builds a parameter usage database.
Upon a request, Precise queries the database for abstract
usage instances in similar contexts and generates parameter
candidates by concretizing the instances adaptively.

The experimental results show that our technique is more
general and applicable than existing code completion systems,
specially, 64% of the parameter recommendations are useful
and 53% of the recommendations are exactly the same as the
actual parameters needed. We have also performed a user study
to show our technique is useful in practice.

Keywords-recommendation; API; argument; parameter;
code completion

I. INTRODUCTION

Application programming interfaces (APIs) are exten-
sively used in software development to reuse libraries and
frameworks. Since there are numerous APIs providing vari-
ous functionalities, developers are likely to encounter unfa-
miliar APIs in their work. Unfortunately, APIs are generally
difficult to learn, due to various factors, such as complexity
of the application domain and inadequate API design [20].
As a result, developers often have to make considerable
effort to learn how to use APIs correctly and efficiently.

To alleviate this problem, a number of techniques [11],
[21], [15] have been proposed to facilitate the usage of
APIs. Among these, a highly automated approach is a code
completion system, which promptly provides developers
with programming suggestions, such as which methods to
call and which expressions to use as parameters. Traditional
code completion systems generally propose their suggestions

∗Corresponding authors.

based on type compatibility and visibility. Such suggestions
may become insufficient for complex frameworks, where
some types have too many methods or fields to suggest.
Therefore, some recent work [9] tries to improve the sug-
gestions via mining API usage data from code bases.

Most existing techniques focus on choosing the right
method to call. However, as discussed in relevant studies [9],
[18], it is a non-trivial task to choose the right (actual)
parameter(s) for a method call in an API usage. Table I
shows the statistics of API declarations and usages in the
code of Eclipse 3.6.2 [4], Tomcat 7.0 [1], and JBoss 5.0 [5].

Table I
STATISTICS ON METHOD DECLARATIONS AND INVOCATIONS

param non-param param non-param
Program declaration declaration invocation invocation

Eclipse 3.6.2 64% 36% 57% 43%
JBoss 5.0 58% 42% 60% 40%

Tomcat 7.0 49% 51% 60% 40%
average 57% 43% 59% 41%

1“param” and “non-param” are abbreviations for “parameterized” and “non-
parameterized”, respectively.

Table I shows that 57% of the method declarations
are parameterized, that is, the methods are passed one or
more parameters when being called. In accordance with
the statistics of method declarations, 59% of the method
invocations actually have parameters. Furthermore, about
50% of these actual parameters cannot be recommended
by existing code completion systems, because the expected
parameters are too complex to recommend2. Sometimes,
even if an existing code completion system can provide
correct recommendations, it can be difficult to find the right
parameter from a large number of parameter candidates.

Figure 1 shows an example of choosing an API pa-
rameter using Eclipse JDT. In the example, the de-
veloper has to choose the right actual parameter (i.e.,
IHelpUIConstants.TAG_DESC) from over 50 string
variables and literals. Unfortunately, the field TAG_DESC is
even not visible in Figure 1, as it is ranked too low by dictio-
nary order. More importantly, since the code completion sys-
tem does not suggest that interface IHelpUIConstants
should be used, the developer probably has to learn this

2We use the Eclipse JDT code completion system as a typical example.
The details will be explained in Section III-A

usage from code examples or documentations. Therefore,
it would be really helpful if the code completion system
could provide more informative recommendations of API
parameters and rank them in a more sophisticated way (e.g.,
suggest using IHelpUIConstants and put TAG_DESC
near the top of the list).

Figure 1. An example of parameter recommendation by Eclipse JDT.

Besides slowing down the development process, unfamil-
iarity with parameter usage may even harm the correctness
of programs. Bug 153895 in the bug database of Eclipse3 is a
typical example of the bugs caused by incorrect usage of API
parameters. The bug reporter suggested that invocations to
method getBestActiveBindingFormattedFor of
interface IBindingService should be used as the actual
parameters of two method invocations. In the end, the
developer took the suggestion and fixed the bug by replacing
the incorrect parameters with the correct ones. It is worth
noting that existing code completion systems can provide
little help in this case, because such method invocations are
too complex to recommend (also see Section III-A).

In this paper, we propose Precise, an automated approach
to parameter recommendation for API usage, which is
able to recommend the kinds of API parameters that are
frequently used in practice but mostly overlooked by existing
code completion systems. During programming, when the
developer has already selected a method and is about to
determine the actual parameter(s) of the method, Precise au-
tomatically recommends a concise list of well sorted param-
eter candidates. The basic idea of Precise is to extract usage
instances from existing programs and adaptively recommend
parameters based on these instances and the current context.
On receiving a request for recommendations, Precise first
uses k-nearest neighbor (k-NN) [23] queries on the usage
database built from a large code base to find abstract usage
instances of parameters that are commonly used in similar
contexts. Then Precise generates concrete recommendations
based on the abstract usage instances. Precise ranks its
recommendations with respect to the similarity of context
and the frequency of usage, trying to help developers select

3https://bugs.eclipse.org/bugs/show_bug.cgi?id=153895

the right parameters more easily. Two heuristic rules are
used to reduce the search space of parameters, making
Precise practical and efficient. The experimental results show
that Precise can recommend parameters with good accuracy
under strict constraints on the number of recommendations.
Specifically, the exact expected parameters are included in
the top 10 recommended parameters in 53% of the cases, and
in 64% of the cases Precise can provide useful information
to help choose the right parameters. The main contributions
of this paper are:

1) Precise, an automatic parameter recommender, which
improves existing code completion systems. To the
best of our knowledge, it is the first automatic tech-
nique focusing on parameter recommendation.

2) We have implemented Precise and performed an ex-
periment to show its effectiveness. Combined with
Eclipse JDT, the implementation provides useful rec-
ommendations in 67% of the cases. We have also
conducted a user study to confirm its usefulness.

The rest of this paper is organized as follows. Section II
shows an empirical study on the usage of API parameters.
Section III describes the technical details of Precise. Sec-
tion IV shows the evaluation results. Section V compares
Precise with closely related work. Section VI concludes this
paper and discusses our future work.

Table II
STATISTICS ON EXPRESSION TYPES OF ACTUAL PARAMETERS

Eclipse JBoss Tomcat
Expression Type 3.6.2 5.0 7.0 average
simple name 47.35% 38.79% 39.97% 42.04%
method invocation 12.16% 11.96% 10.44% 11.52%
qualified name 11.28% 4.33% 4.28% 6.63%
field access 1.15% 0.57% 0.32% 0.68%
array access 1.58% 1.09% 0.63% 1.10%
cast expression 1.16% 1.28% 0.37% 0.94%
string literal 4.71% 21.71% 19.74% 15.39%
number literal 3.44% 5.66% 4.04% 4.38%
character literal 1.02% 1.29% 0.56% 0.96%
type literal 0.42% 0.68% 2.24% 1.11%
boolean literal 3.83% 2.05% 2.13% 2.67%
null literal 1.81% 1.67% 1.72% 1.73%
total percentage 89.91% 91.08% 86.44% 89.14%

II. API PARAMETER USAGE IN PRACTICE

A major challenge in parameter recommendation is that
there can be too many possible parameter candidates that are
type compatible with the expected parameter. For example,
when we try to recommend the actual parameter for the
method m(int a), there are an almost infinite number
of parameter candidates (of type int), including all the
integer literals, accessible integer variables, method calls
returning integers, etc. In addition, the parameter can be an
arithmetic expression, such as (a+b*c), which may have a
very complex structure. Therefore, as a fundamental strategy
of Precise, we propose two heuristic rules to focus the
approach on parameters of a limited number of structures.
The underlying assumption is that most of the parameters
belong to a small number of types of structural patterns.

In order to support the assumption, we have done an
empirical study to see how API parameters are used in
practice by looking into three subjects, namely Eclipse 3.6.2,
JBoss 5.0, and Tomcat 7.0. These are large-scale programs
that are widely used in real-world settings. Thus the result
of our study is supposed to be reasonably representative.
As shown in Table II, over 89% of the actual parameters of
APIs can be classified into 12 types of expressions. Figure 2
gives a brief description of the expression types and their
structures. The expression types are formally described in
Eclipse JDT documentation [3] which is in line with the Java
language specification [7]. Several kinds of expressions are
out of the scope of the 12 expression types, including array
creation, assignment, infix expression, etc. They together
make up 11% of the actual parameters in the subjects.

〈method invocation〉 ::= [〈expr〉"."]〈identifier〉"("〈arguments〉")"
〈field access〉 ::= 〈expr〉"."〈identifier〉
〈qualified name〉 ::= 〈name〉"."〈simple name〉
〈array access〉 ::= 〈expr〉"["〈expr〉"]"
〈cast expression〉 ::= "("〈type〉")"〈expr〉
〈literal〉::=〈string literal〉 | 〈number literal〉 | 〈character literal〉
| 〈type literal〉 | 〈boolean literal〉 | 〈null literal〉
〈simple name〉 ::= 〈identifier〉
〈expr〉 ::= 〈method invocation〉 | 〈field access〉 | 〈qualified name〉
| 〈array access〉 | 〈cast expression〉 | 〈literal〉 | 〈simple name〉
〈arguments〉 ::= [〈expr〉{","〈expr〉}]
〈name〉 ::= 〈qualified name〉 | 〈simple name〉

Figure 2. Grammar of expression types. Precise focuses on the first
six expression types, except boolean literal and null literal. Note that this
grammar just shows the structures of expression types and the accurate
grammar can be found in relevant documentations [3], [7].

III. APPROACH

The work flow of Precise consists of two phases. In the
first phase, Precise builds a usage database by analyzing
parameter usage instances and their contexts in a code base.
In the second phase, for a recommendation request, Precise
queries the database using the context of the request as the
key and retrieves a group of abstract usage patterns. Then
Precise concretizes and sorts the recommendations.

The overall approach is similar to that of the work on
API method recommendation [9], where static features are
used to capture contexts and several algorithms, including
a specialized k-NN algorithm, are used to calculate the
relevance of the recommended methods. Similarly, Precise
also uses static features to capture contexts and uses a k-
NN algorithm for relevance calculation. Nevertheless, since
Precise targets the recommendation of parameters (instead
of methods), it uses different static features which focus on
the code prior to the parameters (see Section III-B2). In
addition, the characteristics of parameter recommendation
have motivated us to design a different evaluation (see
Section IV) and propose two heuristic rules based on the
empirical study in Section II. These rules govern both phases
of Precise, making the technique practical while still being
effective. In this section, we first introduce the rules and
then describe the two phases in detail.

A. Heuristic Rules for Search Space Reduction

Rule of expression type. The first rule is to restrict the two
phases to the parameters of certain expression types, namely
method invocation, field access, qualified name, array access,
cast expression, and some types of literals. Specifically,
the usage database does not include any parameter whose
expression type is unspecified in the rule, and such a
parameter is not generated as a recommendation either. The
grammar of the focal expression types is shown in Figure 2.

While focusing Precise on these expression types, we
leave out three of the 12 types in Table II, namely simple
name, boolean literal and null literal. Since parameters of
these expression types are recommended by Eclipse JDT by
default, Precise does not take them into account. As shown
in Table II, the focal expression types of Precise take up
about 43% of all the actual parameters. More importantly,
parameters of these expression types are generally more
difficult for developers to find or compose than simple
names, boolean literals and null literals. Precise also does
not deal with expression types that are not shown in Table II,
because they are infrequently used.
Rule of structural complexity. Within the expression types
specified in the first rule, there can still be some parameters
that are too complex to recommend. For example, an actual
parameter can be a method invocation in the form of
array[0].getFoo().getName().substring(3).
Also, such complex parameters are infrequently used and
thus can hardly be amenable to Precise which relies on
existing examples. Therefore, as the second rule, we restrict
the two phases to the parameters (expressions) whose
structural complexity is less than or equal to 3.

The structural complexity of an expression, exp, is the
number of leaf nodes in the abbreviated abstract syntax tree
of exp. The abbreviated abstract syntax tree of exp, is
derived from the abstract syntax tree of exp by removing
every node (and its sub-tree) that represents the argument list
of a method invocation or the array index of an array access.
Additionally, literals are treated as a leaf node, instead of
being further decomposed syntactically.

This rule essentially confines Precise to the parameters
whose structures are reasonably simple. According to our
study on Eclipse 3.6.2, JBoss 5.0 and Tomcat 7.0, the
structural complexity of nearly 95% of the actual parameters
is less than or equal to 3, which means that Precise can
possibly recommend the right parameters in most cases.

B. Building Parameter Usage Database

Following the heuristic rules, Precise first analyzes pro-
grams in a code base to build a usage database. Con-
ceptually the usage database stores the accumulated data
about which parameters are used for an API in a specific
context. In a recommender system for methods (e.g., [9]), it
is straightforward to use the method name, (fully qualified)
declaring type, and argument type list to represent a method.

In contrast, Precise requires a certain degree of abstraction
in representing the actual parameters, in order to make the
data useful in the subsequent phase.

1) Abstract Representation of Parameters: The need for
abstract representation of parameters stems from the fact
that, in different cases, some variables are named differently,
though they essentially represent the same entity. In Figure 3,
either b in case (a) or button in case (b) represents a
reference to an instance of Button. Suppose the recom-
mender system learns from case (a) and tries to recommend
a parameter for method setAttrib in case (b), it will fail
to find a match if its learning and recommendation are based
on exact variable names. In this example, the most useful
information is the structure of the expected actual parameter
and the type of the base variable, that is, the actual parameter
should be a method invocation to getAttrib() and the
base variable is of type Button.

Precise abstracts the parameter usage instances before
storing them into the usage database, in order to retain
the essential information, while pruning unnecessary de-
tails (e.g., variable names). During the abstraction, Precise
first identifies the structures of the actual parameters and
categorizes the parameters into several expression types,
such as literal, method invocation, and field access. Then,
for each expression that is not a literal, Precise resolves
the type of its sub-expressions that are local variables and
replaces the variable names with their types. In Figure 3,
the actual parameter used in case (a) will be represented
by Button.getAttrib(), as the variable button is
replaced by its type Button.

Case (a): code snippet from code base:
1 p u b l i c c l a s s ExampleClass {
2 p u b l i c vo id addBu t ton (P a n e l p a n e l) {
3 Bu t ton b = new Bu t ton () ;
4 b . s e t V i s i b l e (t rue) ;
5 b . s e t A t t r i b (0) ;
6 p a n e l . i n i t () ;
7 p a n e l . addElement (b) ;
8 / / u se p1 t o d e n o t e b . g e t A t t r i b () he re
9 p a n e l . s e t A t t r i b (b . g e t A t t r i b ()) ;

10 }
11 }

Case (b): code snippet under development:
1 p u b l i c vo id methodToDevelop () {
2 Bu t ton b u t t o n = new Bu t ton () ;
3 t h i s . s e t A t t r i b (?) ;
4 }

Figure 3. Example Java code.

2) Defining Parameter Usage Contexts: Contextual in-
formation enables recommender systems to make recom-
mendations adaptively. Precise uses four static features to
capture the context in which each actual parameter is used.
The features are extracted from the generally available
context (i.e., the code prior to the parameter), because the
code after the parameter has usually not yet been written

when Precise is triggered. In software maintenance scenarios
where developers mainly make edits to existing code, we
conservatively assume that the code after the parameter will
probably be changed and thus unsuitable for representing
the context. We use the case (a) in Figure 3 to illustrate
the features. In the code snippet, we suppose that the actual
parameter of interest is the method invocation at line 9 (i.e.,
b.getAttrib()), and we use p1 to denote it hereafter.
Feature 1: the signature of the formal parameter bound
to the actual parameter. This feature represents the most
specific usage context for an actual parameter. The signature
of a formal parameter is the combination of the method
signature, the parameter type, and the position in the pa-
rameter list. In Figure 3, the value of feature 1 of p1 is
Panel::setAttrib::1(int).
Feature 2: the signature of the enclosing method in
which the actual parameter is used. This feature represents
the contextual information on the surrounding scope (of
the method). As discussed in [9], such a feature is useful
to identify the usage context in the case of overriding or
implementing a method defined in a super type. Currently
this feature just includes the method signature, ignoring
the method’s declaring type. It is a strategy to save the
effort to explore type hierarchies at the cost of the accuracy
of context. In Figure 3, the value of feature 2 of p1 is
addButton(Panel).
Feature 3: the method invocations that have happened
on the variable used in the actual parameter. For the
kinds of parameters Precise focuses on, a variable v can
be the base variable of a method invocation (e.g., if the
actual parameter is v.getA()) or the qualifier of a field
access (e.g., if the actual parameter is v.fieldA). This
feature captures the history of the variable v before it
is used in the actual parameter. Such a history is use-
ful to identify specific patterns of “preparing” a variable
for the parameter usage. We use the method signature to
denote each method invocation. Thus, in Figure 3, the
value of feature 3 of p1 is the list of methods invoked
on b, that is, <<init>(), setVisible(boolean),
setAttrib(int)>. We use <init>() to represent the
constructor of a class.
Feature 4: the method invocations that have happened
on the base variable of the method invocation using
the actual parameter. Similar to feature 3, this feature is
designed to capture the history of a variable, but the variable
here is not used in the actual parameter, instead it is an
essential part of the method invocation using the parameter.
As shown in [9], such a feature can effectively represent
the context of method usage. Therefore, we use this feature
to include method-related context into the parameter usage
context. Again we use the method signature to denote each
method invocation. In Figure 3, the value of feature 4 of p1
is the list of methods invoked on panel, that is, <init(),
addElement(Object), setAttrib(int)>.

3) Transformation and Representation of Parameter Us-
age Instances: When building the usage database, Precise
first scans the code base to find every parameter usage in-
stance. Then it extracts the feature values for each parameter
usage instance, while abstracting the actual parameter. Each
instance of parameter usage consists of both the feature
values and the abstract parameter representation. In order
to support the k-NN algorithm (described in Section III-C),
Precise transforms each parameter usage instance into a
vector before storing it into the parameter usage database.
The transformation algorithm is shown in Algorithm 1.

Algorithm 1: Usage Instance Transformation
Input: a List iList of InstanceData for each FormalParameter
Output: a Table result

1 result.name = feature1;
2 foreach InstanceData d of iList do
3 d.features = d.features− feature1;
4 foreach feature f ∈ d.features do
5 put f .values into a Set named featureV alues;
6 end
7 end
8 foreach InstanceData d of iList do
9 int[] value = new int[featureV alues.size()+ 1];

10 initialize value with 0;
11 d.features = d.features− feature1;
12 foreach feature f ∈ d.features do
13 foreach value v ∈ f .values do
14 find the index of v in Set featureV alues;
15 value[index] = 1;
16 end
17 end
18 int usageIndex = indexUsage(d.getParam());
19 value[features.size()] = useageIndex;
20 add value into result;
21 end
22 return result;

In the first place, we believe that it is generally useless
to recommend an actual parameter for a method by learning
from parameter usage instances of other methods or other
formal parameters of the same method. Therefore, at the
beginning of the transformation, we create one table in the
usage database for each unique formal parameter, using fea-
ture 1 to generate the table name. All the actual parameters
bound to a specific formal parameter will be processed and
stored in the table corresponding to that formal parameter.
Then within a table, we compute the range for features 2,
3, and 4, which is the set containing all the feature values
of the usage instances in the table (lines 2–7, Algorithm 1).
Each element in the range corresponds to a column in the
table. When a usage instance is being transformed, the value
of a column is set to 1 if the column’s corresponding value
occurs in the instance’s feature values; otherwise the column
is set to 0 (lines 9–17, Algorithm 1). The last column in the
table is designed for storing the (abstract) actual parameter.
Since the information of an actual parameter is generally too
rich to be stored as plain text, we keep a map between each
actual parameter and its unique index and store the indices in
the last table column (lines 18 and 19, Algorithm 1, where

the method indexUsage indexes each actual parameter
and maintains the map between actual parameters and their
indices). The example in Figure 4 shows the feature values
of p1 and three other contrived instances and their encoded
vectors stored in the usage database.
{Panel::setAttrib::1(int), addButton, <<init>, setVisible, setAttrib>, <init, addElement,
setAttrib>, Button.getAttrib()}
{Panel::setAttrib::1(int), editButton, <isVisible, setAttrib>, <refresh>, 0}
{Text::setColor::1(int), initText, < >, <<init>, setWidth>, COLOR.BLACK}
{Text::setColor::1(int), setFont, <create, setColor>, <isEnabled>, Font.getColor()}

transform

Table: Panel::setAttrib::1(int)

Table: Text::setColor::1(int)

map between actual parameters and indices
< 21 = {Button, getAttrib(), method invocation} >
< 14 = {0, integer literal} >
< 35 = {COLOR, BLACK, field access} >
< 49 = {Font, getColor(), method invocation} >

addButton editButton <init> setVisible setAttrib isVisible init addElement setAttrib refresh index
1 0 1 1 1 0 1 1 1 0 21
0 1 0 0 1 1 0 0 0 1 14

initText setFont create setColor <init> setWidth isEnabled index
1 0 0 0 1 1 0 35
0 1 1 1 0 0 1 49

Figure 4. Example usage instances and their representations in the usage
database. For brevity, the parameter types of method signatures are omitted.

C. Generating Parameter Candidates

1) Finding Similar Usage Instances: The k-NN algorithm
is commonly used to classify an instance based on the
“nearest” training instances (i.e., the instances with known
classes or categories). Precise uses the information of the
nearest neighbors to guide its recommendation. When being
requested for a recommendation, Precise queries the usage
database using k-NN to find k usage instances whose
contexts are the most similar to the context from which the
request is issued. Then the type and structure information
of these similar usage instances is used to generate a list of
parameter recommendations. The details of recommendation
generation will be described in Section III-C2.

Similar to a parameter usage instance, a request context is
also represented by feature values. However, such a context
does not include the actual parameter. For a request for
recommendation, its value of feature 1 is used to determine
which table will be queried for the nearest parameter usage
instances. To represent the request context , features 2 and 4
can be computed in the same way as those of the parameter
usage instances in the usage database. However, since the
actual parameter is yet to be recommended, it is unclear
which variable is used in the parameter. Thus we have to
take into account all the accessible variables for computing
feature 3. Here accessible variables include local variables,
formal parameters of the enclosing method, and fields.
Thus features 2 and 4 are common for all the accessible
variables. For each accessible variable, v, we will compute
its history of method invocation (feature 3) and combine
it with features 2 and 4 to create an individual context,
called variable context (and v is called the context base
of the variable context). We will also generate an individual
context, called non-variable context, which only includes

features 2 and 4 so as to recommend literal parameters.
Therefore, for a given request, if n variables are accessible,
then there are n+ 1 contexts for representing the request’s
possible contexts. For each of the n+1 contexts, we find the
k nearest instances in the usage database. In order to perform
the k-NN search, we first transform the request context into
a vector with respect to the table for the formal parameter.
The way of evaluating each vector element is the same as
in the transformation of a parameter usage instance, except
that the vector of a request context does not contain a usage
index. Then we define the distance between a request context
and a parameter usage instance based on their vector forms:
Definition The distance, distance(rc, pi), between a request
context, rc=〈c

′
1, c

′
2, ..., c

′
n〉 and a parameter usage instance,

pi = 〈c1, c2, ..., cn, index〉, is calculated by distance(rc, pi) =√∑n

i=1
(ci − c

′
i)

2, where c
′
i and ci are the encoded feature

values of the request context and the parameter usage instance,
respectively, and index is the usage index.

Based on the above definition, we find the k nearest
neighbors for each of the n+1 contexts. In the k-NN search,
we first set k to 1 and increment k until the number of
concrete recommendations reaches a threshold or all the
instances in the usage database are used. Currently the
threshold is 10. Then, for each context, we categorize the
parameter usage instances with the same parameter index
into one group. For each group, we get a summary instance
that consists of the abstract parameter (corresponding to the
usage index) and the number of instances in that group
(called frequency). If there are m different usage indices
in the nearest neighbors (m may vary between different
contexts), we will get m summary instances.

2) Concretizing Parameter Recommendations: When the
summary instances have been extracted from the usage
database, Precise has gained some knowledge about the
parameter usages in similar contexts. As described in Sec-
tion III-B1, such knowledge is abstract, in that it is mainly
about the type and structure information of the actual
parameters. Precise takes a further step to generate concrete
recommendations based on the summary instances.

In recommendation concretization, Precise takes different
strategies with respect to different types of expressions for
different contexts. If the abstract parameter of a summary
instance of a non-variable context is a literal, then Precise
directly uses the literal as the parameter recommendation.
Otherwise, if the abstract parameter of a summary instance
of a variable context contains a type name that is abstracted
from a variable, Precise checks whether the context base
is type-compatible with the type in the abstract parameter.
If so, Precise generates a parameter recommendation by
replacing the type name with the context base (i.e., the acces-
sible variable). In this case, other segments in the parameter
recommendation, such as method names or package names,
are copied verbatim from their counterparts in the abstract
usage instance. For example, in case (b) of Figure 3, if the

abstract parameter Button.getAttrib() is a part of
a summary instance of the variable context with context
base button, Precise will generate a recommendation
button.getAttrib().

After recommendation generation, we sort the recom-
mendations in descending order by the frequencies of their
corresponding summary instances. Then we sort the rec-
ommendations with the same frequency in dictionary order
with respect to their parameter expressions. Last, the sorted
recommendations are presented to the user. Currently we
insert the recommendations by Precise into the original list
of parameter recommendations by Eclipse JDT and place
them on the top of the list.

IV. EVALUATION

We have implemented Precise as an Eclipse plug-in4.
At the front end, the implementation seamlessly extends
Eclipse JDT to present parameter recommendations. At the
back end, the implementation leverages the DOM/AST API
provided by the Eclipse JDT platform to perform source
code analysis, and uses Weka [13] to do the k-NN search.
Tables in the usage database are stored as ARFF files (i.e.,
Weka’s native input format), and the map between indices
and actual parameters is stored in XML files. These two
parts, which are correlated by the usage indices, play the
role of the usage database in Precise.

A. Objective Experiment

Performance measure. Using the implementation, we have
performed an objective experiment to evaluate the useful-
ness of Precise. For each request, while Precise normally
generates a list of parameter candidates, there is exactly one
expected actual parameter which we call the target. The
target may or may not be included in the recommended
parameters. In the experiment, we impose a constraint on
the number of parameter candidates, that is, we only check
the top 10 candidates if there are more than 10 of them. By
controlling the total number of recommended parameters, we
can evaluate Precise’s usefulness by checking how often it
provides useful recommendations, without being concerned
about how many recommendations it generates each time.
We choose 10 as the threshold, because the user may have
a context switch [19] if she has to scroll down the list to
check the recommendations lower than 10 with default JDT
configurations. We assume that all the top 10 recommenda-
tions attract equal attention from the user, because they are
presented in a short list that can be quickly checked.

We determine whether Precise is successful for a specific
request by checking whether the list of parameter recom-
mendations includes the expected actual parameter. Thus we
use Recommendationsmade to denote the total number of
times that Precise tries to recommend a list of parameters

4The source code and screen shot of the implementation and experimental
data are available on http://stap.sjtu.edu.cn/~chengzhang/precise/

and Recommendationssuccessful to denote the number of
times that the list includes the expected parameter. Then we
use the precision (defined as below) to represent Precise’s
performance of parameter recommendation. (Since there is
exactly one target for each request, Recommendationsmade

is equal to the number of targets in the experiment. Thus the
precision can also be viewed as the recall.)

precisionsuccessful =
Recommendationssuccessful

Recommendationsmade

However, as in the case shown in Figure 1, even if the
recommendations fail to include the exact actual parameter,
they can still provide useful information, such as which class
should be used as a part of the parameter. More specifically,
a recommended parameter is said to be partially correct,
if it correctly indicates 1) the base variable of a method
invocation, 2) the qualifier of a qualified name, or 3) the
method name of a method invocation. The partial usefulness
is proposed based on the following observations:

• In cases 1 and 2, as shown in Figure 1, when a remote
entity is needed, it is helpful to suggest the base variable
or qualifier, which can reduce the search space greatly.

• Case 3 occurs mostly due to polymorphism, where
Precise reveals the usage pattern of the method, leaving
limited uncertainty of choosing the right base variable.

In order to take into account such cases, we use
Recommendationsuseful to denote the number of times
that the recommendation list provides either completely or
partially correct information with respect to the expected
actual parameter. Then we define another precision to
measure Precise’s performance from this viewpoint.

precisionuseful =
Recommendationsuseful

Recommendationsmade

Subjects and validation strategy. Since Precise is proposed
to facilitate the use of framework APIs, it is reasonable to
evaluate Precise on individual frameworks. In the experi-
ment, we focus on the SWT framework [6] and use all the
projects using SWT in the code base of Eclipse (Classic 3.7)
as the subjects. We choose the SWT framework because it
provides a large code base containing about 1, 270, 536 lines
of code. Moreover, SWT is a specialized framework for GUI
development. Compared with common libraries, such as the
JDK API, SWT is less familiar to developers and has more
specific patterns of parameter usage. Therefore, developers
are more likely to benefit from an enhanced code completion
system for the SWT framework.

We take the strategy of 10-fold cross validation. More
specifically, the whole data set is evenly divided into 10
subsets at random. In each iteration of validation, one subset
is used as test data , while the other nine subsets are used as
training data for building the usage database. Ten iterations
are performed so that each subset is used as test data once.
We split the parameter usage instances based on class, that

is, all the parameter usage instances occurring in a Java
class are used together in either the test set or the training
set. During the experiment, each actual parameter in the
test set of an API method defined in SWT is used to test
Precise. When being used as a test instance, the actual
parameter is “hidden” and a request is issued to Precise.
All the test instances must be of the expression types that
Precise focuses on. The recommendations for the request are
checked against the actual parameter to see whether they are
successful or useful.

Table III
RESULTS OF THE OBJECTIVE EXPERIMENT

No. #Param #Req #Success #Useful ps pu

1 3095 978 546 89 56% 65%
2 3785 1154 599 157 52% 66%
3 3252 984 516 123 52% 65%
4 2967 931 495 102 53% 64%
5 2932 950 443 107 47% 58%
6 3504 1094 575 105 53% 62%
7 3030 928 562 110 61% 72%
8 3191 994 513 88 52% 60%
9 3275 1043 530 106 51% 61%
10 3313 996 501 140 50% 64%

Avg. 3234 1005 528 113 53% 64%

5As we use 10-fold cross validation, there are 10 rows of data. In the
columns, ‘#Param’ means the number of actual parameters in the test
set; ‘#Req’ means the number of recommendation requests; ‘#Success’and
‘#Useful’ represent the number of times when the recommendations contain
the expected actual parameter and useful information, respectively; ps and
pu stand for precisionsuccessful and precisionuseful, respectively.

Figure 5. Rank distributions of recommendations.

Results. Table III shows the experimental results. The aver-
age precisionsuccessful and precisionuseful are 53% and
64%, respectively. It means that Precise can often provide
useful recommendations and sometimes the right parameter
is included in the list of recommendations. It is worth noting
that the kinds of parameters recommended by Precise are
not recommended by the original Eclipse JDT and they are
generally more complex and difficult to find or compose.
Therefore, the results can be viewed as promising.

Since the experiment focuses on the top 10 recommenda-
tions, it is interesting to study the effectiveness of Precise’s
ranking strategy. As shown in Figure 5, about 57% of the
successful recommendations are placed at the top 1 of the
list (and 93% in the top 10). By comparison, only 21%
of the partially correct recommendations are ranked top
1 (and 49% in the top 10). We have analyzed the result
data and found that a large number of low-ranked partially
correct recommendations are generated for some common
methods (the limitation of Precise on common methods will
be discussed later). An indication of Figure 5 is that there
might be large room for improvement in precisionuseful by
designing better ranking strategies.

Figure 6. Precision values of Eclipse JDT with and without Precise.
.

Because the recommendations actually presented to the
user also include the recommendations by Eclipse JDT, from
the perspective of users, we are more interested in how
much improvement Precise has made to the Eclipse JDT
code completion system. The Eclipse JDT code completion
system generates its parameter recommendations mainly
based on type-based rules. The recommendations include
limited (simple) types of expressions. By default, the Eclipse
JDT code completion system is activated every time a
parameterized method is selected by the user. Whenever the
expression type of the expected parameter is in the scope
of the JDT code completion system, it will certainly be
included in the list of recommendations (although there may
be more than 10 parameters recommended). However, due
to its limitation on expression types, the JDT code comple-
tion system will certainly fail if the expected parameter is
complex. As shown in Figure 6, the precisionsuccessful is
47%. As the combination of JDT and Precise, the enhanced
code completion system has an average precisionsuccessful

of 64%. Moreover, its average precisionuseful is 67%,
indicating that it can often provide useful recommendations.

We have compared Precise with four of its variants, named
F1+Freq, F1+F2+Freq, F1+F3+Freq, and F1+F4+Freq. In

F1+Freq, usage instances are selected from corresponding
database tables (using feature 1) and then sorted by fre-
quency. In contrast to Precise, F1+Freq does not use k-NN
search. We choose such a variant for comparison, because it
represents a typical frequency-based solution and is more
reasonable than some naive frequency-based approaches
(e.g., recommendation based on the frequency of type-
compatible actual parameters used for any API method).
In F1+F2+Freq, we augment F1+Freq with k-NN search
only based on feature 2. F1+F3+Freq and F1+F4+Freq are
similarly designed with different features. In essence, Precise
can be named F1+F2+F3+F4+Freq using this convention.

Figure 7. Precision values of several variants of Precise.

As shown in Figure 7, Precise has the highest ps and
almost the highest pu. Although the difference between Pre-
cise and F1+Freq seems insignificant, we find that features
2, 3, and 4 can indeed capture the context information
to make Precise outperform F1+Freq in several cases. It
indicates that it is necessary to include extra features (besides
feature 1) in order to enable adaptive recommendation, while
the current features probably still need improvement. To
our surprise, the results show that adding a single feature,
especially feature 3 or 4, does not improve (or even harms)
the performance. By analyzing the data, we find that an
individual feature is often unable to accurately capture useful
context information, but it may make the instance vectors
high dimensional (e.g., for feature 3, there can be a number
of calls on the variable used in the actual parameter). As a
result, the distances computed using such vectors may fail
to capture the contextual similarity correctly. Since Precise
has the best performance, the result indicates the necessity
of combining the features and the need for improving each
of them. We also find that the difference in performance
between Precise and the four variants is not so significant,
because there are often fewer than 10 recommendations for
a request. In this case, Precise and the other four approaches
succeed (or fail) together. The root cause of such cases is
the scarcity of abstract usage instances in the usage database.

Although we use large training sets, we need more programs
using SWT to get more conclusive results.

A concern on the usability of Precise is its runtime,
because its second phase has user interactions. To study the
responsiveness of Precise, we have measured the runtime of
the second phase on a desktop with a 2.40GHz dual-core
CPU and 4GB memory and also that of the first phase on a
server with a 2.33GHz quad-core CPU and 16GB memory.
As expected, most of the runtime (793 seconds on average)
is taken by the first phase. By comparison, the second phase
takes little runtime (76 milliseconds on average), which is
presumably negligible. Therefore, we believe that Precise
can be seamlessly integrated into the Eclipse JDT code
completion system, using pre-built usage databases. In the
user study, we have further investigated this issue.
Limitations. An important assumption of Precise is that
it can learn usage patterns from the code base. However,
some APIs (e.g., get(Object) in java.util.Map) are
widely used in numerous contexts. These APIs are so com-
mon that their actual parameters are too diverse for Precise
to learn any usage pattern. Although SWT is a specialized
framework, there are still several common methods in it. A
typical example is the method setText(String) defined
in classes Button, Label, etc. The method is used to set
the text on a widget. It is imaginable that various strings will
be used as the actual parameter of setText. As a result,
Precise has extremely bad performance for this method,
often recommending a large number of string literals and
variables without success. In the experiment, setText
takes up 32% of the requests for recommendations and
the precisionsuccessful and precisionuseful of Precise for
setText are 21% and 24%, respectively.

As a learning-based approach, Precise has little chance of
recommending the right parameters, if there are few usage
instances with similar contexts in the training data. This
limitation is actually a major reason for Precise’s failures
observed in some iterations of the 10-fold cross validation. In
the experiment, the expected actual parameter is sometimes
a method or a field that is used very locally (e.g., a private
field is only used in its declaring class). Meanwhile, we
split the parameter usage instances based on class. When
the usages of such a method or field are concentrated in a
small number of classes in the test set, they are out of reach
of Precise. To overcome the limitation in recommending for
unseen usage patterns, we will try to improve Precise with
generative techniques (e.g., [12]).

B. User Study
We have invited eight participants to use the Precise plug-

in to finish two small programming tasks. The participants
are students with more than three years of experience of Java
and at least two years of experience of Eclipse on average.
Thus they are familiar with the Eclipse JDT code completion
system. The two programming tasks are adapted from the

examples of the SWT framework. One task is to implement
a simple panel with various fields and texts, while the
other is to implement a simple browser. We deleted several
statements from the original examples, leaving skeletons of
the programs. In this way, the participants can concentrate
on finishing the programs using APIs from SWT, without
making design-level efforts, such as creating new interfaces
or classes. After completing the tasks, each participant
was asked to fill in a questionnaire which consists of five
questions. For each question, a participant first chose a score
from 5 (strong agreement), 4 (weak agreement), 3 (neutral),
2 (weak disagreement), and 1 (strong disagreement), and
then gave a detailed explanation of the choice. The questions
and the summary of the answers are described as below.

Q1: Did Precise propose the right parameters? (aver-
age: 3.875, median: 4) This question is designed to confirm
that the users can recognize the successful recommendations.
The resulting scores and the explanations show that the
participants are able to identify the right parameters in most
cases. This is partly due to the short list of recommendations
provided by Precise (i.e., up to 10 extra items besides those
recommended by JDT). The scores also indicate that the
participants have perceived the effectiveness of Precise in
accordance with the precisionsuccessful (64%), that is, it is
useful, although not perfect.

Q2: When you could not find the right parameter
in the recommendations, did you feel Precise still gave
useful hints? (average: 3.875, median: 4) This question
investigates whether the partially correct information can
indeed be useful. We almost get the same positive answers
as in Q1. A participant said:“Some of the parameters are
‘dot-outcome’, and I really feel it’s convenient”. While
confirming the partial usefulness, the answer indicates that
Precise probably focuses on the right expression types.

Q3: Did Precise correctly rank the parameters? (av-
erage: 3.5, median: 3) This question checks the ranking
strategy of Precise. The scores show that the participants
do not think Precise has ranked the recommendations well.
We have investigated the explanations and found that some
participants just did not pay attention to the ranking, because
they focused on finding the right parameter in the list.
The purpose of the ranking is to put the most relevant
recommendations at the top of the list. However, users
usually wonder why such a sophisticated ranking (instead of
dictionary order) is used, especially when they fail to find
the right parameters and try to use the partial information.

Q4: Did Precise speed up your development compared
to the default Eclipse code completion? (average: 3.375,
median: 4) This question attempts to investigate whether
the improvement by Precise can be noticeable in the whole
Eclipse system. The answers are generally positive, indi-
cating that Precise is promising to be useful in practice.
However, the answers are far from conclusive, because
various factors may affect the final results. By checking

one participant’s program, we found that she mostly failed
to find the right methods to call. As a result, Precise was
not activated as expected. We believe that the integration
of novel code completion techniques (e.g., API recommen-
dation [9] and Precise) could improve the existing system
more significantly than individual techniques.

Q5: Is Precise well integrated into Eclipse? (average:
4.28, median: 4) This question investigates whether the
runtime overhead of Precise is acceptable in practice. Among
the seven participants who gave answers, three of them chose
the score of 5. Four participants expressed the feeling that
Precise worked as a natural part of Eclipse JDT. The answers
have confirmed that Precise does not cause perceivable
slowdown when proposing recommendations.

In summary, the user study has confirmed the usefulness
of Precise shown by the objective experiment. However,
it has also revealed an inadequacy of Precise: its ranking
strategy lacks explanations and better integration with other
techniques is needed.

C. Threats to Validity

A threat to the evaluation result is that the usefulness of
Precise may not be accurately measured by the precisions.
We have performed the user study to alleviate this problem.
However, since the sample is small, the result still needs
further validation. One threat to the generalization of the
result is that the evaluation was performed on a specialized
framework. As discussed in Section IV-A, common APIs
can have adverse effects on Precise’s performance. Further
studies on the applicability of Precise to diverse frameworks
may be necessary. Due to the limitation of resources, the
programming tasks used in the user study are relatively small
and simple. It is unclear whether the same result can be
obtained on real-world programming tasks which are larger
and more difficult. We are working on a stable version of
the Precise plug-in and hope to integrate it into the Eclipse
Code Recommenders [2]. With a number of real users, we
may be able to obtain more conclusive results.

V. RELATED WORK

API recommendation. Bruch et al. [9] propose Intelligent
Code Completion Systems (ICCS) which learns from exist-
ing programs to recommend API methods. ICCS searches
the code bases for API calls under the similar context
and generates proposals using a customized k-NN algo-
rithm. Similarly, Precise uses data mining techniques to
make recommendations. However, while ICCS exclusively
recommends method calls, Precise aims to predict actual
parameters for method calls. Therefore, Precise can be
seen as an extension to ICCS. Robbes and Lanza [19] use
program history to improve code completion systems. They
model the program history as a sequence of changes and
propose a series of code completion algorithms mainly based
on the method-level and class-level changes. Their work

provides code completion for classes and methods and thus
is different from ours. Hou and Pletcher [14] enhance the
code completion system by introducing new features such
as grouping, sorting and filtering. These features enable the
completion system to reduce the number of API candidates
and rank them in more sophisticated ways, making it easier
for programmers to find the right APIs. Their approach
essentially tries to highlight the most relevant APIs when
there are too many of them to choose. In contrast, Precise
can still be helpful when programmers have to type in
actual parameters (instead of choosing them). Moreover,
Precise recommends API parameters, not APIs. Other tech-
niques [16], [11], [15], [17] have also been proposed to
facilitate the use of APIs. Different from Precise, they do not
focus on parameter recommendation and code completion.
Code search. Code search engines enable developers to
learn the usage of unfamiliar APIs by providing code ex-
amples. Bajracharya et al. [8] create SAS which applies a
grouping and indexing algorithm to search the repository
and shows relevant code snippets. Besides the text search
used by SAS, structural information of program source code
is also used in code search engines, such as SNIFF [10].
SNIFF is more relevant to Precise in that it makes use of
type information to refine its result set. Other approaches
(e.g., [22]) also leverage search engines to facilitate the
reuse of frameworks. Although search-based approaches
effectively help API learning, they still require developers
to pick from the list of search results the right methods
or parameters to be placed in their particular contexts. In
contrast, in Precise, this task is performed automatically. In
Precise, recommendations are proposed in place by the code
completion system, possibly saving some effort of extracting
pieces of information from examples and mapping them to
the right places. Moreover, Precise focuses on structural API
parameters, instead of general code examples.

VI. CONCLUSION AND FUTURE WORK

We have proposed Precise to automatically recommend
actual parameters for APIs. By extracting usage instances
from existing programs, Precise provides useful parameter
recommendations with satisfactory precisions, showing its
ability to improve the state-of-the-art code completion sys-
tems. In our future work, we are planning to study how
to use program evolution information to improve Precise.
Moreover, we will try generative techniques to recommend
parameter usages that are unseen in the code base.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for their
suggestions to improve the paper and to Sai Zhang for
his insightful discussions. This work was supported in part
by National Natural Science Foundation of China (NSFC)
grants 60970009, 60673120, and 91118004.

REFERENCES

[1] Apache Tomcat. http://tomcat.apache.org/.

[2] Eclipse Code Recommenders.
http://www.eclipse.org/recommenders/.

[3] Eclipse JDT API Specification, Eclipse documentation.
http://help.eclipse.org/helios/index.jsp.

[4] Eclipse Project. http://www.eclipse.org/.

[5] JBoss Application Server. http://www.jboss.org/jbossas/.

[6] SWT: The Standard Widget Toolkit.
http://www.eclipse.org/swt/.

[7] The Java Language Specification, Third Edition.
http://docs.oracle.com/javase/specs/jls/se5.0/html/j3TOC.html.

[8] Sushil Bajracharya, Joel Ossher, and Cristina Lopes.
Sourcerer: An internet-scale software repository. In Pro-
ceedings of the 2009 ICSE Workshop on Search-Driven
Development-Users, Infrastructure, Tools and Evaluation,
SUITE ’09, pages 1–4, Washington, DC, USA, 2009. IEEE
Computer Society.

[9] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning
from examples to improve code completion systems. In
Proceedings of the the 7th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT
symposium on The Foundations of Software Engineering,
ESEC/FSE ’09, pages 213–222, New York, NY, USA, 2009.
ACM.

[10] Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen. Sniff:
A search engine for Java using free-form queries. In Proceed-
ings of the 12th International Conference on Fundamental
Approaches to Software Engineering: Held as Part of the Joint
European Conferences on Theory and Practice of Software,
ETAPS 2009, FASE ’09, pages 385–400, Berlin, Heidelberg,
2009. Springer-Verlag.

[11] Barthélémy Dagenais and Martin P. Robillard. Recommend-
ing adaptive changes for framework evolution. In Proceedings
of the 30th International Conference on Software Engineer-
ing, ICSE ’08, pages 481–490, New York, NY, USA, 2008.
ACM.

[12] Sumit Gulwani. Dimensions in program synthesis. In Pro-
ceedings of the 12th international ACM SIGPLAN symposium
on Principles and Practice of Declarative Programming,
PPDP ’10, pages 13–24, New York, NY, USA, 2010. ACM.

[13] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten. The WEKA
data mining software: an update. SIGKDD Explor. Newsl.,
11:10–18, November 2009.

[14] Daqing Hou and David M. Pletcher. Towards a better code
completion system by API grouping, filtering, and popularity-
based ranking. In Proceedings of the 2nd International Work-
shop on Recommendation Systems for Software Engineering,
RSSE ’10, pages 26–30, New York, NY, USA, 2010. ACM.

[15] David Kawrykow and Martin P. Robillard. Improving API
usage through automatic detection of redundant code. In
Proceedings of the 2009 IEEE/ACM International Conference
on Automated Software Engineering, ASE ’09, pages 111–
122, Washington, DC, USA, 2009. IEEE Computer Society.

[16] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimel-
man. Jungloid mining: helping to navigate the API jungle.
In Proceedings of the 2005 ACM SIGPLAN conference on
Programming Language Design and Implementation, PLDI
’05, pages 48–61, New York, NY, USA, 2005. ACM.

[17] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Jr.,
Anh Tuan Nguyen, Miryung Kim, and Tien N. Nguyen.
A graph-based approach to API usage adaptation. In Pro-
ceedings of the ACM international conference on Object
Oriented Programming Systems Languages and Applications,
OOPSLA ’10, pages 302–321, New York, NY, USA, 2010.
ACM.

[18] Michael Pradel and Thomas R. Gross. Detecting anomalies in
the order of equally-typed method arguments. In Proceedings
of the 20th International Symposium on Software Testing and
Analysis, ISSTA ’11, pages 232–242, 2011.

[19] Romain Robbes and Michele Lanza. Improving code comple-
tion with program history. Automated Software Eng., 17:181–
212, June 2010.

[20] Martin P. Robillard. What makes APIs hard to learn? answers
from developers. IEEE Softw., 26:27–34, November 2009.

[21] Jeffrey Stylos, Brad A. Myers, and Zizhuang Yang. Jadeite:
improving API documentation using usage information. In
Proceedings of the 27th international conference Extended
Abstracts on human factors in computing systems, CHI EA
’09, pages 4429–4434, New York, NY, USA, 2009. ACM.

[22] Suresh Thummalapenta and Tao Xie. Parseweb: a program-
mer assistant for reusing open source code on the web. In
Proceedings of the twenty-second IEEE/ACM international
conference on Automated Software Engineering, ASE ’07,
pages 204–213, New York, NY, USA, 2007. ACM.

[23] Ian H. Witten and Eibe Frank. Data Mining: Practical
Machine Learning Tools and Techniques, Second Edition.
Morgan Kaufmann, 2005.

