)

Check for

updates

L DIGITAL Association for
ACM@ LIBRARY o e @"wpe")
£ Latest updates: https://dl.acm.org/doi/10.1145/3763166

RESEARCH-ARTICLE
On Abstraction Refinement for Bayesian Program
Analysis

YUANFENG SHI, Peking University, Beijing, China
YIFAN ZHANG, Peking University, Beijing, China
XIN ZHANG, Peking University, Beijing, China

Open Access Support provided by:
Peking University

PDF Download
},Q 3763166.pdf
. 10 January 2026

Total Citations: 1
Total Downloads: 126

o

Published: 09 October 2025
Accepted: 12 August 2025
Received: 26 March 2025

Citation in BibTeX format

Proceedings of the ACM on Programming Languages, Volume 9, Issue OOPSLA2 (October 2025)
https://doi.org/10.1145/3763166
EISSN: 2475-1421

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3763166
https://dl.acm.org/doi/10.1145/3763166
https://dl.acm.org/doi/10.1145/contrib-99661196483
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/doi/10.1145/contrib-99661197874
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/doi/10.1145/contrib-81758711357
https://dl.acm.org/doi/10.1145/institution-60014966
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3763166&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3763166&domain=pdf&date_stamp=2025-10-09

On Abstraction Refinement for Bayesian Program Analysis

YUANFENG SHI, Peking University, China
YIFAN ZHANG, Peking University, China
XIN ZHANG?, Peking University, China

Bayesian program analysis is a systematic approach to learn from external information for better accuracy
by converting logical deduction in conventional program analysis into Bayesian inference. A key challenge
in Bayesian program analysis is how to select program abstractions to effectively generalize from external
information. A recent approach addresses this challenge by learning a selection policy on training programs
but may result in sub-optimal performance on new programs due to its learning nature and when the training
set selection is not ideal. To address this problem, we propose an approach that is inspired by the framework of
counterexample-guided refinement to search for an abstraction on the fly. Our key innovation is to apply the
theory of conditional independence to refine the abstraction so that incorrect generalizations can be removed.
To demonstrate the effectiveness of our approach, we have instantiated it on a Bayesian thread-escape analysis
and a Bayesian datarace analysis and shown that it significantly improves the performance of the analyses.

CCS Concepts: » Software and its engineering — Automated static analysis.

Additional Key Words and Phrases: Static Analysis, Bayesian Network, Alarm Ranking, Machine Learning for
Program Analysis, Abstraction Refinement

ACM Reference Format:
Yuanfeng Shi, Yifan Zhang, and Xin Zhang. 2025. On Abstraction Refinement for Bayesian Program Analysis.
Proc. ACM Program. Lang. 9, OOPSLAZ2, Article 388 (October 2025), 27 pages. https://doi.org/10.1145/3763166

1 Introduction

Bayesian program analysis is a new type of program analysis that emerged in recent years [11, 19, 30,
39,52, 53]. More than a set of alarms which a traditional analysis reports, it additionally computes the
confidence value of each alarm. The main idea behind such analyses is integrating probability into
the traditional logic-based program analysis [52]. Each analysis rule is assigned with a parameter
as the probability to be valid. While the probability part can handle uncertainties in analysis design,
the logic part retains the advantages of being concise, precise, explainable, and rigorously formal as
before. Besides, by converting the logical deduction of traditional analyses into Bayesian inference,
this approach acquires learning abilities and automatic adaptation capabilities from the posterior
information, such as learning users’ feedback and incorporating dynamic information. For instance,
the framework named Bingo [39] can learn from users’ binary feedback on certain alarms and

“Corresponding author.

Authors’ Contact Information: Yuanfeng Shi, Key Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education; School of Computer Science, Peking University, Beijing, China, friedrich22@stu.pku.edu.cn; Yifan
Zhang, Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education; School of
Computer Science, Peking University, Beijing, China, yfzhang23@stu.pku.edu.cn; Xin Zhang, Key Laboratory of High Con-
fidence Software Technologies (Peking University), Ministry of Education; School of Computer Science, Peking University,
Beijing, China, xin@pku.edu.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART388

https://doi.org/lo.l145/3763166

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

https://orcid.org/0009-0007-9656-8889
https://orcid.org/0009-0005-2061-0273
https://orcid.org/0000-0002-1515-7145
https://doi.org/10.1145/3763166
https://orcid.org/0009-0007-9656-8889
https://orcid.org/0009-0005-2061-0273
https://orcid.org/0009-0005-2061-0273
https://orcid.org/0000-0002-1515-7145
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763166
https://www.acm.org/publications/policies/artifact-review-and-badging-current

388:2 Yuanfeng Shi, Yifan Zhang, and Xin Zhang

generalize this information to produce better probabilities for other alarms. This in turn improves
the overall ranking of these alarms, therefore improving the analysis’ precision’.

Just like traditional program analysis, the choice of program abstraction is crucial in Bayesian
program analysis. As any non-trivial program analysis problem is theoretically undecidable in
the worst case [41], program analysis requires abstracting program semantics. Actually, in both
traditional and Bayesian program analyses, every single abstract program state is used to represent
multiple possible concrete program states, and all reachable abstract program states will be com-
puted to find all reachable concrete program states. This approach approximates a hard program
analysis problem into a tractable one, and the abstraction granularity controls the precision and
the scalability of the analysis. A key design problem is how to choose an abstraction that balances
the trade-off between precision and scalability for complex real-world problems.

However, compared to the case of traditional analyses, abstraction granularity also controls
the ability to generalize from the posterior information in Bayesian analyses. Since a Bayesian
program analysis consists of a learning process, it suffers from the classical over-generalization
(or over-fitting) problem. Under a coarse program abstraction, due to the confusion of semantic
information, it may assign false relevance between facts and is more likely to regard features in the
posterior information as general properties. As a result, the analysis will not only exclude false
positive alarms, but also mistakenly reduce the confidence values of many true positive alarms.
On the other hand, using a too fine-grained abstraction will limit the generalization of posterior
information. Moreover, such posterior information (e.g., user labels) is usually expensive to obtain.
Hence, it is critical to choose the proper abstraction granularity for Bayesian program analyses.

A recent work [53], BINGRAPH, addresses this problem by training a model that predicts a good
abstraction in terms of generalization for a given program. However, such an offline learning-based
approach can lead to sub-optimal performance due to the approximation nature of machine learning
techniques and when the new program is out of the distribution of the training programs.

In this paper, we complement the above approach by proposing an online abstraction-search ap-
proach that is inspired by the classical counterexample-guided refinement (CEGAR) technique [14].
Given a family of abstractions, similar to CEGAR, our approach starts from a given abstraction and
iteratively refines it. The abstraction can be the coarsest one in the family or produced by the offline
learning approach. Different from CEGAR, instead of trying to eliminate analysis derivations that
lead to false alarms, our approach tries to eliminate derivations that lead to incorrect generalizations.
Meanwhile, our approach also tries to keep derivations that lead to correct generalizations.

The existence of probabilities adds additional complexities to our problem as the conventional
logic-based approach to eliminate analysis derivation does not work. To address this issue, we lever-
age the theory of conditional independence [4, Chapter 8.2] and build an information-transmission
graph from the analysis derivation. To keep correct generalizations and remove incorrect ones,
the refinement problem is cast as a minimum-cut problem while preserving connectivity between
some nodes on the graph. The problem has shown to be a NP-hard problem [15]. To solve it, we
propose an effective maximum satisfiability [35] encoding and applies an existing solver [32].

We have implemented our approach in a framework called BAYESREFINE for program analyses
expressed in Datalog, a popular declarative language for expressing program analyses [3, 7, 20, 29,
40, 42-44, 47]. BAYESREFINE automates the workflow of our approach from derivation extraction
to the final constraint solving that removes incorrect generalization for Datalog-based analyses.
We have evaluated its effectiveness with a thread-escape analysis and a datarace analysis [37]
on a suite of Java programs, each comprising 95-369 KLOC. We apply BAYESREFINE to refine

1For conventional analyses, precision means true positive rate. For a Bayesian analyses, precision is not only determined by
the alarms it derives, but also the ranking of these alarms.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

On Abstraction Refinement for Bayesian Program Analysis 388:3

1 readInputOdd() { 8

2 return input1(); //i1 9 x1 =1/ (readInput0dd() + readInputEven()); //i11,i21
33 10 y = readInputEven(); //i2y

4 M x2=17/y;

5 readInputEven() { 12 x3 =1 / (readInputOdd() - readInputEven()); //i13,i23
6 return input2(); //i2 13 x4 =-11/vy;

7 3 14 x5 =1 / (readInputEven() - readInputOdd()); //i15,i25

Fig. 1. Example program.

abstractions produced by BINGRAPH, in the interactive alarm resolution use case of Bayesian

analysis. BAYESREFINE improves BINGRAPH’s performance on these two analyses by 18.86% and

33.01% respectively. The improvement on the datarace analysis can increase to 46.88% when the

training set selection of BINGRAPH is not optimal.
In summary, the contributions of this paper are:

o We propose an online abstraction-search framework that is akin to CEGAR to solve the abstraction
selection problem for Bayesian program analyses.

e We propose a technique that identifies the abstraction to refine by leveraging the theory of
conditional independence.

e We evaluate our approach with two realistic analyses on large programs and demonstrate
significant improvements to an existing offline learning-based abstraction selection technique.

2 Overview

This section introduces our approach informally with a graph reachability example, which reflects
the core spirit of a “division-by-zero” analysis without exposing its complexity.

2.1 Example Program and the Dataflow Analysis Problem

Figure 1 shows an example program, which performs numerical computation using integers
returned by invoking methods readInputodd and readInputEven. These two methods are implemented
by invoking library methods input1 and input2. The method input1 always generates odd numbers,
while input2 always generates even numbers. In line 9,12,14, both readInputodd and readInputEven
are called: At each line, after performing addition or subtraction using the two returned integers,
the result is used as divisor in an integer division (in the assignment of variables x1, x3 and x5). In
line 10, only readInputEven is called and the returned integer is assigned to variable y, which is then
used as a divisor in line 11 and line 14 when calculating x2 and x4 respectively. A dataflow analysis
is applied to resolve potential “division-by-zero” alarms: For i = 1,2, 3,4, 5, there is a bug in the
assignment of xi when the divisor can be zero, and we denote the corresponding potential alarm
query as q;. While alarms g, and g4 are true, alarms q;, g3, and gs are false. This is because in the
assignments to x1, x3 and x5, the divisors are always odd numbers, while the value assigned to y by
readInputEven in line 10 may be zero. Proving this fact requires correctly capturing specifications of
the library methods input1 and input2.

However, due to the source code being inaccessible (e.g., Windows APIs) or scalability concerns,
it is very typical that program analyses cannot reason about all library methods. Here we assume
the analysis does not know the specifications of input1 and input2, and conservatively assumes they
can return any number. As a result, the analysis works like a taint analysis and assumes that any
number that is computed directed or indirectly using values returned (or “tainted”) by either of the
two library calls can be any number. Therefore it reports all five alarms.

To resolve the imprecision incurred by the unknown library specifications, we follow the previous
approach [39] to convert the analysis into a Bayesian one by attaching probabilities, and boost

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

388:4 Yuanfeng Shi, Yifan Zhang, and Xin Zhang

Input relations:
edge(u,u,k) (edge from node u to node v labeled k)

abs (k) (edge labeled k is allowed)
taint(u) (potential tainted dataflow from u)
Derived relations:
path(u, v) (node v is reachable from node u)
alarm(u) (potential division-by-0 alarm in node u)
Rules: (1): path(u,u).
(2): path(u,v) : — path(u, w), edge(w, v, k), abs(k).

(3): alarm(o) : —path(u,v), taint(u).
Input tuples: edge(il,x1,e?),edge(i11,x1,¢e}),- - -, taint(i1), taint(i2), taint(i11), taint(i21)---
Abstraction tuples: abs(e?) @ abs(e}),--,abs(f?) @ abs(f;!), - - ,abs(¢°) ® abs(g')
Derived tuples: path(i1,i1),path(i1,x1),---,path(i2,i2),path(i2,x1),---,alarm(x1),---

Fig. 2. Datalog analysis for the graph reachability problem.

the analysis precision using user feedback. Briefly, the analysis produces a ranking of alarms
by computing their confidence scores, and refines the ranking by asking the user to label the
top-ranked alarm iteratively. Such interaction can continue as long as the user likes. In general,
the earlier the true alarms are discovered, the better the user’s experience is. For simplicity, we
measure how many turns are needed to discover all true alarms.

Finally, the analysis is a selectively context-sensitive analysis which is parameterized by whether
a readInput0Odd Or readInputEven invocation is inlined. Although no matter what abstraction produced
by tweaking the context sensitivity cannot resolve the false alarms directly, we will show that
they do affect how user feedback generalizes in the Bayesian analysis and demonstrate how our
approach finds an appropriate abstraction on the fly.

2.2 The Graph Reachability Problem

For exposition purposes, we cast the dataflow analysis problem as a graph reachability problem,
whose encoding is visualized in the graph shown in Figure 2. Node i1 and i2 represent invocations
to input1 and input2 respectively, and node y represents variable y. Node xk represents variables
xk (k =1,2,3,4,5), where the subgraph in the dotted polygon repeats for x1, x3, and x5. The edges
denote dataflows in the program and the analysis reports an alarm g; if i1 or i2 can reach a variable
node xi. Finally, the analysis is selectively context-sensitive in a way that it can choose to inline an
invocation to readInputOdd or readInputEven, which effectively distinguishes different invocations to
input1 or input2. We represent an inlining as creating a copy of the corresponding node (e.g., i11 for
i1 when the invocation to readInputodd in the assignment to x1 is inlined). We label the edges and use
an array of labels in the form of {e? or e], e) or e;,) or es, 2 or f{, f or f1, f2 or £, ¢° or g'} to
denote the abstraction, which is a binary array of choices in inlining. Here the e and f edges denote
flows from input1 and input2 to x variables respectively, the g edges denote the flow from input2 to
y, and the superscripts denote whether the corresponding method call is inlined. Figures 3 to 5
show the graphs under different abstractions where the edges are chosen based on the labels in the
abstraction. Note that even though all alarms are derived under these abstractions, the connectivity
between nodes is different.

Figure 2 shows the parametric analysis in Datalog, which takes tuples in input relations, and
derives output tuples by computing the least fixed-point of the rules. In input relations, taint(u)
represents that the dataflow from node u is tainted, which reflects the analysis’ imprecision in library
specifications. All the input relations are fixed except the abs relation, which specifies the analysis
abstraction. Figure 2 lists the input tuples at the bottom and separately lists the possible choices of
abs tuples where @ denotes xor. The derived relation path contains pair (u,v), representing that
node v is reachable from node u along a path with only edges whose labels appear in relation abs.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

On Abstraction Refinement for Bayesian Program Analysis 388:5

Fig. 3. Graph encoding under Fig. 4. Graph encoding under Fig. 5. Graph encoding under
abs = {e0, 0, e0, £0, £0, 0,60} abs = {el, e, el, 1, 0, £0,6%). abs = {el, 0, e, £, £0, £, g1}.

[abs(r)][edgetiz, x1./) |[pathi2,i2) |[edgetiz,y, g%][abs(a® |
7

gr3
a3 < [edgely. 2. 9 [path(L, iv) | [path(2, 2) |—grfe—rabsg®)
gr$ ﬂvr% gmg\-gr\;‘
[path(iz,x1) | [taint(2) | ‘path(é‘ 2 | [parh '1) | F’ath(/ v | pa‘h (i1, x3) H path(L, x3) | /9/"‘(5
2 gr gr3 gr§ gr3 qr; path(il, x2)
Fig. 6. A part of the derivation graph Fig. 7. The mformatlon—transmlssxon graph starting
(abs = {eO 9, ¢l f1 f3 9.g°}). from alarm(x1).

The ultimate goal of the analysis is to derive alarm tuples alarm(u) that represent that a potentially
tainted dataflow reaches node u. The computation of alarm is expressed by rules (1),(2) and (3) all
of which are Horn clauses with implicit universal quantification. Rule (1) states that each node
is reachable from itself. Rule (2) states that if node w is reachable from node u and edge (w,v) is
allowed, then node v is reachable from node u. Rule (3) states that if node v is reachable from node
u and the dataflow from u is tainted, then there is a potential alarm in node v. The analysis will
derive all five alarms no matter what abstraction is used as copies of i1 and i2 are also tainted.

2.3 The Bayesian Analysis and the Over-Generalization Problem

We next try to address the imprecision by converting the analysis into a Bayesian one so that the
user can prioritize inspecting true alarms, and demonstrate how it is failed by an inappropriate
abstraction. The Bayesian analysis is implemented as a Bayesian network, which is constructed
from the derivation of the above Datalog analysis.

To start, we apply the cheapest abstraction abs = {e?, 3, 2, f, f, f2, g°} where no method
is inlined, which is a default choice in many cases. Next we construct a derivation graph that
shows reasoning steps to derive all alarms under abs. For simplicity, we denote alarm(xi) as g;
(i=1,2,---,5). Figure 6 shows the key part of the graph to derive ¢q; and g,. Each instantiation of
a rule is encoded as a ground rule node. For instance, ground rule node grz2 represents path(i2,x1)
: - path(i2,i2), edge(iZ,x],flO), abs(flo), and gr32 represents alarm(x1) : - path(i2,x1), taint(i2). Then,
we convert the derivation graph into a Bayesian network following the previous work [39]: We
do it by quantifying the incompleteness of each rule as a probability. In practice, one can learn
these probabilities, but for illustration, we assign 0.99 to all the rules here. We use universally
quantified variables gr, and grs to denote ground rule nodes of rule (2) and (3) respectively, and the
conditional probabilities are (Note all variables below are universally quantified):

Pr(gry | path(u, w) A edge(w,v,k) A abs(k)) = 0.99 Pr(path(u,u)) = 0.99
Pr(gry | = path(u, w) V = edge(w,v,k) V —abs(k)) =0

Pr(grs | path(u,v) A taint(u)) = 0.99 Pr(grs | = path(u,v) V = taint(u)) =0

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

388:6 Yuanfeng Shi, Yifan Zhang, and Xin Zhang

Rank Alarm Prob.

Rank Alarm Prob. Rank Alarm Prob.
1 0.999
) 7 0,99 1 g3 0878 1 g2 0961
: s 0,999 2 gs 0878 2 gs 0.961
Y 35 0.961 3 g 0.644 3 g3 0.878
2 .
4 0.644 4 0.878
5 gs 0961 Ll 95

Fig. 9. Ranking after inspecting q1 Fig. 10. Ranking after inspecting q1

Fig. 8. Original ranking.
' rigtnal ranking with abs = {e(l], eg, eg,flo,ﬁjo,]go,go}. with abs = {e(l], eg, eg,flo,]go,]go,gl}.

And for tuples path(u, v) and alarm(u*), we suppose that all the ground rule nodes which have an
directed edge pointing to it are gr;, grz, ..., grs and gr;, gr, ..., gr§ respectively, then we have:
Pr(path(u,0) | gry Vgri Vv ---Vgry) =1 Pr(path(u,0) | ~gry A=gri A...A=grl)=0
Pr(alarm(u®) | gry VgriV---Vvgry) =1 Pr(alarm(u*) | ~grs A=gri A...A=grj) =0

At first, the Bayesian program analysis calculates the confidence value Pr(g;) for each alarm ¢;,
and the ranking of alarms ordered by it is shown in Figure 8. Next the user inspects the top alarm
q1 and labels it to be false. Then Bayesian inference is performed to compute the probabilities of
other alarms Pr(q; | = q;) conditioned on — g;. Figure 9 shows the new ranking according to the
posterior probabilities. Notice under the cheapest abstraction the five alarms are closely related in
the Bayesian inference network (see Figure 3), and hence their confidence values all drop. After
that, the user needs to inspect false alarms g3 and g5 before the last two true alarms are observed.
As a result, in order to discover all true alarms, the user needs to inspect all the three false alarms.

This result is due to the over-generalization: Under abstraction {e?, e3, e2, f, f7, f2, g°}, the ob-
servation on false alarm ¢; not only degrades the probabilities of other correlated false alarms (e.g.
g3 and gs), but also has an undesired generalization to true alarms (e.g. g2 and q4). In Figure 6, we
can see that the negative feedback excessively blames the common ancestor of alarms path(i2,i2),
as Bayesian analysis decreases its posterior probability which in turn leads to the drop of confi-
dence values of its descendants including those true alarms. On the other hand, under abstraction
{ed, el e2, f2, £, 2, g}, the negative feedback on g; only affects the false alarms (see Figure 5),
which enables the user to inspect the true alarms g, and g4 first.

2.4 Our Approach

Our solution is to perform abstraction refinement to alleviate undesired connections between true
and false alarms in the Bayesian networks. Notice that there are 128 abstractions in total, each
involving a different choice of the zero/one versions of edge labels. Our goal is to choose proper
labels that removes undesired generalizations. For instance, changing e! to e] will not break our
aimed connection as shown in Figures 3 and 4. Besides, we also wish to minimize the cost of the
refined abstraction for efficiency. Abstractions with more zero versions of edge labels are cheaper.

Our approach is inspired by iterative counterexample-guided abstraction refinement (CEGAR),
but the technical details are drastically different. It first samples alarms for the user to inspect to
determine if the current generalization is correct, then constructs a graph to reflect information
transmission on the Bayesian network, and finally removes incorrect generalizations by solving a
maximum satisfiability (Max-SAT) problem. We next explain each step in detail.

After receiving the negative feedback on ¢g; and updating the ranking, to see whether its gener-
alization is desired, we ask the user to inspect k unobserved alarms whose ranks drop the most.
Here we focus on rank drops because after getting negative feedback, the increase in an alarm’s
rank is typically caused by drops in other alarms’ probabilities. The chosen alarms also exclude
ones that are not connected to q; as their probabilities are not affected by the feedback. In this
example, we set k = 2. We suppose the program in Figure 1 is excerpted from a larger program,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

On Abstraction Refinement for Bayesian Program Analysis 388:7

and there are other “division-by-zero” alarms but they are not related to methods readinputodd and
readInputEven. Therefore, their confidence values are not affected by the user feedback, and ranks of
qi (i = 2,3,4,5) drop compared with them. Then we ask the user to inspect g, and g3 since the order
between g, — g5 remains unchanged as shown in Figures 8 and 9. Next we divide those checked
alarms into two sets depending on whether their confidence values change correctly based on
their ground truth. Here ¢, is true, but its confidence value dropped, so it falsely changes. Such
false generalizations are similar to counterexamples in conventional CEGAR. On the other hand,
the confidence value of false alarm g3 drops, so we can say that it correctly changes. We hope to
preserve such correct generalizations, which has no counterparts in conventional CEGAR.

Our key idea is to remove the undesired generalizations through refining the abstraction in
the hope that other unchecked false generalizations are also removed while keeping correct
generalizations. Concretely, we construct a graph & atop the original Bayesian network, which
shows the transmission of posterior information from the label on the recently observed alarm.
The graph is constructed based on the theory of conditional independence. For details the reader
can refer to Section 5, while in the rest of this section we will describe final steps in our example.
Figure 7 shows a simplified version of our constructed & for the example program, where all the
input tuples except abs(g°) are removed. All we need to do is to separate the source alarm from
those whose ranks falsely change while preserving connections to those whose ranks correctly
change. In this example, it is to separate q; from g, and keep connections between g; and gs. It can
be realized by removing any node on the path from path(i2,i2) to ¢, (the blue path in Figure 7),
and the only related abstraction tuple is g°. Besides, we also want to minimize the set of edge labels
that need to refine for efficiency. This problem is similar to a minimum cut problem on a graph with
connectivity constraints, a NP-hard problem [15]. We solve it by casting it as a Max-SAT problem.

By solving the Max-SAT problem, we change gy to ¢;. Using this refined abstraction abs =
{e(l), eg, e(s), flo, fSO, fso, gl}, we re-calculate the posterior probability of each alarm and get a new
ranking as in Figure 10. Under this new abstraction, because the connections between true alarms
{q2, g4} and false alarms {gs, g5} are cut off, the observation on {q2, g4} will not affect {qs, g5}
Therefore, both true alarms are ranked higher than the false alarms. Although the user needs to
inspect g3 during sampling, the number of observed false alarms reduces from 3 to 2.

In this way, given a single unexpected generalization from the user’s observation on a single
alarm, our approach refines abstraction to reduce the user’s alarm inspection burden of false alarms
compared to original Bayesian program analysis.

3 Preliminaries

This section introduces necessary notations for describing our approach. We implement Bayesian
program analysis by converting a Datalog-based analysis into a Bayesian network. For simplicity,
we have limited our discussion to the original Datalog, but there should be no difficulty in expanding
to its variants, such as Flix[29] and Formulog[3], as their proof structures are still graphs. Next, we
will introduce the syntax and semantics of a Datalog program, a Datalog analysis with parametric
abstractions, and how to convert a Datalog analysis into a Bayesian network.

3.1 Syntax and Semantics of Datalog

Figure 11(a) shows the syntax of Datalog. A set of input tuples T; C T and a set of derivation rules
C ¢ C form a Datalog program D = (Tj,C). Each derivation rule has a head consisting of one
literal (the result), and a body consisting of a list of literals (the condition). A literal is a relation
name r followed by a list of arguments. We refer to a literal with only constants as a tuple. We
define o € ¥ =L — T to be a substitution function mapping a literal [= r(ay, a, . .., an) to a tuple
o(l) =r(dy,dy,...,d,) where there exists ¢’ € V + D such that d; = a; if a; € D else d; = ¢/ (a;).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

388:8 Yuanfeng Shi, Yifan Zhang, and Xin Zhang

(Datalog Program) D == (T1,C) (Rule) cu=1:-1eC (Literal) 1l:=r(a) el
(Argument) a:==d|v (Tuple) t:=r(d)eT (Ground Rule) gcu==1t:—t
(a) Syntax of Datalog
(Variable) veV (Constant) deD (Relation Name) reR
(Alarm) qeQcCcT (Abstraction) Ae A C P(T) (Substitution) ocelLm—T

(Input tuples) Tr € P(T) (Derivation rules) C € P(C)
(b) Auxiliary definitions
Fe, fe € P(T) — P(T) Fo(T)=TU{fe(T) | ceC}
Sty 1,(T) ={c(lo) | o(l;) e Tfor 1 < i < n,0 € X}
(c) Semantics of Datalog

Fig. 11. Syntax and semantics of Datalog.

Figure 11(c) describes the semantics of Datalog. Specifically, function f;,_;, . ; derives a tuple
from known tuples - if there exists a substitution ¢ such that o(l;), o(ly), - - -, o(l,) are all known,
o (lp) is derived. Function Fe computes output tuples by applying f. for each rule ¢ in C to a given
set of tuples for one round. Then we define the output tuples of a Datalog program D as [[D]] € T,
that is obtained by repeatedly applying Fc. Concretely, the initial T is set to T; and we iteratively
change T to Fc(T) until reaching the least fixpoint Ty = Fc(Tf), at which point Ty is [[D]].

The above derivation process can be modeled as a derivation graph G(D) = [V, E]. First by
replacing all literals with all possible output tuples in [[D]], each rule is transformed to a set of
ground rules. The transformation fromrule c = Iy :- Iy, ..., [, to ground rule gc =ty :- t1,..., t, is
possible when there exists a substitution functiono € Xand o(l;) = t; € [[D] holdsfori =0,1,...,n.
Then we denote the set of all ground rules as GC(D), and define the node set V of derivation graph
G as GC(D) U [[D]]. At last, for each gc = tg :- t1,...,t, € GC(D), we construct n + 1 directed
edges (t1,9c), ..., (tn, gc), (gc, o) in E, and hence complete the derivation graph G(D).

Example. Take the incomplete derivation graph in Figure 6 as instance: A ground rule is path(i2,x1)
: - edge(i2, x1,), path(i2,12), abs(f;), and gr? is its corresponding node in G(D).

3.2 Datalog Program Analysis with Parametric Abstractions

For a Datalog program implementing an analysis with parametric abstractions, its input consists of
two parts: (1) tuples that encode the program being analyzed, (2) tuples that determine the degree
of program abstraction. We refer to the set containing all input tuples in (2) as an abstraction.
Only abstractions will be changed by our approach, while the remaining input tuples will not.

Example. In Figure 2, for the Datalog encoding of our graph reachability problem, the input
tuples of taint and edge belong to (1), while the input tuples of the abs relation belong to (2).

An alarm g € Q is a special kind of tuple that represents a report for a bug or an undesirable
program property. A set of alarms Q can be divided into two sets (R(Q), I (Q)), representing false
alarms and true alarms respectively. In other words, the bugs or properties described by R(Q)
actually do not arise during the execution of the given program. The output tuples of Datalog
program D based on an abstraction A € A is defined as [[D, A]]. Suppose Q contains all possible
alarms, then the output alarms of D using A are Q N [D, A]]. Suppose the analysis is always sound,
then when changing the abstraction A, the true alarm part 7 (Q N [[D, A]]) will remain the same.

Example. The set of alarms in our graph reachability example is Q where R(Q) = {alarm(x1),
alarm(x3),alarm(x5)}, 7 (Q) = {alarm(x2), alarm(x4)}.

To efficiently search for a good abstraction, abstraction selection approaches for conventional
analyses typically assume there exists a precision preorder C on the family of abstractions. How

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

On Abstraction Refinement for Bayesian Program Analysis 388:9

to define this preorder depends on the analysis but it should satisfy that a more precise analysis
would not produce more false alarms. In our case, we encode this precision preorder as the size
order of parameters in abstractions. Take our graph reachability example for instance, in the family
A of valid abstractiqns, A = {abs(eil), abs(eéz), abs(e?), abs(fli‘*), abs(fSiS), abs(fsi"), abs(g"7)} and
Ay = {abs(e]"), abs(eéz), abs(ef), abs(f7*), abs(315), abs(516), abs(g’7)}. They are ordered as follows:
A1 C A ifand only if i < ji (Vk € {1,2,---,7}). With this encoding, for an abstraction A and a
subset of it Agjecr C A, we can find a more precise abstraction A’ by only changing parameters in
tuples of Agejecs- As for the main focus of this work, learnability and generalization, we will give a
vital assumption about them on C in Section 5.2.

3.3 Bayesian Program Analysis with Parametric Abstractions

We make a conventional analysis Bayesian by converting its derivation graph into a Bayesian
network. For Datalog program 9 equipped with abstraction A, its ground rules and derivation
graph are defined as GC(D, A) and G(D, A) respectively. To convert G(D, A) into a Bayesian
network, we follow previous works [11, 19, 21, 39] and apply an approximation which removes
ground rules that can form cycles. In the rest of the paper, we assume G(D, A) = [V, E] is acyclic.

When converting a derivation graph to a Bayesian network, a Bernoulli random variable x(v) is
created for each v in V. Then we attach a probability to each rule in the original Datalog program D,
indicating how likely the rule holds. We obtain such probabilities through a training process using
the expectation maximization algorithm [24]. For a ground rule gc = t; :- t4, .. ., t,, We assume its
corresponding rule is assigned with probability p and create edges with conditional probabilities
Pr(x(ge) | x(t1) A x(t2) A A x(tn)) = p and Pr(x(ge) | ~x(tr) V =x(tz) V -+ V =x(tn)) = 0.
For each tuple t € [[D, A]], let all the ground rules that can derive it be gc,, gc,, . . ., gc,,, we create
edges between their corresponding random variables with conditional probabilities Pr(x(t) |
x(gey) V x(ge,) V -+ V x(gc,)) = 1 and Pr(x(t) | ~x(gc;) A =x(gcy) A -+ A —x(gc,)) = 0.

Finally, we introduce interactive alarm resolution, the specific use case of Bayesian program
analysis considered in this paper. In this application, the analysis system initially uses a Datalog
program D with an abstraction A, to derive a set Q as possible alarms. Then after converting
the derivation graph G(D, Ap) to a Bayesian network, the system will interact with the user for
multiple rounds. In each round, the analysis presents an alarm to the user and receives a binary
feedback, indicating whether the alarm is a true positive. In the ith-round, the Bayesian analysis
system employs a probability inference algorithm [36] on the Bayesian network to calculate the
marginal probability of each alarm, and presents the alarm with the highest probability, a =
arg maxseq Pr (x(¢) | Aj=12...i-1 €j) given existing user feedback. Here e; represents the received
user feedback at the ith-round: If a is true then e; = x(a) else e; = =x(a). The user feedback is
added as an evidence to the Bayesian network. The interaction can continue as long as the user
wants. In general, the earlier the true positives are presented, the better the user’s experience is. The
user can pick different termination conditions in practice (e.g., when a given number of consecutive
false positives are reported). But in an experimental setting, one way to measure the performance
of such an interactive analysis is to count the number of interactions that is required to discover all
the true positives (denoted by 7 (Q)). This is the main metric we will use in the paper.

4 Problem Definition

With notations in Section 3, we define our problem formally as below:

Definition 4.1 (Optimum Abstraction Problem of Bayesian Program Analysis). Given a
Datalog program P parameterized with an abstraction family (A, C), a set Q which consists of all

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

388:10 Yuanfeng Shi, Yifan Zhang, and Xin Zhang

BayesReﬁne ..
A Inputs ‘
——————>_~{ Output: : \WaWa e H
] (%)
Program to be Analysis : Ilzbztractlolz Samplmg
analyzed specified in efinemen :
DT 1 R :

l
* . / Ranked \. ®

alarms -
Derivation Bayesian \ / User
graph Network : :
v -
Labeled

alarms

Fig. 12. Overall workflow of BAYESREFINE

its possible alarms, the optimum abstraction problem in interactive alarm resolution is to find an
A € A under which the number of interactions to identify all true alarms (7 (Q)) is the smallest.

A natural idea is to use traditional abstraction selection approaches, which try to search for
precise yet efficient abstractions. However, the premise of it is that the more precise the abstraction
is, the better the generalization in Bayesian analysis is. This assumption has been invalidated in
the BINGRAPH paper [53] as a too fine-grained abstraction can unnecessarily break the correlations
between program facts, and lead to overfitting. For example, inlining every method invocation in
the example in Section 2 would render user feedback useless. BINGRAPH addresses the problem
using a learning-based approach but is heavily affected by the training set selection and can
yield sub-optimal performance on new programs. We next present our approach, which tunes the
abstraction on the fly by analyzing why the current abstraction causes false generalization.

5 Our Framework

Our framework, BAYESREFINE, refines abstractions based on the effect of generalization during
interactions, whose high-level workflow and overall algorithm are presented in Section 5.1. It
achieves high automation while remaining efficient for two main ideas. The first is to model the
problem of finding a refined abstraction as cutting and preserving information transmission in a
Bayesian network (described in Section 5.2). The second is to reduce that problem further into Max-
SAT (described in Section 5.3). We have implemented BAYESREFINE atop BINGO, which performs
Bayesian network inference by using loopy belief propagation implemented in LibDAIT [34].

5.1 Workflow

Figure 12 shows the workflow of our framework, BAYESREFINE. Our framework takes as input a
program and a conventional analysis specified in Datalog that is parameterized by an abstraction
family (A,). It first runs the analysis with an initial abstraction A, € A and converts the analysis
derivation on the graph into a Bayesian network following the procedure described in Section 3.3.
The initial abstraction Ay can be the coarsest abstraction in the abstraction family or an abstraction
produced by an offline selection method such as BINGRAPH [53].

Next, our framework performs interactive alarm resolution as described in Section 3.3. In each
interaction, the alarm with the highest probability is presented to the user for inspection. The user
then indicates whether it is true, and this posterior information is incorporated as evidence in the
following iterations. This interaction process is illustrated as the blue arrows in the bottom-right
corner of Figure 12. In addition, we introduce a module for abstraction refinement in our framework

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

On Abstraction Refinement for Bayesian Program Analysis 388:11

Algorithm 1 Counterexample-based Abstraction Refinement Algorithm.

Require: (D, Ay, Q), where D is the Datalog-expressed program analysis, Ay is the initial abstrac-
tion, and @ is the set of unsolved alarms.
1: procedure BAYESREFINE(D, Ay, Q)

2 A« AO’ Q — Q, Qobserved — @,e « @, count < 0

3: while the termination condition is not satisfied do

4: L« [¢q1,92---,qn], where Q = {q1,¢2,...,qn} and V1 < i < j < n,Pr(x(q;) | €) >
Pr (x(q;) | €) (L is a list of Q ranked by alarms’ probabilities before user’s feedback)

5: etemp < user’s inSPeCtion of q1, e—eAn etemp: Q — Q\{fh}, Qobserved — Qobserved V) {Ch}

6: count « 0 if q; is a true alarm, count < count + 1 if q; is a false alarm

7: L* « [q.9,....q,_,], where O = {q},q,...,q,_,} (which is equal to the set

{q2.93,....qn}) and ¥1 < i < j < n—1,Pr(x(q}) | &) > Pr (x(qj.) | é) (L* is a list of O

ranked by alarms’ probabilities after user’s feedback)

8: if count > k; then

9: qd=19,.9---, q;cz}, where ¢ is the set of k; alarms of Q which have largest rank
drops from L to L*.

10: €sample < User’s inspection of g, & < € A egample, Q — O\

11: (A’ lfReﬁned) — REFINE(QI’ G, Qobserveds D, A e)

12: Qobserved — Qobserved U q’ Q — Q n [[Ds A]]

13: if ifRefined then count «— 0

(the green arrows in Figure 12). It samples several alarms for the user to inspect, and then checks
if changes of their probabilities incurred by the newly added evidence are in the correct direction
according to their ground truth. Instructed by this information, the module performs abstraction
refinement. Then with the newly produced abstraction, the interaction goes to the next iteration
by rerunning the analysis to update the Bayesian network.

Our main algorithm (Algorithm 1) formally describes the iterative abstraction refinement part.
The set of unsolved alarms Q contains all possible alarms derived using the initial abstraction A,.
We denote the set of alarms that have been inspected by the user as Q,pserveq and the corresponding
evidence as . We use a variable count to record the number of false alarms that have been
continuously observed, and it is initialized as 0. Later, the abstraction refinement will be only
triggered when count exceeds a threshold k. Intuitively, if the user keeps seeing true alarms, it
means the Bayesian analysis is predicting correctly and there needs no adjustment. On the other
hand, a large count indicates the user feedback is generalizing badly and the abstraction needs to
be adjusted. Moreover, the threshold controls the frequency of abstraction refinement as applying
it too frequently may affect the overall efficiency.

In Line 4, for each ¢ in Q, x(q) denotes the Bernoulli random variable representing whether g
is a true alarm. Then in Lines 4 to 7, the user inspects the alarm with the highest probability and
the algorithm generates two lists L and L* ranked by the alarms’ probabilities before and after the
user’s feedback. If count exceeds the threshold k;, we will sample k, alarms which have the largest
rank drops conditioned on user’s inspection in Line 9, since they are affected most by the negative
feedback provided by the user. Next these sampled alarms are inspected by the user and removed
from set Q, and the evidence € will be modified according to user’s feedback in Line 10. After that,
in Line 11 the algorithm uses the sampled alarms g, observed alarms Qgpserveq and the recently
inspected alarm ¢, to perform abstraction refinement in function REFINE. Finally, in Line 12 the
algorithm adds alarms observed in this iteration to Qopserveds and alarms that cannot be derived

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

388:12 Yuanfeng Shi, Yifan Zhang, and Xin Zhang

Algorithm 2 Function REFINE

ReqUire: q1, q: Qobserved: D,A e
1: Z(G(D,A), Qobserved> 1) «— GENINFOTRANSGRAPH(D, A, Qobserveds 415 €)
2: p «— GENMAXSAT(Z (G(D, A), Qobserveds 41)» G- 41, €)
3: (r»Areﬁned) «— SOLVE(p)
4: if r == SATISFIABLE then return (A.fincq, true)
5. else return (A, false)

through Datalog inference under the new abstraction are also removed. After that, our algorithm
starts the next iteration. The user can pick various termination conditions in practice, and in our
experimental settings, we choose when all true alarms(Z (Q)) have been observed for evaluation
purpose.

The core of our approach is function REFINE, which is outlined in Algorithm 2. It can be divided
into two stages: constructing a information-transmission graph that reflects generalization of
posterior information among facts in Line 1, and refining the abstraction by solving a Max-SAT
problem that aims at removing undesired generalization and preserving desired generalization on
the graph in Line 2 - Line 5. We describe the two stages in detail in the following subsections.

5.2 Information-Transmission Graphs

In order to model the generalization effect in a Bayesian inference network, we refer to the theory
of conditional independence, which can be illustrated using three nodes forming a line. Suppose
node Z is already observed, will observing node X change the marginal probability of node Y?
The theory of D-separation answers this question [4]. Suppose a Bayesian network is repre-
sented as a directed graph G, we define a generalized path on G as a sequence of edges forming
a path on its undirected counterpart. On a generalized path, the arrows meet either head-to-tail,
tail-to-head, head-to-head or tail-to-tail at nodes. When the posterior information on a node u
can reach another node v through a generalized path, the path is called unblocked for (u,v).
Consider such path through nodes x, z, y in order, whether it is unblocked is summarized below:
e For x — z — y, it is unblocked if and only if z is not observed.
e For x < z « y, it is unblocked if and only if z is not observed.
e For x « z — y, it is unblocked if and only if z is not observed.
e For x — z « y, it is unblocked if and only if z or a z’s descendant is observed, where a
node v is z’s descendant if and only if there exists a directed path from z to v.
By extending the situation beyond three nodes, we have the following formal definition [24]:

Definition 5.1 (D-Separation). A, B, and C are non-intersecting subsets of nodes in a directed
graph. A generalized path from A to B is blocked by C if it contains a node such that (1) the arrows
on the path meet either head-to-tail, tail-to-head or tail-to-tail at the node, and the node is in the set
C, or (2) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants,
are in the set C. If all paths from A to B are blocked by C, A is said to be D-separated from B by C.

Example. In Figure 6 let A = {alarm(x1)}, B = {path(i2,x2)} and C = 0, the generalized path
alarm(x1) « gr¥ « taint(i2) — grg « path(i2,x2) is blocked, since grg and its descendant
alarm(x2) are both not in C. But if we add alarm(x2) to C, this path becomes unblocked, which means
by observing alarm(x2) the posterior information from A can reach B through this path.

Based on this definition, we let C be the set of observed alarms Qgpserved> and propose a vital
assumption about the precision preorder of abstractions C:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

On Abstraction Refinement for Bayesian Program Analysis 388:13

Assumption 1. For a pair of abstractions (A, A;) which satisfies A; C A, (it means that A; is
more precise than A;), and for any pair of nodes (u, v) representing alarms, if {u} is D-separated
from {v} by any node set C in G(D, A;), {u} will be D-separated from {v} by C in G(D, A).

In other words, if two alarms are D-separated by previously observed alarms, they will remain D-
separated using a more precise abstraction. Such an assumption guarantees that when we increase
the precision of the analysis, it will not increase the degree of undesired generalization, which is
vital to guarantee the progression of our approach. In practice, the conventional preorder defined
in Section 3.2 usually satisfies the requirement, so there is no additional effort to change it.

If a generalized path from the recently inspected alarm {q;} to a node set B is blocked by C,
then the posterior information cannot reach nodes in B through that path. Inspired by it, we
model the generalization on a derivation graph G(D, A) = [V, E] as reachability on a directed
information-transmission graph € (G, C, q;) = [V, &] (Note that the two graphs have the same set
of nodes V). We write £(G, C, q;) as & for brevity.

We define an ordered pair (u, v) as an edge u — v in E or &, and we mark all nodes in V with 3
numbers: mark(v) = 0 if and only if v is not observed and does not have an observed descendant;
mark(v) = 1if and only if v is observed; mark(v) = 2 if and only if v is not observed but has an
observed descendant. The edge set & could be constructed from E by calculating the least fixpoint
of following translation rules: (& is firstly set to be 0 and suppose V = {vg, v, -+ ,0n}, 0o = q1)

{{v0,v:)} CEV {{vi,00)} CE= & =& U {(vg,0s)} (VieN) (1)
{(vl,vj>,<vj,vk>} QE/\{(’U,,UJ>} C& Amark(vj) #1 =& = %U{(Uj,vk>} (Vi,j,keN*) (2)
{<vj,u,>,<vk,vj>} QE/\{(U,,U]>} Q%/\mark(vj)¢1=>%.:%U{<Uj,0k>} (Vi,j,kEN*) (3)
{(v],v,>,<vj,vk>} QE/\{(U,,UJ>} Q%/\mark(vj);t12>%:z%U{<Uj,Uk>} (Vi,j,k e N*) (4)
{<vl,vj> <vk,vj>} QE/\{(U,,U]>} Qg/\mark(vj)¢0=>%::%U{<Uj,vk>} (Vi,j,kEN*) (5)

Example. We explain how to convert the generalized path alarm(x1) « grj « path(i2,x1) «
gr22 «— path(i2,i2) — gr; — path(i2,y) — grg — path(i2, x2) — gr;j — alarm(x2) in Figure 6
to the path from alarm(x1) to alarm(x2) in Figure 7. Here vy = alarm(x1) and only mark(v,) = 1
while mark(v) = 0 for any other variable v. By using rule (1), we construct <a1arm(x1),gr§> in
&. Then by applying rule (3) three times, we construct (grg, path(i2, x1)> <path(12 x1), gr%) and
<gr§, path(i2, i2)>. After that, <path(12 i2), gr5> is constructed using rule (4). The final directed path
from gr? to alarm(x2) is constructed using rule (2) five times.

The calculation of those translation rules can be seen as repeatedly applying the information-
transmission rules about three nodes X, Y, Z shown previously. We also apply the cycle elimination
algorithm in Section 3.3 to &, which removes redundant information transmission. For a directed
path in &, we define its corresponding generalized path as any generalized path that share the same
node sequence. The theorem states constructed graph & satisfies completeness and soundness:

THEOREM 5.1 (COMPLETENESS AND SOUNDNESS). Suppose the currently observed alarm node q;
and another node v.,q are not D-separated by the set Qopserved, a directed path from qq to venq exists in
g if and only if its corresponding generalized path in G(D, A) exists and is not blocked by Qbserved-

Based on Theorem 5.1, removing or preserving the connection from g; to v.,q on & can be
regarded as alleviating or protecting the generalization between corresponding alarms. The reader
can refer to Appendix for the proof of Theorem 5.1.

5.3 Refining Abstractions via Max-SAT

This section describes how to refine abstractions to preserve desired generalizations and remove
undesired generalizations using &. Such desired/undesired generalizations are identified by whether

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

388:14 Yuanfeng Shi, Yifan Zhang, and Xin Zhang

probabilities of sampled alarms in g are changed correctly after adding new evidence. For a true
alarm, the change is correct if and only if its confidence value is higher, and for a false alarm the
direction should be the opposite. We refer to the set of alarms whose confidence values change
incorrectly as gr, and the set whose values change correctly as gr. We attempt to separate ¢; from
gr while preserving the connection to gr in &. According to Section 3.2, one can find a more precise
abstraction Ay,fineq which differs from the current abstraction A by changing only in a set Ageec: C A.
We approximate the refinement effect by removing all tuples in A, which also removes all tuples
that cannot be derived in Datalog after removing Age;. To find the cheapest refined abstraction,
we aim to find the smallest A ;. For convenience, we define Ayemain = A \ Aseleer and the problem
becomes finding the largest A emqin. The problem is defined as below:

Definition 5.2 (The Abstraction Refinement Problem). For a derivation graph G(D, A) =
[V,E] and the corresponding information-transmission graph [V, &], let [Viemain Eremain] =
G(D, Aremain) and Eremgin be the induced subgraph & [Viemain] for any Aemain, the abstraction
refinement problem is to find the largest Aemqin € A such that on G,epmain there is no directed path
from ¢, to any node of §r, while for every node of gr such a path starting from ¢, still exists.

The connectivity preserving minimum node cut (CPMNC) problem that seeks a minimum node-
cut to separate a pair of source and destination nodes and meanwhile ensures the connectivity
between the source and its partner nodes has been studied in a previous work [15]. That work shows
that CPMNC is NP-hard, and it even cannot be approximated within « logn for some constant
a unless P=NP. Therefore we reduce the refinement problem to the partial weighted Max-SAT
problem [31] and solve it using a Max-SAT solver Open-WBO [32].

A partial weighted Max-SAT formula consists of hard constraints i/; (0 < j < m) and pairs
(wk, Yr.) of weights wi and soft constraints ;. (m < k < n). All constraints are in the disjunctive
normal form of boolean variables. For every node v € V which may be a tuple or a ground rule, we
use itself to represent the boolean variable of whether it is derivable in the Datalog derivation. We
denote reach(v) as the boolean variable of whether there is a directed path from ¢; to v in &, and
we denote reach(V) = {reach(v) | v € V}. Then we define the satisfaction relation |, where we
use a Boolean variable set Vi to denote assignments to all Boolean variables such that a variable is
set to true if and only if it is included in the set:

Definition 5.3 (Satisfaction of Constraints). For a boolean variable set Vj; and a constraint
which has the form ¢ = \/leﬁv\/j.ztﬂ = fj,s>2t>0.Vy Eyifandonlyif3ie {1,...,t}, fi € Vy
ordje{t+1,...,s},fj ¢ Vm.Foraset ¥ ={¢; | i=1,--- ,m}, Vy = ¥ifand only if Viy F
Vi=1,---,m).If Vyy E ¥, we say that V), is a model of V.

We denote the set of hard constraints as ¥j,,4. The solution to our Max-SAT problem is a model
of Wp4rq such that the weight sum of satisfied soft constraints is maximized, which is formulated as:

Find Vyy C V U reach(V) that maximizes X{w;|Vm E; and m <i < n}
subject to Vy E; for0<j<m

Due to space concerns, we formally describe our Max-SAT encoding and prove its correctness in
the Appendix. Briefly, the hard constraints encode the information-transmission relation from
our graph and the deriving relation from Datalog inference, and the goal to cut the information
transmission that leads to undesired generalization while keeping the transmission that leads to
desired generalization. The soft constraints encode the objective to refine as few abstraction tuples
as possible. We use an example to walk through the encoding below:

Example. The example is from Section 2 and the encoded formula has two parts. The first part is
encoding the derivation in G(9, A) which is partly shown in Figure 6:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

On Abstraction Refinement for Bayesian Program Analysis 388:15

e Abstractions are encoded as soft constraints with weight 1: For instance, (1, abs(e?)). This
encodes the objective to keep as many abstraction tuples as possible.

o Other input tuples such as path(i2,i2) and taint(i2) are hard constraints.

e For the ground rule gr? in Figure 6. Its forward derivation is encoded as: = taint(i2) V
—path(i2,x1) V grZ. Suppose gri and gr? both can derive alarm(x1), they are encoded as:
—|gr31 V alarm(x1) and ﬂgrg V alarm(x1).

e As for the backward derivation, we have —alarm(x1) V gr; V gri. Because if alarm(x1) is
derivable, there must be a derivable ground rule to derive it. We also have - gr§ V path(i2,x1)
and - gr? V taint(i2). Because if a ground rule is derivable, all its body tuples are derivable.

The other part encodes connectivity on the information-transmission graph €[V, &] in Figure 7:

o In Figure 7, we need to separate alarm(x1) from alarm(x2) while keep connections to alarm(x3),
and it is encoded as: reach(alarm(x1)), = reach(alarm(x2)) and reach(alarm(x3)).

e For an edge (u,v) in @, if reach(u) is true and v is derivable, we can get reach(v). For example,
we have the encoding: — reach(gr}) V = alarn(x3) V reach(alarn(x3)).

e If reach(w) is true, w must be derivable, which is encoded as: = reach(w) V w. Moreover,
there must exist a node connecting to w can be reached from q;. Take the alarm(x3) in Figure 7
for instance, the encoding is: — reach(alarm(x3)) V reach(grg) v reach(gr;*).

The MaxSAT problem of Section 2 is satisfiable and solving it yields Ayemqin = {abs(€?), abs(e),
abs(ed), abs(f}), abs(f}), abs(fY)} and Asejec: = {abs(g°)}. By changing abs(g°) to abs(g'), we get
Areﬁne = {abs(e?), abs(eg), abs(eg), abs(flo), abs(f30), abs(fso), abs(gl)}.

Note that there exist situations where the abstractions in Ag.; cannot be further refined, and
hence Ayefinea = A. In such a situation the r in Line 3 of Algorithm 2 will be set to UNSATISFIABLE,
and hence function REFINE will return (A, false). In other words, the abstraction will not be refined.

5.4 Application Scope of Our Approach

Finally, we discuss what analyses our approach can apply to. As mentioned in Section 5.2, to ensure
refinement can reduce false generalizations, it requires a more precise abstraction will not add
correlation between analysis facts (Assumption 1). As more precise abstractions typically lead
to less confusion between program states, this assumption usually holds. In addition, a sufficient
condition for Assumption 1 is that if abstraction A is more precise than abstraction B (B C A), the
abstract states derived by B should overapproximate those of A. Many popular parametric analyses
satisfy this condition, such as different k-limited pointer analyses and the predicate abstraction.

Moreover, it is possible to expand our approach beyond analyses expressed in Datalog. In fact,
besides the above Assumption 1, our approach only requires the analysis derivation can be
encoded as a graph, in order to cast the refinement problem as a graph cut problem and perform
efficient probabilistic inference. We refer to this graph encoding requirement as Assumption
2. In theory, the derivation of any abstract-interpretation-based analysis can be converted into
a graph. In the most general sense, an abstract state can be a node, and a transition from one
abstract state to another can be an edge in the graph. In practice, there may exist more efficient
encodings for individual analyses. Previously, we focused mainly on the analyses that are expressed
in Datalog and its variants because they cover a large class of important analyses and BayesRefine
can automate the graph construction process for them. For analyses that cannot be expressed in
Datalog, whether BAYESREFINE can efficiently handle them varies case by case. In the Appendix,
we discuss how to apply our approach to an interval analysis as an example.

6 Empirical Evaluation

Our evaluation seeks to answer the following questions:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

388:16 Yuanfeng Shi, Yifan Zhang, and Xin Zhang

Q1. How effective is BAYESREFINE at reducing user interactions for Bayesian program analysis?

Q2. How effective is BAYESREFINE at complementing BINGRAPH when its training set selection
is sub-optimal?

Q3. How effective is BAYESREFINE compared with BAyESmITH [21], which addresses the over-
generalization problem through parameter learning?

Q4. How sensitive is the improvement brought by BAYESREFINE and how adversely is it affected
by changing parameters (k; and kz)?

Q5. Does the abstraction become much more expensive after being refined by BAYESREFINE?

Q6. How scalable are different components of BAYESREFINE?

6.1 Experimental Setup

We conducted all our experiments on Linux machines with 2.6 GHz processors and 256 GB RAM
running Oracle HotSpot JVM 1.6, LibDAI version 0.3.2 and Open-WBO version 2.1. We use the
Chord framework [37] for Datalog derivation and the Binco framework [39] for Bayesian inference.

Our Approach and Baselines. To demonstrate the effectiveness of BAYESREFINE, we apply it to
refine the abstractions produced by BINGRaPH [53] (REFINE-B). We also apply BAYESREFINE to
refine the coarsest abstractions (REFINE-C) to consider the case where BINGRAPH is not applicable
due to issues like lack of training data. As baselines, we consider running Bingo without refinement
using those abstractions produced by BINGrRaPH (BASE-B), those coarsest abstractions (Base-C), as
well as the most precise abstractions (BAsSg-P).

Instance Analyses. Following the setting in BINGRAPH [53], we conduct our evaluation on two
static analyses, a Datarace analysis [37] and a thread-escape analysis [38], whose Datalog implemen-
tations comprise 102 rules, 58 input relations, 44 output relations and 60 rules, 34 input relations, 27
output relations respectively. Next we describe them in more detail. (1) Datarace analysis. It finds
all possible statement pairs which may operate on the same heap object simultaneously with at
least one write operation. It combines thread-escape, may-happen-in-parallel, and lock-set analyses
that are flow-and-context sensitive. They build upon call-graph and aliasing information obtained
from a pointer analysis. The analysis is intended to be sound [28]. (2) Thread-escape analysis. It
generates queries about thread locality: A heap object in a multi-threaded program is thread-local
when it is accessible only from at most a single thread. The thread-escape analysis used in our
evaluation is flow-insensitive and context-insensitive, which differs from the datarace analysis.

The abstraction A we use to parameterize either analysis specifies precision parameters inde-
pendently for each object allocation site h in the program. With a slight abuse, we consider A as
a map from allocation sites to their precision parameters, and those abstractions are ordered as:
A1 C Ay & Vh : A;(h) < Ay(h). For each h, an input tuple aBs(h, A(h)) will be constructed when
encoding as Datalog program. (1) For the datarace analysis, its abstraction parameterization comes
from the k-object-sensitivity pointer analysis [33]: It distinguishes different calling contexts of
methods by defining them as allocation sites of receiver objects, and it associates a string of such
allocation sites of length upto k. A different k value can be associated with each allocation site
h, and A(h) is set to be k since the abstraction precision depends heavily on how many distinct
calling contexts it considers. For scalability, we set the maximum value for each k to be 3. (2) For the
thread-escape analysis, it is parameterized by the heap abstraction. An allocation site h is reasoned
alone (denoted as A(h) = 1) or it is merged into a global heap abstraction (denoted as A(h) = 0) for
efficiency. In the coarsest setting, all objects in all allocation sites will be considered as one object.

Ground truth. We get the ground truth for each alarm (whether it is true) beforehand. We simulate
the whole interactive alarm interaction automatically to calculate relevant metrics. For the datarace
analysis, the ground truth comes from Bingo’s artifact. While for the thread-escape analysis, we
used a CEGAR-based flow- and context-sensitive analysis [51] to obtain ground truth. The analysis

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

On Abstraction Refinement for Bayesian Program Analysis 388:17

Table 1. Benchmark characteristics. ‘Total’ and ‘App’ columns are numbers using 0-CFA call graph construc-
tion, with and without the JDK for all the benchmarks.

Program Description #Classes [#Methods [Bytecode(KLOC) [True alarms
| Total [App [Total | App | Total | App | DA | TEA
hedc Web crawler from ETH 1,157 44 7,501 230 464 15 12 287
ftp Apache FTP server 1,196 119 7,650 608 443 35 75 643
montecarlo | Financial simulator 974 18 6,260 115 365 5 - 54
jspider Web spider engine 1,193 113 7,431 426 429 17 9 430
pool Apache Commons Pool 1,132 27 7,313 194 417 7.5 - 312
raytracer 3D raytracer 105 18 391 74 23 4.9 3 233
toba-s Java bytecode to C compiler 985 25 6,338 154 393 31 - 998
javasrc-p Java source code to HTML translator 1,009 51 6,624 471 403 42 - 695
weblech Website download/mirror tool 127,6 56 8,421 303 503 18 6 276
avrora AVR microcontroller simulator 2,080 | 1,119 | 10,095 | 3,875 553 113 29 -
luindex Document indexing tool 1,164 169 7,461 1,030 453 72 2
sunflow Photo-realistic image rendering system | 1,853 127 12,901 967 878 87 171

is highly precise but also too expensive to apply broadly in practice. Such a setup allows to study
how our approach helps address one major source of imprecision of program analysis — the tradeoff
between precision and efficiency. With the help of oracle feedback, the Bayesian approach can
improve the precision of an analysis without degrading its efficiency significantly.

Benchmarks. We use a suite of 12 Java programs shown in Table 1 following BINGRAPH [53],
including programs commonly used in past work from the Ashes Suite [16, 49] and the DaCapo
suite [5]. In the evaluation of BINGRAPH [53], six benchmarks are used for the datarace analysis
and six are used for the thread-escape analysis, but we exclude xalan for the datarace analysis since
BINGRAPH ran out of its memory limit (40GB) on xalan as it finds overly expensive abstractions.

Parameter settings. For parameter kq, we set it to 0 initially. In order to accelerate our approach,
when the refinement module fails to perform the abstraction refinement (e.g. the change direction
of the sampled alarms’ probability all match their ground truth), BAYESREFINE will increase k; by a
fixed step size step, in other words, adjust k; to k; + step. This is to prevent excessive sampling that
cannot perform abstraction refinement, which will bring more workload to users. By conducting
experiments on the training benchmark weblech, we find the best is to set the sampled number k; to
2 for all benchmarks, while setting step to be 2 for all benchmarks in the thread-escape analysis,

and in the datarace analysis setting it to be: [M] X 2. Here Ay is the initial abstraction,

and |Q N [[D, Aoll| is the number of output alarmsﬂl)fsing Ay.

Metrics. The main metric we use is Rank-100%-FP, which is the total number of inspected false
alarms when all the true alarms have been discovered. It reflects the user’s burden in the interaction.
We also use another similar metric Rank-90%-FP, which is the total number of observed false alarms
when 90% of the true alarms are discovered. When calculating these two metrics, we have included
the additionally inspected alarms posed by BAYESREFINE. Compared to the original metrics Rank-
100%-T and Rank-90%-T used in previous work [39, 53], which count the number of all observed
alarms, we choose to not count the number of inspected true alarms. This is because there is a large
number of true alarms using the thread-escape analysis, as shown in Table 1. As for the inversion
count used in BINGRAPH [53], since the output alarms Q N [D, A]] will change with the abstraction
A changing when applying BAYESREFINE, it is hard to compare this metric and we do not use it.

6.2 Effectiveness of Reducing Interactions

To demonstrate the effectiveness of BAYESREFINE, we present statistics of our two metrics in Table 2.
We discuss Rank-100%-FP first. Over all benchmarks, for REFINE-B, the user needs to inspect 18.86%
fewer false alarms than Base-B for datarace on average, and 33.01% fewer for thread-escape. For
example, the datarace analysis produces 187 alarms on raytracer using the abstraction produced by

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

388:18 Yuanfeng Shi, Yifan Zhang, and Xin Zhang

Table 2. Summary of metrics for effectiveness of BAYESREFINE. “Average Reduction” shows the average
reduction ratio using BAYESREFINE compared to corresponding baselines BAse-B and BAse-C on column
ReFINE-B and RefINE-C respectively. On column BAsEe-P, it shows the reduction from BASE-P to REFINE-B.
Baselines BAse-B, BAse-C and BAsSE-P refer to running Binco without refinement using abstractions produced
by BINGRAPH, the coarsest abstractions and the most precise abstractions respectively. Columns # Alarms
present the number of alarms using the initial abstractions.

| # Alarms | Rank-100%-FP | Rank-90%-FP
Program
|BAse-C|Base-B|Bugs|REFINE-B|BAsE-B|REFINE-C|BAse-C| Bask-P |REFINE-B|Base-B|REFINE-C|BAsE-C| Base-P |
avrora 1230 1000 29 681 732 711 909 688 114 338 220 395 366
§ A ftp 571 525 75 9 9 28 94 8 9 9 28 44 7
E % sunflow 2288 1561 171 185 188 241 289 failed 82 103 106 275 failed
5 5| raytracer 187 187 3 1 7 30 29 6 1 7 30 29 6
luindex 1,236 976 2 11 11 16 16 323 11 11 16 16 323
Average Reduction 18.86%), 21.03%] 42.11%] 34.47%] 43.60% | 55.05%]
g hedc 552 380 287 51 85 60 109 92 36 45 53 79 58
S o jspider 754 645 430 136 205 180 232 188 51 64 119 113 140
$ 2| montecarlo 353 89 54 17 24 51 109 24 7 10 49 107 12
] Té pool 497 432 312 47 59 80 90 83 42 42 79 88 80
E | raytracer 422 319 233 45 54 66 81 86 28 53 57 77 76
= toba-s 1325 1278 998 117 280 158 224 280 65 62 157 154 251
Average Reduction 33.01%] 29.95%] 41.78%] 18.77%] 19.34%) 54.66%)

BINGRAPH, of which 3 are real races. BAYESREFINE identifies all true alarms with the user inspecting
only 1 false alarm, compared to 7 for BAse-B. Another notable example is toba-s, on which the
thread-escape analysis produces 1278 alarms. Of these alarms, 998 are true alarms, and BAYESREFINE
reports them while presenting just 117 false alarms. On the other hand, BASE-B presents 280 false
alarms, which include all the false alarms. To conclude, BAYESREFINE substantially reduces the
user’s workload - the wasteful effort on inspecting false alarms, and REFINE-B outperforms BAsg-B
for 9 out of 11 benchmarks. For the remaining programs ftp and luindex REFINE-B and BasEe-B
perform the same. This is mainly because BINGRAPH has already found good initial abstractions.

When starting with the coarsest abstraction, REFINE-C outperforms Basg-C on 9 of 11 bench-
marks, with average reduction ratios of 21.03% and 29.95% for the two analyses respectively. This
shows that BAYESREFINE can also reduce inspection burden when an offline abstraction selection
method like BINGRAPH is not applied. Additionally, REFINE-B outperforms Base-P with average
reduction ratios of 42.11% and 41.78% for the two analyses, which shows that the abstractions
refined by BAYESREFINE can have better generalization ability than the most precise abstractions.

As for Rank-90%-FP, REFINE-B outperforms BAse-B with average reduction ratios of 34.47% and
18.77% for the two analyses respectively, and REFINE-C outperforms Base-C with average reduction
ratios of 43.60% and 19.34% respectively. The increase in average reduction ratios compared to Rank-
100%-FP on datarace is mainly because the lastly presented few true alarms are sometimes outliers
that do not correlate with previously inspected alarms and thus prolong the entire interaction
process, which is evident for both avrora and sunflow. On the other hand, the decrease for thread-
escape is because most of the alarms are true, and BAYESREFINE does not refine the abstractions
often in the early stage as false generalization rarely happens.

In practice, the user would not know when all true alarms have been found but may be willing to
inspect a certain number of alarms instead. In order to measure the performance of BAYESREFINE
in this scenario, we assume that the user only inspects 20% of the initially generated alarms, and
show the numbers of observed true alarms in Table 3. BAYESREFINE enables the user to inspect
20.52% more true alarms than BINGRAPH on average, which demonstrates its practicality.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

On Abstraction Refinement for Bayesian Program Analysis 388:19

Table 3. Summary of the numbers of observed true alarms when we assume the user only inspects 20% of

the initially generated alarms.

‘ Datarace analysis ‘

Thread-escape analysis ‘

Setting
|avrora| ftp|sunflow|luindex | raytracer |hedc | jspider |montecarlo |pool | raytracer | toba-s |
Base-B 9 9 165 2 3 74 101 12 61 57 213
REFINE-B(20.52%7) 26 9 159 2 3 74 110 14 71 54 221
=1 =1 =1
3 5] g3
g £ 100 g
z o z
220 @ 120 2,
5 £ 100 5
<16 < 50 <
=z = 60 2
S g b P
3 S 40 5
g —— Refine-B g —— Refine-B z —— Refine-B
< 4 = 20]
g Base-B g Base-B g Base-B
z 0 Zz 0 Z0
0 100 200 300 400 500 600 700 0 25 50 75 100 125 150 175 200 1 2 3 4 5 6 7
Number of false alarms inspected Number of false alarms inspected Number of false alarms inspected
(a) avrora (b) sunflow (c) raytracer
Fig. 13. The ROC curves for the datarace analysis.
Z 20 I 40 T
I < 400 S 48
= 2 2
2 240 230 ERY)
2 200 00 .
2 z3 2 36
= 160 5 250 =30
< < <
£ 120 g 200 g2
£ = 150 Z18
B 80 S 100 b
g —— Refine-B 3 —— Refine-B gy 12 —— Refine-B
£ 40 < 50 26
E] Base-B El Base-B El Base-B
Z 0 Z 0 Z 0
0 10 20 30 40 50 60 70 80 0 25 50 75 100 125 150 175 200 0 3 6 9 12 15 18 21 24
Number of false alarms inspected Number of false alarms inspected Number of false alarms inspected
(a) hedc (b) jspider (c) montecarlo
g 320 T 20 T
g = 5
£ 280 g 210 E 900
5 240 £ 180 £ 750
a a q
g 200 E 150 £ 600
< 160 = 120 E
< P @ 450
£120 £ 9% £
5 80 S 60 s 300
g —— Refine-B o} —— Refine-B z —— Refine-B
£ 40 £ 30 = 150
g Base-B g Base-B g Base-B
z 0 z 0 z 0
0 8 16 24 32 40 48 56 0 6 12 18 24 30 36 42 48 54 0 40 80 120 160 200 240 280
Number of false alarms inspected Number of false alarms inspected Number of false alarms inspected
(d) pool (e) raytracer (f) toba-s

Fig. 14. The ROC curves for the thread-escape analysis.

In addition, to capture the dynamic behavior of the interaction process, we plot ROC curves
[17] for the datarace analysis in Figure 13 and for the thread-escape analysis in Figure 14, which
is also presented in previous research [39, 53]. When the user has inspected x false alarms and
y true alarms, a point (x,y) is plotted in the ROC curve. Note that we exclude ftp and luindex as
their underlying abstractions are not refined by BAYESREFINE and the ROC curves are the same for

BasEe-B and RerINE-B. To conclude, BAYESREFINE outperforms BINGRAPH not just in the aggregate,
but in most of the individual interactions.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

388:20 Yuanfeng Shi, Yifan Zhang, and Xin Zhang

Table 4. Summary of metrics under different training sets in the datarace analysis. ftp-jspider represents using
{ftp, jspider} for training in BINGRAPH to produce initial abstractions. ftp-hedc represents using {ftp, hedc}.
Column REFINE-B and BASE-B present corresponding Rank-100%-FP running BAYESREFINE and running
BiNGo without refinement respectively. Column # Alarms presents the number of alarms using the initial
abstractions.

‘ ftp-jspider ‘ ftp-hedc ‘

Program
|# Alarms|REFINE-B|BasE-B|# Alarms|REFINE-B|BAsE-B|

avrora 982 688 631 989 564 534
sunflow 1,540 279 1,457 1,540 223 1,369
raytracer 187 1 30 187 9 11
luindex 1,066 17 21 1053 299 299

Datarace
analysis

Average Reduction 46.88%] 24.07%]

6.3 Effectiveness in Improving BINGRAPH under Different Training Sets

As mentioned earlier, the performance of BINGRAPH may vary depending on the training programs
selection. In this section, we evaluate how effective BAYESREFINE is in improving BINGRAPH under
different training sets, especially when the training set selection is sub-optimal.

For the datarace analysis, the original BINGRAPH uses { jspider, hedc } for training as they are
relatively small and provide sufficient number of alarms. We additionally consider ftp which is
comparable in these two metrics, and get two new training sets {ftp, jspider } and {ftp, hedc}. The
other programs are too large, making training unscalable. Table 4 summarizes the results. The
average reduction ratio in user interaction further improves to 46.88% and 24.07% respectively
as the training set selection is less optimal for most benchmarks. In particular, the number of
inspected false alarms using BINGRAPH (BASE-B) on sunflow increases drastically, from 188 to 1,457
and 1,369 respectively, which are even much larger than that of directly applying BinGgo with the
coarsest abstraction (BAse-C)! Our approach addresses this issue and reduces the numbers to 279
and 223, which are also better than the original BINGo. We see similar results on raytracer when the
training set is { ftp, jspider }. As for avrora, REFINE-B yields comparable results as BAsE-B, because
the results of BAse-B further improve on avrora with the new training sets so there is less room
for our approach to improve it. One outlier is the result on luindex with {ftp, hedc } as the training
set. In this setting, the performance of Base-B degrades severely and our approach also fails to
salvage it. This is because there are only two true alarms for luindex which are discovered as the
last two alarms out of the 299 alarms. Before these two alarms, our approach only samples false
alarms and fails to refine any abstraction, and thus degrades to Base-B. Overall, the improvement
of our approach on BINGO is even more significant when the training set selection is less ideal.

For thread-escape, the original BINGRAPH paper [53] conducted a leave-one-out cross-validation
experiment and showed that BINGRAPH is less sensitive to the training set selection for thread-
escape. We apply our approach to start with the abstractions produced from the experiment. As
Table 5 shows, BAYESREFINE improves BINGRAPH with an average reduction ratio of 20.61%.

6.4 Effectiveness in Comparison with BAYESMITH

To reduce the impact of over-generalization, BAYESMITH [21] proposes a more fine-grained way to
assign probabilities by attaching syntactical predicates to rules. In machine learning terms, it falls
into the category of parameter learning while our approach is structure learning, and these two
approaches are complementary and address the generalization problem from two different angles.
We conduct an empirical comparison to show their relation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

On Abstraction Refinement for Bayesian Program Analysis 388:21

Table 5. Summary of metrics under leave-one-out cross-validation in the thread-escape analysis. Column
BAsSEe-B, REFINE-B, BASE-B+S and REFINE-B+S all present corresponding Rank-100%-FP. Column BASE-
B and BAse-B+S present running Binco without refinement using the default probabilities in BINGRAPH
and probabilities learnt by BAYESMITH respectively, while REFINE-B and REFINE-B+S present results of
BAYESREFINE. Column # Alarms presents the number of alarms using the initial abstractions

Program ‘# Alarms ‘ Base-B ‘ REFINE-B ‘ Base-B+S ‘ REFINE-B+S‘

hedc 380 55 55 53 53
Y jspider 678 232 145 154 136
s , [montecarlo 89 11 11 8 8
$ 2 |pool 432 59 47 61 60
= |raytracer 319 86 64 57 41
= % |toba-s 1278 280 154 280 144
= weblech 512 126 106 123 81
Average Reduction 20.61%] 13.89%] 29.60%]

Table 6. Sensitivity of BAYESREFINE to varying parameters of the threshold k; for continuously observed false
alarms and the sampling number k2 and to user mistakes using the thread-escape analysis.

Program |Base-B|K-(2,1) |K-(1,2) |[K-(2,2)|K-(3,2) |K-(2,3) |BASE-N|REFINE-N |
g hedc 85 58 51 51 60 52 99.8 79.0
s o, [jspider 205 137 127 136 137 130 218.7 121.3
$ 2 |montecarlo 24 16 15 17 17 11 28.2 159
2 S [pool 59 47 75 47 47 45 88.2 72.1
_g ® |raytracer 54 45 45 45 48 68 67.5 61.7
= toba-s 280 142 101 117 146 137 257.5 143.3
Average Reduction 30.76%] 28.17%] 33.01%] 28.51%] 29.74%] 30.03%]

Following the learning setting of BAYESMITH [21], we conduct a leave-one-out cross-validation
for thread-escape: We use the same train/test setting as the previous leave-one-out cross-validation
experiment for thread-escape inherited from BINGrRAPH [53]. Hence, in each fold, BINGRAPH uses
the same training set as BAYESMISTH to produce initial abstractions for test programs. As a baseline,
we run BiNGo without refinement using probabilities learnt by BAYESmITH (BASE-B+S). Then we
apply BAYESREFINE to refine abstractions while using the learned probabilities (REFINE-B+S).

The results are appended to Table 5, where REFINE-B+S and Base-B+S outperform Base-B
with an average reduction ratio of 29.60% and 13.89% respectively. Note the reduction of applying
BAYESMITH alone is less than applying BAYESREFINE alone (REFINE-B). This shows that by refining
on the fly, BAYESREFINE can resolve over-generalization in a more fine-grained manner, and more
importantly, there are cases where changing parameters without changing the structure is not
enough to resolve over-generalization. Finally, combining BAYEsSMITH and BAYESREFINE produces
the best results, which indicates that the two approaches are complementary, and BAYESREFINE
can still improve the abstractions using rule probabilities learnt by BAYESSMITH.

6.5 Sensitivity to Values of Parameters k; and k; and to User Mistakes in BAYESREFINE

In order to measure how ki, the threshold of continuously observed false alarms, and k;, the
number of sampled alarms per iteration, affect our whole framework, we evaluate the performance
of BAYESREFINE on thread-escape under different values of them. As mentioned before, k; increases
gradually on the fly and is controlled by another parameter step. So we study the effect of using
different (step, k;) instead. We fix one parameter to the default value used in previous experiments
(i-e., 2) and change the other to its nearest natural numbers, and measure the Rank-100%-FP metrics.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

388:22 Yuanfeng Shi, Yifan Zhang, and Xin Zhang

Table 7. Efficiency of the refined datarace analyses including the size of the refined abstraction, the running
time of the refined analyses and the number of alarms before and after refinement. Since in luindex and ftp
the abstraction is not refined, they are not included.

Program Abstraction Size Time for Datalog Analysis(s) #Alarms

g Base-B[FINAL|Max [SparsiTY Base-B[FINaL[%Increased] Max |Base-B[FINaL[%Reduced[Max
avrora 1153 3836 [15837| 50.75% 237.9 | 2755 15.80% 634.8 1000 978 2.20% 978
sunflow 1236 4943 |16386| 47.31% 491.5 | 570.4 16.05% 10,684.3| 1561 1027 34.21% 958
raytracer 26 36 4050 2.07% 26.9 28.1 4.65% 29.3 187 187 0% 187

Table 6 shows the results, where K — (p1, p2) represents the results of REFINE-B when using
step = p; and k = p,. As expected, the default setting K — (2, 2) performs the best as it is chosen
via a training process, but REFINE-B still outperforms Base-B with average reduction ratios over
28% on Rank-100%-FP for other settings. To conclude, the results show BAYESREFINE can robustly
tolerate reasonable changes of its parameters.

We also measure the sensitivity of BAYESREFINE to incorrect user answers by injecting random
noise: for each initially generated alarm, we flip its ground truth with probability 5%. As a baseline,
we run BINGRAPH without refinement in this noisy setting (BAse-N). Then we apply BAYESREFINE
to refine abstractions (REFINE-N). We run the experiment in each setting 30 times, calculate the
averages of all statistics and append the results to Table 6. Since REFINE-N outperforms BAse-N
with an average reduction ratio of 30.03%, BAYESREFINE is resilient to user mistakes.

6.6 Experimental Results about the Efficiency of the Refined Analyses

In order to measure the efficiency of analyses refined by BAYESREFINE, we record the running
time of the Datalog-based analyses using the final refined abstractions. Since the running cost
of the Datalog-based thread-escape analyses is negligible for all the benchmarks (less than 15s),
we only present statistics of the datarace analysis. In addition, we compute the abstraction size,
which is also an estimate of how costly it is to run the analysis. An abstraction is considered to be
more efficient when its size is smaller, and the size of abstraction A is defined the same for the two
analyses: For both datarace analysis and thread-escape analysis, it is X, A(h).

Table 7 summarizes results about efficiency of refined datarace analyses. The Max columns show
the results using the largest abstraction in the family for each program. For the datarace analysis, it
corresponds to using a 3-objective-sensitive pointer analysis. The FINAL columns show the results
using the abstraction produced by the last refinement, while the BAsE-B columns show results
using the initial abstraction produced by BINGrRaPH. The SPARSITY column shows the percentage
of abstraction parameters (A(h)) that are not 0. In all cases, the size of the final abstraction produced
by our approach is less than % of the maximum size, while the largest sparsity is only 50.75%. It
shows that the abstraction is not refined too much.

As for the time of running Datalog-based datarace analyses, the increase ratios from BAse-B to
FINAL are 15.80%, 16.05%, 4.65% for avrora, sunflow and raytracer respectively. The final running
time is also much less than that using the max-sized abstraction for all benchmarks. For avrora, one
of our largest benchmarks, the final running time is less than 50% of that of the Max.

At last, columns ‘#Alarms’ compare the number of alarms derived by the Datalog-based analyses
using initial, finally refined and max-sized abstractions. An interesting discovery is that on raytracer
and avrora the Datalog-based datarace analyses using final abstractions derive the same or almost
the same alarms as they do using initial abstractions, while in those benchmarks BAYESREFINE
successfully reduces the number of interactions. In fact, even using the most precise analysis
based on the 3-objective-sensitive pointer analysis, we cannot decrease the number of derived

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

On Abstraction Refinement for Bayesian Program Analysis 388:23

Table 8. Efficiency of different components of BAYESREFINE on datarace. The numbers of tuples and relevant
ground clauses are counted from the derivation graphs produced by the final refinement. The time costs are
average values in seconds per iteration during the interaction.

P # Tuples # Relevant ground clauses Inference time (s) Refinement time (s)
rogram

BAYESREFINE BASE-B BAYESREFINE BASE-B BAYESREFINE BaAse-B BAYESREFINE
avrora 6,408 7,339 10,540 12,478 51.8 67 0.35
sunflow 18,243 18,241 29,558 29,535 260.8 295 19.1
raytracer 1,089 1595 1,387 1296 0.54 0.59 0.06

alarms on these 2 benchmarks. This shows that BAYESREFINE can reduce user’s workload through
suppressing the over-generalization in scenarios where increasing abstraction precision makes
little improvement for traditional program analyses.

6.7 Scalability

Table 8 shows the average refinement time and the average Bayesian inference time both per
iteration. We exclude ftp and luindex as their underlying abstractions are not refined by BAYESREFINE.
First, we observe BAYESREFINE itself incurs little overhead as the refinement takes less than 5% of the
time consumed by running Datalog and Bayesian inference combined. Second, the maximum growth
of the final Datalog analysis time is only 16.05% after applying BAYESREFINE corresponding to
Table 7. Third, the average Bayesian inference time actually decreases after applying BAYESREFINE,
as more precise abstractions lead to smaller Bayesian networks in many cases. As a validation,
Table 8 shows that after applying BAYESREFINE, the numbers of tuples and relevant ground clauses
both decrease. We observe similar results for thread-escape.

7 Related Work

Bayesian Program Analysis. Bayesian analysis resolves alarms and improves accuracy by lever-
aging posterior information, such as the users’ feedback [39, 49], the old version of the program [19],
and dynamic analysis results [11]. The main idea behind such analysis is to compute the confidence
value for each alarm and updates rankings based on received posterior information.

Most existing works focus on how to integrate different posterior information except BAYE-
SmrTH [21] and BINGRAPH [53], which also try to address over-generalization. The former tackles
the problem by proposing a more fine-grained way to assign probabilities in Bayesian networks,
while the latter applies a data-driven approach to learn an abstraction selection policy from training
programs. Concretely, BAYESMITH splits a rule in Datalog into multiple ones by attaching syntactical
predicates. This does not change the structure of the corresponding Bayesian network on a program
but gives more flexibility in assigning the conditional probabilities as the edges ground from the
same Datalog rule have the same probability. BINGRAPH is closer to our approach as it also tries to
address over-generalization through abstraction selection. However, it is an offline-learning-based
approach and can lead to sub-optimal performance due to its learning nature or the test program
being out-of-distribution. BAYESREFINE addresses this issue by refining abstractions produced by
BINGRAPH. Both approaches are complementary to ours and can be combined to yield better results.

Counterexample-Guided Abstraction Refinement(CEGAR). CEGAR was originally pro-
posed for hardware and software model checking [2, 9, 9, 14]. Later, it is applied in parametric
program analysis [18, 50, 51]. As the previous work shows [53], these methods for conventional
analyses does not work for our problem. Moreover, although CEGAR techniques have been pro-
posed for finite state probabilistic systems [1, 8], to the best of our knowledge, BAYESREFINE is the
first CEGAR algorithm for models that combine both probabilities and program semantics.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

388:24 Yuanfeng Shi, Yifan Zhang, and Xin Zhang

Deep learning based approaches for program analysis. Numerous previous techniques
incorporate deep learning to filter false alarms or to detect bugs directly. The former [22, 23, 25] are
limited to specific types of analysis and evaluated on synthetic benchmarks or manually collected
small-scale data sets (such as the Juliet benchmark [6]). It is unclear how to engineer the models for
complex analyses like the datarace analysis and whether they would perform well on real-world
benchmarks like Dacapo. On the other hand, our approach is more general and requires little
manual effort to instantiate in an analysis. As for neural models including GNNs [12, 13, 46] that
detect bugs directly, similarly, they are typically carefully tailored to specific analyses, and a study
in 2021 [10] shows that their precisions drop drastically on real-world datasets. Moreover, they are
more suitable for detecting bugs that can be identified through local patterns such as variable/API
misuses, rather than bugs that need complex logical reasoning such as the datarace.

LLM-based approaches for program analysis. Several recent papers have applied LLMs to
suppress false alarms reported by a static analyzer [26, 27, 45]. However, these approaches apply
highly-customized prompts that are specified to certain analyses and offer no general solution. In
addition, LLMs can replace the role of human users in the interaction of our framework, which
is complementary to BAYESREFINE. One can also combine LLMs with our approach to reduce the
number of invocations to LLMs.

8 Conclusion

We present BAYESREFINE, an iterative refinement approach to generate abstractions of better gener-
alization for Bayesian program analysis. It addresses the problem of reducing over-generalization
by casting it as a graph cut problem with connectivity by leveraging the theory of conditional
independence, which is then solved using a Max-SAT solver. Our evaluation on two representiative
analyses shows that our approach significantly improves over the existing approach that generates
abstractions beforehand using policies learned offline.

Data-Availability Statement

An artifact that provides the implementation of BAYESREFINE is available [48]. It includes all the
source code, scripts, data, and statistics in our experiments. All results in our experiments can be
reproduced.

Acknowledgments

We would like to thank the anonymous reviewers for their feedback and comments. This research
was partly supported by the National Natural Science Foundation of China under Grant No. 62172017
and Grant No. W2411051.

References

[1] Husain Aljazzar, Matthias Kuntz, Florian Leitner-Fischer, and Stefan Leue. 2010. Directed and heuristic counterexample
generation for probabilistic model checking: a comparative evaluation. In Proceedings of the 2010 ICSE Workshop on
Quantitative Stochastic Models in the Verification and Design of Software Systems. 25-32.

[2] Thomas Ball and Sriram K. Rajamani. 2002. The SLAM project: debugging system software via static analysis. In
Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland, OR, USA, January 16-18, 2002, John Launchbury and John C. Mitchell (Eds.). ACM, 1-3. doi:10.1145/503272.
503274

[3] Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. Formulog: Datalog for SMT-Based Static Analysis
(Extended Version). arXiv:2009.08361 [cs.PL] https://arxiv.org/abs/2009.08361

[4] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and machine learning. Vol. 4. Springer.

[5] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S McKinley, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z Guyer, et al. 2006. The DaCapo benchmarks: Java benchmarking

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

https://doi.org/10.1145/503272.503274
https://doi.org/10.1145/503272.503274
https://arxiv.org/abs/2009.08361
https://arxiv.org/abs/2009.08361

On Abstraction Refinement for Bayesian Program Analysis 388:25

[13]

[14]
[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24
[25]

[l

[26]
[27]

[28]

development and analysis. In Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications. 169-190.

Tim Boland and Paul E Black. 2012. Juliet 1. 1 C/C++ and java test suite. Computer 45, 10 (2012), 88-90.

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses.
SIGPLAN Not. 44, 10 (oct 2009), 243-262. do0i:10.1145/1639949.1640108

Rohit Chadha and Mahesh Viswanathan. 2010. A counterexample-guided abstraction-refinement framework for
Markov decision processes. ACM Transactions on Computational Logic (TOCL) 12, 1 (2010), 1-49.

Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith. 2004. Modular Verification of Software
Components in C. IEEE Trans. Software Eng. 30, 6 (2004), 388-402. doi:10.1109/TSE.2004.22

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021. Deep learning based vulnerability
detection: Are we there yet? IEEE Transactions on Software Engineering 48, 9 (2021), 3280-3296.

Tianyi Chen, Kihong Heo, and Mukund Raghothaman. 2021. Boosting static analysis accuracy with instrumented test
executions. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1154-1165.

Xiao Cheng, Haoyu Wang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. Deepwukong: Statically detecting software
vulnerabilities using deep graph neural network. ACM Transactions on Software Engineering and Methodology (TOSEM)
30, 3 (2021), 1-33.

Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. 2024. Graph
neural networks for vulnerability detection: A counterfactual explanation. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis. 389-401.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000. Counterexample-guided abstraction
refinement. In International Conference on Computer Aided Verification. Springer, 154-169.

Qi Duan and Jinhui Xu. 2014. On the connectivity preserving minimum cut problem. J. Comput. Syst. Sci. 80 (2014),
837-848.

Mahdi Eslamimehr and Jens Palsberg. 2014. Race directed scheduling of concurrent programs. In Proceedings of the
19th Symposium on Principles and Practice of Parallel Programming. ACM, 301-314. doi:10.1145/2555243.2555263
Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters 27, 8 (2006), 861-874.

Radu Grigore and Hongseok Yang. 2016. Abstraction refinement guided by a learnt probabilistic model. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, Rastislav Bodik and Rupak Majumdar (Eds.). ACM, 485-498. doi:10.1145/2837614.2837663
Kihong Heo, Mukund Raghothaman, Xujie Si, and Mayur Naik. 2019. Continuously reasoning about programs using
differential bayesian inference. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation. 561-575.

George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-sensitivity for points-to analysis. Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation (2013). https://api.semanticscholar.
org/CorpusID:14109210

Hyunsu Kim, Mukund Raghothaman, and Kihong Heo. 2022. Learning Probabilistic Models for Static Analysis Alarms.
(2022).

Ugur Koc, Parsa Saadatpanah, Jeffrey S Foster, and Adam A Porter. 2017. Learning a classifier for false positive error
reports emitted by static code analysis tools. In Proceedings of the 1st ACM SIGPLAN international workshop on machine
learning and programming languages. 35-42.

Ugur Koc, Shiyi Wei, Jeffrey S Foster, Marine Carpuat, and Adam A Porter. 2019. An empirical assessment of machine
learning approaches for triaging reports of a java static analysis tool. In 2019 12th ieee conference on software testing,
validation and verification (icst). IEEE, 288-299.

Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles and techniques. MIT press.
Seongmin Lee, Shin Hong, Jungbae Yi, Taeksu Kim, Chul-Joo Kim, and Shin Yoo. 2019. Classifying false positive
static checker alarms in continuous integration using convolutional neural networks. In 2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST). IEEE, 391-401.

Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2024. Enhancing static analysis for practical bug detection: An
llm-integrated approach. Proceedings of the ACM on Programming Languages 8, OOPSLA1 (2024), 474-499.

Ziyang Li, Saikat Dutta, and Mayur Naik. 2024. Llm-assisted static analysis for detecting security vulnerabilities. arXiv
preprint arXiv:2405.17238 (2024).

Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhotak, J. Nelson Amaral, Bor-Yuh Evan Chang,
Samuel Z. Guyer, Uday P. Khedker, Anders Meoller, and Dimitrios Vardoulakis. 2015. In Defense of Soundiness: A
Manifesto. Commun. ACM 58 (2015), 44-46. http://cacm.acm.org/magazines/2015/2/182650-in-defense-of-soundiness/
abstract

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1109/TSE.2004.22
https://doi.org/10.1145/2555243.2555263
https://doi.org/10.1145/2837614.2837663
https://api.semanticscholar.org/CorpusID:14109210
https://api.semanticscholar.org/CorpusID:14109210
http://cacm.acm.org/magazines/2015/2/182650-in-defense-of-soundiness/abstract
http://cacm.acm.org/magazines/2015/2/182650-in-defense-of-soundiness/abstract

388:26 Yuanfeng Shi, Yifan Zhang, and Xin Zhang

[29] Magnus Madsen, Ming-Ho Yee, and Ondfej Lhotak. 2016. From Datalog to flix: a declarative language for fixed points
on lattices. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 194-208. doi:10.
1145/2908080.2908096

Ravi Mangal, Xin Zhang, Aditya V Nori, and Mayur Naik. 2015. A user-guided approach to program analysis. In

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. 462-473.

[31] Vasco M. Manquinho, Jodo Marques-Silva, and Jordi Planes. 2009. Algorithms for Weighted Boolean Optimization.
CoRR abs/0903.0843 (2009). arXiv:0903.0843 http://arxiv.org/abs/0903.0843

[32] Ruben Martins, Vasco M. Manquinho, and Inés Lynce. 2014. Open-WBO: A Modular MaxSAT Solver,. In SAT.

[33] Ana Milanova, Atanas Rountev, and Barbara Ryder. 2005. Parameterized Object Sensitivity for Points-to Analysis for
Java. ACM Trans. Softw. Eng. Methodol. 14 (01 2005), 1-41. doi:10.1145/1044834.1044835

[34] Joris M. Mooij. 2010. 1ibDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical
Models. Journal of Machine Learning Research 11 (Aug. 2010), 2169-2173. http://www.jmlr.org/papers/volumel1/
mooijl0a/mooijl0a.pdf

[35] Antdénio Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and Jodo Marques-Silva. 2013. Iterative and core-
guided MaxSAT solving: A survey and assessment. Constraints An Int. §. 18, 4 (2013), 478-534. d0i:10.1007/s10601-013-
9146-2

[36] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. 1999. Loopy Belief Propagation for Approximate Inference: An
Empirical Study. In Conference on Uncertainty in Artificial Intelligence. https://api.semanticscholar.org/CorpusID:
16462148

[37] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection for Java. In Proceedings of the 27th
ACM SIGPLAN Conference on Programming Language Design and Implementation. 308-319.

[38] Mayur Naik, Hongseok Yang, Ghila Castelnuovo, and Mooly Sagiv. 2012. Abstractions from tests. In Proceedings of the
39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 373-386.

[39] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018. User-guided program reasoning
using Bayesian inference. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 722-735.

[40] Thomas W Reps. 1995. Demand interprocedural program analysis using logic databases. In Applications of Logic

Databases. Springer, 163-196.

Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their decision problems. Transactions of the

American Mathematical society 74, 2 (1953), 358—-366.

[42] Yannis Smaragdakis. 2010. Pick Your Contexts Well : Understanding Object-Sensitivity The Making of a Precise and
Scalable Pointer Analysis. https://api.semanticscholar.org/CorpusID:9747942

[43] Tamas Szabd, Gabor Bergmann, Sebastian Erdweg, and Markus Voelter. 2018. Incrementalizing lattice-based program

analyses in Datalog. Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1-29.

Tamas Szabo, Sebastian Erdweg, and Gabor Bergmann. 2021. Incremental whole-program analysis in Datalog with

lattices. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and

Implementation. 1-15.

Chengpeng Wang, Wugi Zhang, Zian Su, Xiangzhe Xu, Xiaoheng Xie, and Xiangyu Zhang. 2024. LLMDFA: Analyzing

Dataflow in Code with Large Language Models. Advances in Neural Information Processing Systems 37 (2024), 131545—

131574.

[46] Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang. 2020. Learning semantic program embeddings with graph
interval neural network. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1-27.

[47] John Whaley and Monica S. Lam. 2004. Cloning-based context-sensitive pointer alias analysis using binary de-

cision diagrams. In ACM-SIGPLAN Symposium on Programming Language Design and Implementation. https:

//api.semanticscholar.org/CorpusID:14810646

Xin Zhang Yuanfeng Shi, Yifan Zhang. 2025. On Abstraction Refinement for Bayesian Program Analysis (Paper

Artifact). https://doi.org/10.5281/zenodo.16917600

[49] Xin Zhang, Radu Grigore, Xujie Si, and Mayur Naik. 2017. Effective interactive resolution of static analysis alarms.
Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1-30.

[50] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014. On abstraction refinement for program
analyses in Datalog. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 239-248.

[51] Xin Zhang, M. Naik, and Hongseok Yang. 2013. Finding optimum abstractions in parametric dataflow analysis.
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (2013).

[52] Xin Zhang, Xujie Si, and Mayur Naik. 2017. Combining the Logical and the Probabilistic in Program Analysis. In
Proceedings of the 1st ACM SIGPLAN International Workshop on Machine Learning and Programming Languages. 27-34.

[30

—

[41

—

[44

—

[45

[

[48

[t

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/2908080.2908096
https://arxiv.org/abs/0903.0843
http://arxiv.org/abs/0903.0843
https://doi.org/10.1145/1044834.1044835
http://www.jmlr.org/papers/volume11/mooij10a/mooij10a.pdf
http://www.jmlr.org/papers/volume11/mooij10a/mooij10a.pdf
https://doi.org/10.1007/s10601-013-9146-2
https://doi.org/10.1007/s10601-013-9146-2
https://api.semanticscholar.org/CorpusID:16462148
https://api.semanticscholar.org/CorpusID:16462148
https://api.semanticscholar.org/CorpusID:9747942
https://api.semanticscholar.org/CorpusID:14810646
https://api.semanticscholar.org/CorpusID:14810646
https://doi.org/10.5281/zenodo.16917600

On Abstraction Refinement for Bayesian Program Analysis 388:27

[53] Yifan Zhang, Yuanfeng Shi, and Xin Zhang. 2024. Learning Abstraction Selection for Bayesian Program Analysis. Proc.
ACM Program. Lang. 8, OOPSLA1, Article 128 (April 2024), 29 pages. doi:10.1145/3649845

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 388. Publication date: October 2025.

https://doi.org/10.1145/3649845

	Abstract
	1 Introduction
	2 Overview
	2.1 Example Program and the Dataflow Analysis Problem
	2.2 The Graph Reachability Problem
	2.3 The Bayesian Analysis and the Over-Generalization Problem
	2.4 Our Approach

	3 Preliminaries
	3.1 Syntax and Semantics of Datalog
	3.2 Datalog Program Analysis with Parametric Abstractions
	3.3 Bayesian Program Analysis with Parametric Abstractions

	4 Problem Definition
	5 Our Framework
	5.1 Workflow
	5.2 Information-Transmission Graphs
	5.3 Refining Abstractions via Max-SAT
	5.4 Application Scope of Our Approach

	6 Empirical Evaluation
	6.1 Experimental Setup
	6.2 Effectiveness of Reducing Interactions
	6.3 Effectiveness in Improving BinGraph under Different Training Sets
	6.4 Effectiveness in Comparison with BayeSmith
	6.5 Sensitivity to Values of Parameters k1 and k2 and to User Mistakes in BayesRefine
	6.6 Experimental Results about the Efficiency of the Refined Analyses
	6.7 Scalability

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

