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Abstract
A central task for a program analysis concerns how to efficiently
find a program abstraction that keeps only information relevant for
proving properties of interest. We present a new approach for finding
such abstractions for program analyses written in Datalog. Our
approach is based on counterexample-guided abstraction refinement:
when a Datalog analysis run fails using an abstraction, it seeks to
generalize the cause of the failure to other abstractions, and pick
a new abstraction that avoids a similar failure. Our solution uses
a boolean satisfiability formulation that is general, complete, and
optimal: it is independent of the Datalog solver, it generalizes the
failure of an abstraction to as many other abstractions as possible,
and it identifies the cheapest refined abstraction to try next. We
show the performance of our approach on a pointer analysis and a
typestate analysis, on eight real-world Java benchmark programs.

Categories and Subject Descriptors D.2.4 [SOFTWARE ENGI-
NEERING]: Software/Program Verification

1. Introduction
Building a successful program analysis requires solving high-level
conceptual issues, such as finding an abstraction of programs that
keeps just enough information for a given verification problem, as
well as handling low-level implementation issues, such as coming
up with efficient data structures and algorithms for the analysis.

One popular approach for addressing this problem is to use
Datalog [5, 15, 23, 24]. In this approach, a program analysis only
specifies how to generate Datalog constraints from program text.
The task of solving the generated constraints is then delegated to
an off-the-shelf Datalog constraint solver, such as that underlying
BDDBDDB [25], Doop [22], Jedd [16], and Z3’s fixpoint engine [12],
which in turn relies on efficient symbolic algorithms and data
structures, such as Binary Decision Diagrams (BDDs).

The benefits of using Datalog for program analysis, however,
are currently limited to the automation of low-level implementation
issues. In particular, finding an effective program abstraction is done
entirely manually by analysis designers, which results in undesirable
consequences such as ineffective analyses hindered by inflexible
abstractions or undue tuning burden for analysis designers.

In this paper, we present a new approach for lifting this limitation
by automatically finding effective abstractions for program analyses
written in Datalog. Our approach is based on counterexample-
guided abstraction refinement (CEGAR), which was developed in
the model-checking community and has been applied effectively
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for software verification with predicate abstraction [1, 6, 8, 11, 20].
A counterexample in Datalog is a derivation of an output tuple
from a set of input tuples via Horn-clause inference rules: the rules
specify the program analysis, the set of input tuples represents
the current program abstraction, and the output tuple represents a
(typically undesirable) program property derived by the analysis
under that abstraction. The counterexample is spurious if there exists
some abstraction under which the property cannot be derived by the
analysis. The CEGAR problem in our approach is to find such an
abstraction from a given family of abstractions.

We propose solving this problem by formulating it as a boolean
satisfiability (SAT) problem. We give an efficient construction of
SAT constraints from a Datalog solver’s solution in each CEGAR
iteration. Our main theoretical result is that, regardless of the Datalog
solver used, its solution contains information to reason about all
counterexamples. This result seems unintuitive because a Datalog
solver performs a least fixed-point computation that can stop as
soon as each output tuple that is derivable has been derived (i.e., the
solver need not reason about all possible ways to derive a tuple).

The above result ensures that solving our SAT constraints general-
izes the cause of verification failure in the current CEGAR iteration
to the maximum extent possible, eliminating not only the current ab-
straction but all other abstractions destined to suffer a similar failure.
There is still the problem of deciding which abstraction to try next.
We show that an optimization extension of the SAT problem, called
the maximum satisfiability (MAXSAT) problem, enables to identify
the cheapest refined abstraction. Our approach avoids unnecessary
refinement by using this abstraction in the next CEGAR iteration.

We have implemented our approach and applied it to two realistic
static analyses written in Datalog, a pointer analysis and a typestate
analysis, for Java programs. These two analyses differ significantly
in aspects such as flow sensitivity (insensitive vs. sensitive), context
sensitivity (cloning-based vs. summary-based), and heap abstraction
(weak vs. strong updates), which demonstrates the generality of our
approach. On a suite of eight real-world Java benchmark programs,
our approach searches a large space of abstractions, ranging from
21k to 25k for the pointer analysis and 213k to 254k for the typestate
analysis, for hundreds of analysis queries considered simultaneously
in each program, thereby showing the practicality of our approach.

We summarize the main contributions of our work:

1. We propose a CEGAR-based approach to automatically find
effective abstractions for analyses in Datalog. The approach
enables Datalog analysis designers to specify high-level knowl-
edge about abstractions while continuing to leverage low-level
implementation advances in off-the-shelf Datalog solvers.

2. We solve the CEGAR problem using a boolean satisfiability
formulation that has desirable properties of generality, complete-
ness, and optimality: it is independent of the Datalog solver, it
fully generalizes the failure of an abstraction, and it computes
the cheapest refined abstraction.

3. We show the effectiveness of our approach on two realistic anal-
yses written in Datalog. On a suite of real-world Java benchmark
programs, the approach explores a large space of abstractions
for a large number of analysis queries simultaneously.



f() { v1 = new ...;
v2 = id1(v1);
v3 = id2(v2);

q2: assert(v3 != v1);
}
id1(v) { return v; }

g() { v4 = new ...;
v5 = id1(v4);
v6 = id2(v5);

q1: assert(v6 != v1);
}
id2(v) { return v; }

Figure 1: Example program.

Input relations:
edge(i, j, n) (edge from node i to node j labeled n)
abs(n) (edge labeled n is allowed)

Derived relations:
path(i, j) (node j is reachable from node i)

Rules: (1): path(i, i).
(2): path(i, j) : - path(i, k), edge(k, j, n), abs(n).
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Input tuples: Derived tuples:
edge(0, 6, a0) path(0, 0)
edge(6, 1, a0) path(0, 6)
edge(1, 7, c0) path(0, 1)
... ...
abs(a0) Query tuples:
abs(c0) path(0, 5)
... path(0, 2)

Figure 2: Graph reachability example in Datalog.

2. Overview
We illustrate our approach using a graph reachability problem that
captures the core concept underlying a precise pointer analysis.

The example program in Figure 1 allocates an object in each
of methods f and g, and passes it to methods id1 and id2. The
pointer analysis is asked to prove two queries: query q1 stating
that v6 is not aliased with v1 at the end of g, and query q2 stating
that v3 is not aliased with v1 at the end of f. Proving q1 requires
a context sensitive analysis that distinguishes between different
calling contexts of methods id1 and id2. Query q2, on the other
hand, cannot be proven since v3 is in fact aliased with v1.

A common approach to distinguish between different calling
contexts is to clone (i.e., inline) the body of the called method at a
call site. However, cloning each called method at each call site is
infeasible even in the absence of recursion, as it grows program size
exponentially and hampers the scalability of the analysis. We seek
to address this problem by cloning selectively.

For exposition, we recast this problem as a reachability problem
on the graph in Figure 2. In that graph, nodes 0, 1, and 2 represent
basic blocks of f, while nodes 3, 4, and 5 represent basic blocks of g.
Nodes 6 and 7 represent the bodies of id1 and id2 respectively,
while nodes 6′, 6′′, 7′ and 7′′ are their clones at different call sites.
Edges denoting matching calls and returns have the same label.
A choice of labels constitutes a valid abstraction of the original
program if, for each of a, b, c, and d, either the zero (non-cloned)
or the one (cloned) version is chosen. Then, proving query q1
corresponds to showing that node 5 is unreachable from node 0
under some valid choice of labeled edges, which is the case if edges
labeled {a1, b0, c1, d0} are chosen; proving query q2 corresponds
to finding a valid combination of edge labels that makes node 2
unreachable from node 0, but this is impossible.

Our graph reachability problem can be expressed in Datalog as
shown in Figure 2. A Datalog program consists of a set of input
relations, a set of derived relations, and a set of rules that express how
to compute the derived relations from the input relations. There are
two input relations in our example: edge, representing the possible
labeled edges in the given graph; and abs, containing labels of edges
that may be used in computing graph reachability. Relation abs
specifies a program abstraction in our original setting; for instance,

eliminated abstractions
run used abstraction within run across runs

q1 q2 q2
1 a0b0 c0d0

a0b0 ∗ d0
a0 ∗ c0d0

a0 ∗ c0 ∗

2 a1b0 c0d0 a1 ∗ c0d0 a1 ∗ c0 ∗
3 a1b0 c1d0 a1 ∗ c1 ∗ a0 ∗ c1 ∗

Table 1: Each iteration (run) eliminates a number of abstractions.
Some are eliminated by analyzing the current Datalog run (within
run); some are eliminated because of the derivations from the current
run interact with derivations from previous runs (across runs).

abs = {a1, b0, c1, d0} specifies the abstraction in which only the
calls to methods id1 and id2 from f are inlined.

The derived relation path contains each tuple (i, j) such that
node j is reachable from node i along a path with only edges whose
labels appear in relation abs. This computation is expressed by rules
(1) and (2) both of which are Horn clauses with implicit universal
quantification. Rule (1) states that each node is reachable from itself.
Rule (2) states that if node k is reachable from node i and edge
(k, j) is allowed, then node j is reachable from node i. Queries in
the original program correspond to tuples in relation path. Proving
a query amounts to finding a valid instance of relation abs such that
the tuple corresponding to the query is not derived.

Our two queries q1 and q2 correspond to tuples path(0, 5)
and path(0, 2) respectively. There are in all 16 abstractions, each
involving a different choice of the zero/one versions of labels a
through d in relation abs. Since we wish to minimize the amount of
cloning in the original setting, abstractions with more zero versions
of edge labels are cheaper. Our approach, outlined next, efficiently
finds the cheapest abstraction abs = {a1, b0, c1, d0} that proves q1,
and shows q2 cannot be proven by any of the 16 abstractions.

Our approach is based on iterative counterexample-guided ab-
straction refinement. Table 1 illustrates its iterations on the graph
reachability example. In the first iteration, the cheapest abstraction
abs = {a0, b0, c0, d0} is tried. It corresponds to the case where
neither of nodes 6 and 7 is cloned (i.e., a fully context-insensitive
analysis). This abstraction fails to prove both of our queries. Fig-
ure 3a shows all the possible derivations of the two queries using
this abstraction. Each set of edges in this graph, incoming into a
node, represents an application of a Datalog rule, with the source
nodes denoting the tuples in the body of the rule and the target node
denoting the tuple at its head.

The first question we ask is: how do we generalize the failure
of the current abstraction to avoid picking another that will suffer a
similar failure? Our solution is to exploit a monotonicity property
of Datalog: more input tuples can only derive more output tuples. It
follows from this property that the maximum generalization of the
failure can be achieved if we find all minimal subsets of the set of
tuples in the current abstraction that suffice to derive queries. From
the derivation in Figure 3a, we see that these minimal subsets are
{a0, b0, d0} and {a0, c0, d0} for query path(0, 5), and {a0, c0}
for query path(0, 2). We thus generalize the current failure to the
maximum possible extent, eliminating any abs that is a superset of
{a0, b0, d0} or {a0, c0, d0} for query path(0, 5) and any abs that
is a superset of {a0, c0} for query path(0, 2).

The next question we ask is: how do we pick the abstraction to
try next? Our solution is to use the cheapest abstraction of the ones
not eliminated so far for both the queries. From the fact that label a0

is in both minimal subsets identified above, and that zero labels are
cheaper than the one labels, and we conclude that this abstraction is
abs = {a1, b0, c0, d0}, which corresponds to only cloning method
id1 at the call in f.

In the second iteration, our approach uses this abstraction, and
again fails to prove both queries. But this time the derivation,
shown in Figure 3b, is different from that in the first iteration. This
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Figure 3: Derivations after different iterations of our approach on our graph reachability example.

Hard constraints:
path(0, 0) ∧

(path(0, 6) ∨ ¬path(0, 0) ∨ ¬abs(a0)) ∧
(path(0, 1) ∨ ¬path(0, 6) ∨ ¬abs(a0)) ∧
(path(0, 7) ∨ ¬path(0, 1) ∨ ¬abs(c0)) ∧
(path(0, 4) ∨ ¬path(0, 6) ∨ ¬abs(b0)) ∧

...

Soft constraints:

(abs(a0) weight 1) ∧
(abs(b0) weight 1) ∧
(abs(c0) weight 1) ∧
(abs(d0) weight 1) ∧

(¬path(0, 5) weight 5) ∧
(¬path(0, 2) weight 5)

Figure 4: Formula from the Datalog run’s result in the first iteration.

time, we eliminate any abs that is a superset of {a1, c0, d0} for
query path(0, 5), and any abs that is a superset of {a1, c0} for
query path(0, 2). The cheapest of the remaining abstractions, not
eliminated for both the queries, is abs = {a1, b0, c1, d0}, which
corresponds to cloning methods id1 and id2 in f (but not in g).

Using this abstraction in the third iteration, our approach suc-
ceeds in proving query path(0, 5), but still fails to prove query
path(0, 2). As seen in the derivation in Figure 3c, this time {a1, c1}
is the minimal failure subset for query path(0, 2) and we eliminate
any abs that is its superset.

At this point, four abstractions remain in trying to prove query
path(0, 2). However, another novel feature of our approach allows
us to eliminate these remaining abstractions without any more itera-
tions. After each iteration, we accumulate the derivations generated
by the current run of the Datalog program with the derivations from
all the previous iterations. Then, in our current example, at the end
of the third iteration, we have the following derivations available:

path(0, 6) : - path(0, 0), edge(0, 6, a0), abs(a0)
path(0, 1) : - path(0, 6), edge(6, 1, a0), abs(a0)
path(0, 7′) : - path(0, 1), edge(1, 7′, c1), abs(c1)
path(0, 2) : - path(0, 7′), edge(7′, 2, c1), abs(c1)

The derivation of path(0, 1) using abs(a0) comes from the first
iteration of our approach. Similarly, the derivation of path(0,2)
using path(0,1) and abs(c1) is seen during the third iteration. How-
ever, accumulating the derivations from different iterations allows
our approach to explore the above derivation of path(0, 2) using
abs(a0) and abs(c1) and detect {a0, c1} to be an additional mini-
mal failure subset for query path(0, 2). Consequently, we remove
any abs that is a superset of {a0, c1}. This eliminates all the remain-
ing abstractions for query path(0, 2) and our approach concludes
that the query cannot be proven by any of the 16 abstractions.

We summarize the three main strengths of our approach over
previous CEGAR approaches. (1) Given a single failing run of a Dat-
alog program on a single query, it reasons about all counterexamples
that cause the proof of the query to fail and generalizes the failure to
the maximum extent possible. (2) It reasons about failures and dis-
covers new counterexamples across iterations by mixing the already
available derivations from different iterations. (3) It generalizes the
causes of failure for multiple queries simultaneously. Together, these
three features enable faster convergence of our approach.

Encoding as MAXSAT. In the graph reachability example, our
approach searched a space of 16 different abstractions for each of
two queries. In practice, we seek to apply our approach to real-world
programs and analyses, where the space of abstractions is 2x for x
of the order of tens of thousands, for each of hundreds of queries.
To handle such large spaces efficiently, our approach formulates
a boolean satisfiability problem from the output of the Datalog
computation in each iteration, and solves it using an off-the-shelf
solver to obtain the abstraction to try in the next iteration. For our
example, Figure 4 shows the boolean formula it constructs at the end
of the first iteration. This formula contains a boolean variable for
each tuple in the Datalog computation, denoted by the tuple itself. It
has two kinds of clauses: hard clauses, which must be satisfied, and
soft clauses, each of which is associated with a weight and may be
left unsatisfied. We seek to find a solution that maximizes the sum of
the weights of satisfied soft clauses. This problem is an optimization
extension of the boolean satisfiability (SAT) problem, called the
(weighted) maximum satisfiability (MAXSAT) problem.

Briefly, the formula has three parts. The first part is hard con-
straints that encode the derivation using one Horn clause per deriva-
tion constraint. Input tuples besides those in the abstraction relation
are replaced by true since they are fixed. For instance, the following
derivation in Figure 3a:

path(0, 6) : - path(0, 0), edge(0, 6, a), abs(a0)

yields the clause (path(0, 6) ∨ ¬path(0, 0) ∨ ¬abs(a0)).
The second part is soft constraints that guide the MAXSAT solver

to pick the cheapest abstraction among those that satisfy the hard
constraints. In our example, a weight of 1 is accrued when the solver
picks an abstraction that contains zero label and, implicitly, a weight
of 0 when it contains a one label.

The third part of the formula is soft constraints that negate each
unproven query so far. The reason is that, to prove a query, we must
find an abstraction that avoids deriving the query. One may wonder
why we make these soft instead of hard constraints. The reason
is that certain queries (e.g., path(0, 2)) cannot be proven by any
abstraction; these would make the entire formula unsatisfiable and
prevent other queries (e.g., path(0, 5)) from being proven. But we
must be careful in the weights we attach: these weights can affect
the convergence characteristics of our approach. Returning to our
example, making such a soft clause unsatisfiable incurs a weight
of 5, which implies that no abstraction – not just the cheapest – can
prove that query, the reason being that even the most expensive
abstraction incurs a weight of 4.

The formula constructed in each subsequent iteration conjoins
those from all previous iterations with the formula encoding the
derivation of the current iteration.

3. Parametric Dataflow Analyses
Datalog is a logic programming language capable of naturally
expressing many static analyses [22, 25]. In this section, we review



(program) C ::= c̄ (constraint) c ::= l : - l̄
(literal) l ::= r(ā) (argument) a ::= v | d

Figure 5: Syntax of Datalog used for analyses.

(relations) r ∈ R = {a, b, ..} (variables) v ∈ V = {x, y, ..}
(constants) d ∈ D = {0, 1, ..} (tuples) t ∈ T = R×D∗

(queries) q ∈ Q ⊆ T (abstractions) A ∈ A ⊆ P(T)
(substitutions) σ ∈ Σ = V→D

Figure 6: Auxiliary definitions and notations.

JCK ∈ P(T) FC , fc ∈ P(T)→ P(T)
JCK = lfpFC FC(T ) = T ∪

⋃
{ fc(T ) | c ∈ C }

fl0 :- l1,...,ln(T ) = {σ(l0) | σ(lk) ∈ T for 1 ≤ k ≤ n }
Figure 7: Semantics of Datalog.

this use of Datalog, especially for developing parametric static
analyses. Such an analysis takes (an encoding of) the program to
analyze, a set of queries, and a setting of parameters that dictate the
degree of program abstraction. The analysis then outputs queries
that it could successfully verify using the chosen abstraction. Our
goal is to develop an efficient algorithm for automatically adjusting
the setting of these abstraction parameters for a given program and
set of queries. We formally state this problem in this section and
present our CEGAR-based solution in the subsequent section.

3.1 Datalog Syntax and Semantics
We start with a review of Datalog’s syntax and semantics. Figure 5
shows the syntax of Datalog. A Datalog program is a list of
constraints. (We use overbar, such as c̄, to denote zero, one, or
more occurrences separated by a comma.) Constraints have a head
consisting of one literal, and a body consisting of a list of literals.
Each literal is a relation name together with several arguments, each
of which is either a variable or a constant. We assume that Datalog
programs are finite. We define tuples as literals not containing
variables; they are also called ground literals. Finally, we consider
only well-formed programs, for which all the variables occurring in
the head of a constraint also appear in the body of that constraint.

Each Datalog program C denotes a set of tuples derived using
its constraints. The details are given in Figure 7. In this semantics
of Datalog, each constraint l0 : - l1, . . . , ln is interpreted as a rule
for deriving a tuple from known tuples – it says that if there exists a
substitution σ such that σ(l1), σ(l2), . . . , σ(ln) are all known tuples,
σ(l0) is derived. Note that if the constraint body is empty, n = 0,
then l0 is a tuple that the analysis derives. The program denotes the
least fixed-point (lfp) of repeated applications of the constraints. The
following standard result will be used tacitly in later arguments.
Proposition 1 (Monotonicity). If C1 ⊆ C2, then JC1K ⊆ JC2K.

3.2 Abstractions and Queries
So far we discussed Datalog in general. We now turn to Datalog
programs that implement parametric static analyses. Such Datalog
programs contain three types of constraints: (1) those that encode
the abstract semantics of the programming language, (2) those that
encode the program being analyzed, and (3) those that determine
the degree of program abstraction used by the abstract semantics.
Example 2. Our graph reachability example (Figure 2) is modeled
after a parametric pointer analysis, and is specified using these three
types of constraints. The two rules in the figure describe inference
steps for deriving tuples of the path relation. These rules apply for
all graphs, and they are constraints of type (1). Input tuples of the
edge relation encode information about a specific graph, and are of
type (2). The remaining input tuples of the abs relation specify the

amount of cloning and control the degree of abstraction used in the
analysis; they are thus constraints of type (3).

Hereafter, we refer to the set A of constraints of type (3) as the
abstraction, and the set C of constraints of types (1) and (2) as the
analysis. This further grouping reflects the different treatment of
constraints by our refinement approach – the constraints in the ab-
straction change during iterative refinement, whereas the constraints
in the analysis do not. Given an analysis, only abstractions from a
certain family A make sense. We say that A is a valid abstraction
when A ∈ A. The result for evaluating the analysis C with such a
valid abstraction A is the set JC ∪AK of tuples.

A query q ∈ Q is just a particular kind of tuple that describes
a bug or an undesirable program property. We assume that a set
Q ⊆ Q of queries is given in the specification of a verification
problem. The goal of a parametric static analysis is to show, as
much as possible, that the bugs or properties described by Q do not
arise during the execution of a given program. We say of a valid
abstraction A that it rules out a query q if and only if q /∈ JC ∪AK.
Note that an abstraction either derives a query, or rules it out.
Different abstractions rule out different queries, and we will often
refer to the set of queries ruled out by several abstractions taken
together. We denote byR(A, Q) the set of queries out of Q that are
ruled out by some abstraction A ∈ A:

R(A, Q) = Q \
⋂
{ JC ∪AK | A ∈ A}

Conversely, we say that an abstraction A is unviable with respect to
a set Q of queries if and only if A does not rule out any query in Q;
that is, Q ⊆ JC ∪AK.
Example 3. In our graph reachability example, the family A of valid
abstractions consists of sets {abs(ai), abs(bj), abs(ck), abs(dl)}
for all i, j, k, l. They describe 16 options of cloning nodes in the
graph. The set of queries is Q= {path(0, 5), path(0, 2)}.

We assume that the family A of valid abstractions is equipped
with the precision preorder v and the efficiency preorder �. Intu-
itively, A1 v A2 holds when A1 is at most as precise as A2, and
so it rules out less queries. Formally, we require that the precision
preorder obeys the following condition:

A1 v A2 ⇒ JC ∪A1K ∩Q ⊇ JC ∪A2K ∩Q

Some analyses have a most precise abstraction A>, which can rule
out most bugs. This abstraction, however, is often impractical, in the
sense that computing JC ∪ A>K requires too much time or space.
The efficiency preorder captures the notion of abstraction efficiency:
A1 � A2 denotes that A1 is at most as efficient as A2. Often, the
two preorders point in opposite directions.
Example 4. Abstractions of our running example are ordered as
follows. Let A = {abs(ai), abs(bj), abs(ck), abs(dl)} and B =
{abs(ai′), abs(bj′), abs(ck′), abs(dl′)}. Then, A v B if and
only if i ≤ i′ ∧ j ≤ j′ ∧ k ≤ k′ ∧ l ≤ l′. Also, A � B if and only
if (i+ j+k+ l) ≥ (i′+ j′+k′+ l′). These relationships formally
express that cloning more nodes can improve the precision of the
analysis but at the same time it can slow down the analysis.

3.3 Problem Statement
Our aim is to solve the following problem:

Definition 5 (Datalog Analysis Problem). Suppose we are given
an analysis C, a set Q ⊆ Q of queries, and an abstraction family
(A,v,�). Compute the setR(A, Q) of queries that can be ruled
out by some valid abstraction.

Since A is typically finite, a brute force solution is possible:
simply apply the definition of R(A, Q). However, |A| is often
exponential in the size of the analyzed program. Thus, it is highly
desirable to exploit the structure of the problem to obtain a better



solution. In particular, the information embodied by the efficiency
preorder � and by the precision preorder v should be exploited.

Our general approach, in the vein of CEGAR, is to run Datalog,
in turn, on a finite sequence A1, . . . , An of abstractions. In the ideal
scenario, every query q ∈ Q is ruled out by some abstraction in the
sequence, and the combined cost of running the analysis for all the
abstractions in the sequence is as small as possible. The efficiency
preorder� provides a way to estimate the cost of running an analysis
without actually doing so; the precision preorder v could be used
to restrict the search for abstractions. We describe the approach in
detail in the next section.
Example 6. What we have described for our running example pro-
vides the instance (C,Q, (A,v,�)) of the Datalog Analysis prob-
lem. Recall thatQ = {path(0, 2), path(0, 5)}. As we explained in
Section 2, among these two queries, only path(0, 5) can be ruled out
by some abstraction. A cheapest such abstraction according to the
efficiency order � is A = {abs(a1), abs(b0), abs(c1), abs(d0)},
which clones two nodes, while the most expensive one is B =
{abs(a1), abs(b1), abs(c1), abs(d1)} with four clones. Hence,
the answer R(A, Q) for this problem is {path(0, 5)}, and our
goal is to arrive at this answer in a small number of refinement
iterations, while mostly trying a cheap abstraction in each iteration,
such as the abstraction A rather than B.

4. Algorithm
In this section, we present our CEGAR algorithm for parametric
analyses expressed in Datalog. Our algorithm frees the designer
of the analysis from the task of describing how to do refinement.
All they must do is to describe which abstractions are valid. We
achieve such a high degree of automation while remaining efficient
due to two main ideas. The first is to record the result of a Datalog
run using a boolean formula that compactly represents large sets
of unviable abstractions. The second is to reduce the problem of
finding a good abstraction to a MAXSAT problem.

We begin by describing the first idea (Section 4.1): how Datalog
runs are encoded in boolean formulas, and what properties this en-
coding has. In particular, we observe that conjoining the encoding
of multiple Datalog runs gives an under-approximation for the set
of unviable abstractions (Theorem 9). This observation motivates
the overall structure of our CEGAR-based solution to the Datalog
analysis problem, which we describe next (Section 4.2). The algo-
rithm relies on a subroutine for choosing the next abstraction. While
arguing for the correctness of the algorithm, we formalize the re-
quirements for this subroutine: it should choose a cheap abstraction
not yet known to be unviable. We finish by describing the second
idea (Section 4.3), how choosing a good abstraction is essentially a
MAXSAT problem, thus completing the description of our solution.

4.1 From Datalog Derivations to SAT Formulae
In the CEGAR algorithm, we iteratively call a Datalog solver. It is
desirable to do so as few times as possible, so we wish to eliminate as
many unviable abstractions as possible without calling the solver. To
do so, we need to rely on more information than the binary answer
of a Datalog run, on whether an abstraction derives or rules out a
query. Intuitively, there is more information, waiting to be exploited,
in how a query is derived. Theorem 8 shows that by recording the
Datalog run for an abstraction A as a boolean formula it is possible
to partly predict what Datalog will do for other abstractions that
share tuples with A. Perhaps less intuitively, Theorem 9 shows that
it is sound to mix (parts of) derivations seen for different runs of
Datalog. Thus, in some situations we can predict that an abstraction
A1 will derive a certain query by combining tuple dependencies
observed in runs for two other abstractions A2 and A3.

(boolean formula) φ ∈ Φ φ ::= True | t | ¬φ1 | φ1 ∧ φ2

[C] ∈ P(T)→ Φ
[C]T =

∧{
σ(l1) ∧ . . . ∧ σ(ln)→ σ(l0)

∣∣
(l0 : - l1, . . . , ln) ∈ C and σ(l0), . . . , σ(ln) ∈ T

}
Figure 8: From Datalog analysis results to boolean formulas.

For each tuple t ∈ T, we introduce a unique boolean variable
which we also denote t, and consider boolean formulas φ that
use such t’s as atomic formulas. We assume these formulas have
the syntax from Figure 8, and we define their semantics using
the satisfaction relation T |= φ between a set T of tuples and a
formula φ. It states that φ is true under the assignment where each
boolean variable in T is true and the remaining ones in T are false:

Definition 7 (Satisfaction of boolean formulae). The relation
T |= φ of boolean satisfaction is defined inductively, as follows:

T |= t iff t ∈ T T |= True iff always
T |= ¬φ iff T 6|= φ T |= φ1 ∧ φ2 iff T |= φ1 and T |= φ2

If T |= φ, we say that T is a model of φ. We say that φ is valid
and write |= φ when T |= φ for all T ⊆ T. The other boolean
connectives can be defined in terms of ¬ and ∧.

Figure 8 shows our routine for producing a boolean formula
from the result T of analysis C. We denote this formula with [C]T .
Intuitively, the formula encodes information about the dependency
among tuples in derivations, and its models are those sets of tuples
that are consistent with the observed dependencies. The following
theorem states that [C]T allows us to predict what Datalog would
do for those abstractions A ⊆ T .

Theorem 8. Let T be a fixed-point of function FC used to define
JCK in Figure 7, and let T ′ be a subset of T ; thus FC(T ) = T and
T ′ ⊆ T . Then JC ∪ T ′K is fully determined by [C]T , as follows:

t ∈ JC ∪ T ′K ⇔ |=
(
(
∧
T ′ ∧ [C]T )→ t

)
One interesting instantation of the theorem is the case that

T is the result of running Datalog with some valid abstraction A,
i.e., T = JC ∪ AK. To see the importance of this case, consider
the first iteration of the running example (Section 2), where A is
{abs(a0), abs(b0), abs(c0), abs(d0)}. The theorem says that it
is possible to predict exactly what Datalog would do for subsets
of A. If such a subset derives a query then, by monotonicity
(Proposition 1), so do all its supersets. In other words, we can give
lower bounds for which queries do other abstractions derive. (All
other abstractions are supersets of subsets of A.)

When the analysis C is run multiple times with different abstrac-
tions, the results T1, . . . , Tn of these runs lead to boolean formulas
[C]T1 , . . . , [C]Tk . The next theorem points out the benefit of consid-
ering these formulas together, as illustrated in Section 2. It implies
that by conjoining these formulas, we can mix derivations from
different runs, and identify more unviable abstractions.

Theorem 9. Let T1, . . . , Tn be fixed-points of FC . For all T ′,

|=
(
(
∧
T ′ ∧ [C]T1 ∧ . . . ∧ [C]Tn)→ t

)
⇒ t ∈ JC ∪ T ′K

4.2 The Algorithm
Our main algorithm (Algorithm 1) classifies the queriesQ into those
that are ruled out by some abstraction and those that are impossible
to rule out using any abstraction. The algorithm maintains its state
in two variables, R ∈ P(Q) and φ ∈ Φ, where R is the set of
queries that have been ruled out so far and φ is a boolean formula
that encodes the Datalog runs observed so far.

The call choose(φ,Q′) evaluates to impossible only if all
queries in Q′ are impossible to rule out, according to the infor-



Algorithm 1 CEGAR-based Datalog analysis.
1: INPUT: Queries Q
2: OUTPUT: A partition (R, I) of Q, where R contains queries

that have been ruled out and I queries impossible to rule out.
3: var R := ∅, φ := True
4: loop
5: A := choose(φ,Q \R)
6: if (A = impossible) return (R,Q \R)
7: T := JC ∪AK
8: R := R ∪ (Q \ T )
9: φ := φ ∧ [C]T

10: end loop

mation encoded in φ. Thus, the algorithm terminates only if all
queries that can be ruled out have been ruled out. Conversely,
choose never returns an abstraction whose analysis was previously
recorded in φ. Intuitively, φ represents the set of abstractions known
to be unviable for the remaining set of queries Q′ = (Q \ R).
Formally, this notion is captured by the concretization function γ,
whose definition is justified by Theorem 9.

γ ∈ Φ× P(Q)→ P(A)

γ(φ,Q′)
∆
=
{
A ∈ A

∣∣ |= (∧A ∧ φ)→ ∧
Q′
}

The condition that
(∧

A∧φ
)
→
∧
Q′ is valid appears complicated,

but it is just a formal way to say that all queries in Q′ are derivable
from A using derivations encoded in φ. Hence, γ(φ,Q′) contains
the abstractions known to be unviable with respect to Q′; thus A \
γ(φ,Q′) is the set of valid abstractions that, according to φ, might
be able to rule out some queries in Q′. The function choose(φ,Q′)
chooses an abstraction from A \ γ(φ,Q′), if this set is not empty.

Each iteration of Algorithm 1 begins with a call to choose
(Line 5). If all remaining queries Q \ R are impossible to rule
out, then the algorithm terminates. Otherwise, a Datalog solver is
run with the new abstraction A (Line 7). The set R of ruled out
queries is updated (Line 8) and the relevant Datalog rule groundings
are recorded in φ (Line 9).

Theorem 10. If choose(φ,Q′) evaluates to an element of the set
A \ γ(φ,Q′) whenever such an element exists, and to impossible
otherwise, then Algorithm 1 is partially correct: it returns (R, I)
such that R = R(A, Q) and I = Q \R. In addition, if A is finite,
then Algorithm 1 terminates.

The next section gives one definition of the function choose
that satisfies the requirements of Theorem 10, thus completing
the description of a correct algorithm. The definition of choose
from Section 4.3 makes use of the efficiency preorder �, such that
the resulting algorithm is not only correct, but also efficient. Our
implementation also makes use of the precision preorderv to further
improve efficiency. The main idea is to constrain the sequence of
used abstractions to be ascending with respect to v. For this to be
correct, however, the abstraction family must satisfy an additional
condition: for any two abstractions A1 and A2 there must exist
another abstraction A such that A w A1 and A w A2. The proofs
are available in the long version of the paper.

4.3 Choosing Good Abstractions via MAXSAT

The requirement that function choose(φ,Q′) should satisfy was
laid down in the previous section: it should return an element
of A \ γ(φ,Q′), or say impossible if no such element exists. In
this subsection we describe how to choose the cheapest element,
according to the preorder �. The type of function choose is

choose ∈ Φ× P(Q) → A ] {impossible}
The function choose is essentially a reduction to the standard
weighted MAXSAT problem [18]. This section begins with a brief

review of the MAXSAT problem and then continues with an expla-
nation for one definition of choose.

The input to a (partial and weighted) MAXSAT problem is the
hard constraint ψ0 and pairs (wk, ψk) of weights wk and soft
constraints ψk for 1 ≤ k ≤ n. The goal is to find a model of the hard
constraint such that the weight sum of the satisfied soft constraints is
maximized. Formally, MAXSAT

(
ψ0, {(w1, ψ1), . . . , (wn, ψn)}

)
finds T ⊆ T that
maximizes

∑{
wi

∣∣ T |= ψi and 1 ≤ i ≤ n
}

subject to T |= ψ0

If there is no feasible solution then MAXSAT returns impossible.
In textbook definitions, the constraints are required to be clauses,
i.e., disjunctions of atomic formulas. To simplify the presentation,
we do not list individual clauses, but use what may appear to be
arbitrary boolean formulas. However, these formulas are always in
conjunctive normal form, or trivially convertible to that form.

To define choose in terms of MAXSAT, we simply have to say
which are the hard and soft constraints. Before describing these in
general, let us examine an example.
Example 11. Consider an analysis with parameters p1, p2, . . . , pn,
each taking a value from {1, 2, . . . , k}. The set of valid abstractions
is A = {1, 2, . . . , n} → {1, 2, . . . , k}. The fact that pi has value j
is encoded by a Datalog tuple which in turn is encoded as a boolean
variable. Let us write [pi = j] for the boolean variable that encodes
the fact pi = j. Let the queries be {q1, q2, q3}, and suppose that the
accumulated constraints are

φ = ([p1=1]∧ [p2=1]→ q1)∧ ([p1=1]→ q2)∧ ([p3=1]→ q3)

We construct the hard constraint such that (1) only valid abstractions
are considered, and (2) abstractions known to be unviable with
respect to {q1, q2, q3} are avoided.

ψ0 = δA ∧ φ ∧ (¬q1 ∨ ¬q2 ∨ ¬q3)

The formula δA, which restricts abstractions to be valid, could be
defined as

∧
{ δiA | 1 ≤ i ≤ n } where

δiA
∆
=
(∨
{ [pi = j] | 1 ≤ j ≤ k }

)
∧ ¬[pi < 1]

∧
(∧
{¬([pi < j] ∧ [pi = j]) | 1 ≤ j ≤ k }

)
∧
(∧
{ ([pi < j] ∨ [pi = j])↔ [pi < j + 1] | 1 ≤ j < k }

)
The formula δiA says that pi takes exactly one value. The definition
uses auxiliary boolean variables [pi < j], so that δiA grows linearly
with k, rather than quadratically as the naive encoding does. One
interesting feature of the hard constraint ψ0 defined above is that a
large part of ψ0 can be rewritten in a Horn conjunctive normal form.

It remains to construct the soft constraints. To a large extent, this
is done based on knowledge about the efficiency characteristics of a
particular analysis, and thus is left to the designer of the analysis. For
example, if the designer knows from experience that the analysis
tends to take longer as

∑
pi increases, then they could include

[pi = j] as a soft constraint with weight k − j, for each i and j.
The remaining soft constraints that we include are independent of

the particular analysis, and they express that abstractions should be
preferred when they could potentially help with more queries. In this
example, the extra soft constraints are ¬q1, ¬q2, ¬q3, all with some
large weight w. Suppose an abstraction A1 is known to imply q1,
and an abstraction A2 is known to imply both q1 and q2. Then A1 is
preferred over A2 because of the last three soft constraints. Note
that an abstraction is not considered at all only if it is known to
imply all three queries, because of the hard constraint.

In general, choose is defined as follows:

choose(φ,Q)
∆
= MAXSAT

(
δA ∧ φ ∧ α(Q), ηA ∪ βA(Q)

)



The boolean formula δA encodes the set A of valid abstractions, and
the soft constraints ηA encode the efficiency preorder �. Formally,
letting TA =

⋃
{A | A ∈ A}, the set of tuples used in valid

abstractions, we require δA and ηA to satisfy the conditions

T |= δA ⇔ T ∩ TA ∈ A

A � B ⇔
∑
{wi | A |= η

(i)
A } ≤

∑
{wi | B |= η

(i)
A }

where ηA has the form
{

(w1, η
(1)
A ), . . . , (wn, η

(n)
A )

}
. Finally, the

hard constraint α(Q) and the soft constraints βA(Q) are

α(Q)
∆
=
∨
{¬q | q ∈Q } βA(Q)

∆
= { (wA+1,¬q) | q ∈Q }

where wA is an upper bound on the weight given by ηA to a valid
abstraction; for example, the sum

∑n
i=1 wi of all weights would do.

Discussion. The function choose(φ,Q) reasons about a possibly
very large set γ(φ,Q) of abstractions known to be unviable, and it
does so by using the compact representation φ of previous Datalog
runs, together with several helper formulas, such as δA and ηA.
Moreover, the reduction to a MAXSAT problem is natural and
involves almost no transformation of the formulas involved. (In
practice, any acrobatics related to keeping formulas in conjunctive
normal form while reducing a problem to MAXSAT have the
tendency to degrade overall performance.)

Finally, it is tempting to remark that the MAXSAT instances
we produce are easy because they tend to consist of mostly Horn
formulas. However, MAXSAT is known to be hard even in the
restricted case of Horn formulas [14]. It is possible to design Datalog
analyses for which δA and ηA are extremely simple, the MAXSAT
instances would be Horn formulas, and nevertheless finding the best
next abstraction amounts to solving an NP-hard problem.

5. Empirical Evaluation
In this section, we empirically evaluate our approach on real-world
analyses and programs. The experimental setup is described in
Section 5.1 and the evaluation results are discussed in Section 5.2.

5.1 Experimental Setup
We evaluate our approach on two static analyses written in Datalog,
a pointer analysis and a typestate analysis, for Java programs.
We study the results of applying our approach to each of these
analyses on eight Java benchmark programs described in Table 2.
We analyzed the bytecode of the programs including the libraries
that they use. The programs are from Ashes Suite and DaCapo Suite.

We implemented our approach using open-source Datalog and
MAXSAT solvers without any modification. Both our analyses are
expressed and solved using bddbddb [24], a BDD-based Datalog
solver. Throughout experiments, we use the algorithm of Section 4.2
with the optimizations at the end of that section. We use the
MiFuMaX solver [13] to solve MAXSAT formulas generated by
this algorithm. All our experiments were done using Oracle HotSpot
JVM 1.6 on a Linux machine with 128GB memory and 3.0GHz
processors. We next describe our two analyses in more detail.

Pointer Analysis. Our pointer analysis is flow-insensitive but
context-sensitive, based on k-object-sensitivity [19]. It computes
a call graph simultaneously with points-to results, because the
precision of the call graph and points-to results is inter-dependent
due to dynamic dispatching in OO languages like Java.

The precision and efficiency of this analysis depends heavily on
how many distinctions it makes between different calling contexts.
In Java, the value of the receiver object this provides context at
runtime. But a static analysis cannot track concrete objects. Instead,
static analyses typically track the allocation site of objects. In gen-
eral, in object-sensitive analyses the abstract execution context is an
allocation string h1, . . . , hk. The site h1 is where the receiver ob-
ject was instantiated. The allocation string h2, . . . , hk is the context

of h1, defined recursively. Typically, all contexts are truncated to
the same length k.

In our setting, an abstraction A enables finer control on how
contexts are truncated: The context for allocation site h is truncated
to length A(h). Thus, truncation length may vary from one alloca-
tion site to another. This finer control allows us to better balance
precision and efficiency. Abstractions are ordered as follows:

(precision) A1 v A2 ⇔ ∀h : A1(h) ≤ A2(h)
(efficiency) A1 � A2 ⇔ ΣhA1(h) ≥ ΣhA2(h)

These definitions reflect the intuition that making more distinctions
between contexts increases precision but is more expensive.

Typestate analysis. Our typestate analysis is based on that by
Fink et al. [9]. It differs in three major ways from the pointer analysis
described above. First, it is fully flow-sensitive, whereas the pointer
analysis is fully flow-insensitive. Second, it is fully context-sensitive,
using procedure summaries instead of cloning, and therefore capable
of precise reasoning for programs with arbitrary call chain depth,
including recursive ones. It is based on the tabulation algorithm [21]
that we expressed in Datalog. Third, it performs both may- and must-
alias reasoning; in particular, it can do strong updates, whereas our
pointer analysis only does weak updates. These differences between
our two analyses highlight the versatility of our approach.

More specifically, the typestate analysis computes at each pro-
gram point, a set of abstract states of the form (h, t, a) that collec-
tively over-approximate the typestates of all objects at that program
point. The meaning of these components of an abstract state is as
follows: h is an allocation site in the program, t is the typestate in
which a certain object allocated at that site might be in, and a is a
finite set of heap access paths with which that object is definitely
aliased (called must set). The precision and efficiency of this anal-
ysis depends heavily on how many access paths it tracks in must
sets. Hence, the abstraction A we use to parametrize this analysis is
a set of access paths that the analysis is allowed to track: any must
set in any abstract state computed by the analysis must be a subset
of the current abstraction A. The specification of this parametrized
analysis differs from the original analysis in that the parametrized
analysis simply checks before adding an access path p to a must
set m whether p ∈ A: if not, it does not add p to m; otherwise, it
proceeds as before. Note that it is always safe to drop any access
path from any must set in any abstract state, which ensures that it
is sound to run the analysis using any set of access paths as the
abstraction. Different abstractions, however, do affect the precision
and efficiency of the analysis, and are ordered as follows:

(precision) A1 v A2 ⇔ A1 ⊆ A2

(efficiency) A1 � A2 ⇔ |A1| ≥ |A2|
which reflects the intuition that tracking more access paths makes
the analysis more precise but also less efficient.

Using the typestate analysis client, we compare our refinement
approach to a scalable CEGAR-based approach for finding optimal
abstractions proposed by Zhang et al. [26]. A similar comparison is
not possible for the pointer analysis client since the work by Zhang
et al. cannot handle non-disjunctive analyses. Instead, we compare
the precision and scalability of our approach on the pointer analysis
client with an optimized Datalog-based implementation of k-object-
sensitive pointer analysis that uses k = 4 for all allocation sites in
the program. Using a higher k value caused this baseline analysis to
timeout on our larger benchmarks.

5.2 Evaluation Results
Table 3 summarizes the results of our experiments. It shows the
numbers of queries, abstractions, and iterations of our approach
(CURRENT) and the baseline approaches (BASELINE) for each
analysis and benchmark.

The ‘total’ column under queries shows the number of queries
posed by the analysis on each benchmark. For the pointer analysis,



description # classes # methods bytecode (KB) source (KLOC)
app total app total app total app total

toba-s Java bytecode to C compiler 25 158 149 745 32 56 6 69
javasrc-p Java source code to HTML translator 49 135 461 789 43 60 13 66
weblech website download/mirror tool 11 576 78 3,326 6 208 12 194
hedc web crawler from ETH 44 353 230 2,134 16 140 6 153
antlr parser/translator generator 111 350 1,150 2,370 128 186 29 131
luindex document indexing and search tool 206 619 1,390 3,732 102 235 39 190
lusearch text indexing and search tool 219 640 1,399 3,923 94 250 40 198
schroeder-m sampled audio editing tool 109 936 617 6,435 37 352 12 334

Table 2: Benchmark characteristics. All numbers are computed using a 0-CFA call-graph analysis.

pointer analysis typestate analysis
queries abstraction size

iterations
queries abstraction size iterations

total resolved final max. total resolved final max.
CURRENT BASELINE CURRENT BASELINE

toba-s 7 7 0 170 17,820 10 543 543 62 14,781 15 159
javasrc-p 46 46 0 470 18,450 13 159 159 89 13,653 14 92
weblech 5 5 2 140 30,950 10 13 13 33 25,781 14 16
hedc 47 47 6 730 29,480 18 24 24 14 23,622 7 10
antlr 143 143 5 970 29,170 15 77 77 66 24,815 12 45
luindex 138 138 67 1,160 40,550 26 248 248 79 33,835 16 72
lusearch 322 322 29 1,460 39,360 17 45 45 74 33,526 13 52
schroeder-m 51 51 25 450 58,260 15 194 194 71 54,741 9 49

Table 3: Results showing statistics of queries, abstractions, and iterations of our approach (CURRENT) and the baseline approaches (BASELINE).

each query corresponds to proving that a certain dynamically
dispatching call site in the benchmark is monomorphic; i.e., it has a
single target method. We excluded queries that could be proven by a
context-insensitive pointer analysis. For the typestate analysis, each
query corresponds to a typestate assertion. We tracked typestate
properties for the objects from the same set of classes as used by
Fink et al. [9] in their evaluation.

The ‘resolved’ column shows the number of queries proven or
shown to be impossible to prove using any abstraction in the search
space. For the pointer analysis, impossibility means that a call site
cannot be proven monomorphic no matter how high the k values are.
For the typestate analysis, impossibility implies that the typestate
assertion cannot be proven even by tracking all program variables. In
our experiments, we found that our approach successfully resolved
all the queries for the pointer analysis, by using a maximum k value
of 10 at any allocation site. However, the baseline 4-object-sensitive
analysis without refinement could only resolve up to 50% of the
queries. Selectively increasing the k value allowed our approach to
scale better and try higher k values, leading to greater precision. For
the typestate analysis client, both of our approach and the baseline
approach resolved all queries.

Table 3 gives the abstraction size, which is an estimate of how
costly it is to run an abstraction. An abstraction is considered to be
more efficient when its size is smaller. But the size of abstraction A
is defined differently for the two analyses: for pointer analysis, it
is
∑

hA(h); for typestate analysis, it is |A|. The ‘max.’ column
shows the maximum size of an abstraction for the given program.
For the pointer analysis, the maximum size corresponds to 10-
object-sensitive analysis. for the typestate analysis, the maximum
size corresponds to tracking all access paths. Even on the smallest
benchmark, these costly analyses ran out of memory, emphasizing
the need for our CEGAR approach. The ‘final’ column shows the
size of the abstraction used in the last iteration. In all cases the size
of the final abstraction is less than 5% of the maximum size.

The ‘iterations’ column shows the total number of iterations until
all queries were solved. These numbers show that our approach is
capable of exploring a huge space of abstractions for a large number
of queries simultaneously, in under a few iterations. In comparison,
the baseline approach (BASELINE) of Zhang et al. invokes the
typestate client analysis far more frequently because it refines each

query individually. For example, the baseline approach took 159
iterations to finish the typestate analysis on toba-s, while our
approach only needed 15 iterations. Since the baseline for the pointer
analysis client is not a refinement-based approach, it invokes the
client analysis just once and is not comparable with our approach.

In the rest of this section, we evaluate the performance of the
Datalog solver and the MAXSAT solver in more detail.

Performance of Datalog solver. Table 4 shows statistics of the
running time of the Datalog solver in different iterations of our
approach. These statistics include the minimum, maximum, and
average running time over all iterations for a given analysis and
benchmark. The numbers in Table 4 indicate that the abstractions
chosen by our approach are small enough to allow the analyses to
scale. For schroeder-m, one of our largest benchmarks, the change
in running time from the slowest to the fastest run is only 2X for
both client analyses. This further indicates that our approach is
able to resolve all posed queries simultaneously before the sizes
of the chosen abstractions start affecting the scalability of the
client Datalog analyses. In contrast, the baseline k-object-sensitive
analysis could only scale upto k = 4 on our larger benchmarks.
Even with k = 4, the Datalog solver ran for over six hours on
our largest benchmark when using the baseline approach. With our
approach, on the other hand, the longest single run of the Datalog
solver for the pointer analysis client was only seven minutes.

Figures 9 and 10 show the change in abstraction size and
the analysis running time across iterations for the pointer and
typestate analysis, respectively, applied on schroeder-m. There
is a clear correlation between the growth in abstraction size and the
increase in the running times. For both analyses, since our approach
only chooses the cheapest viable abstraction in each iteration, the
abstraction size grows almost linearly, as expected. Further, for
typestate analysis, an increase in abstraction size typically results
in an almost linear growth in the number of abstract states tracked.
Consequently, the linear growth in the running time for the typestate
analysis is also expected behavior. However, for the pointer analysis,
typically, the number of distinct calling contexts grows exponentially
with the increase in abstraction size. The linear curve for the running
time in Figure 9 indicates that the abstractions chosen by our
approach are small enough to limit this exponential growth.



running time of the Datalog solver (in seconds) running time of the MAXSAT solver (in seconds)
pointer analysis typestate analysis pointer analysis typestate analysis

BASELINE min. max. avg. min. max. avg. min. max. avg. min. max. avg.
toba-s 11 5 7 6 49 82 68.1 2 7 3.1 1 6 3.1
javasrc-p 29 7 11 9 76 152 120.8 <1 4 1.6 2 19 6.4
weblech 2,574 44 54 47.5 121 172 146.6 5 11 6.7 3 8 5.3
hedc 5,058 21 37 27.9 52 58 54.3 1 23 3.7 1 2 1.7
antlr 3,723 30 55 39.3 193 325 264.8 11 44 24.1 5 27 13.25
luindex 913 59 84 76.4 311 512 426.7 8 48 16.3 6 26 14.7
lusearch 7,040 59 85 72.7 238 437 343.9 7 62 23.9 6 29 15.9
schroeder-m 23,038 192 428 289.6 1,778 2,681 2,304.6 34 257 114 37 308 138.6

Table 4: Running time of the Datalog and MAXSAT solvers in each iteration.
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Figure 9: Running time of the Datalog solver and abstraction size
for pointer analysis on schroeder-m in each iteration.
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Figure 10: Running time of the Datalog solver and abstraction size
for typestate analysis on schroeder-m in each iteration.

Performance of MAXSAT solver. Table 4 shows statistics of
the running time of the MAXSAT solver in different iterations of
our approach. The metrics reported are the same as those for the
Datalog solver. Although the performance of MAXSAT solvers is
not completely deterministic, it is largely affected by two factors,
(1) the size of boolean constraints posed to the solver, and (2) the
structure of these constraints. For both analyses, as seen previously,
the abstraction size increases with the number of iterations while
the number of unresolved queries decreases. Growth in abstraction
size increases the complexity of the client Datalog analyses, causing
an increase in the number of boolean constraints generated. On
the other hand, fewer queries tends to simplify the structure of the
constraints to be solved.

Figure 11 shows the running time of the MAXSAT solver
across all iterations for the pointer analysis applied to our largest
benchmark schroeder-m. Initially, the solver running time shows
an increasing trend but this reverses towards the end. We believe that
the two conflicting factors of size and structure of the constraints
are at play here. While the complexity of the constraints increases
initially due to their growing size, after a certain iteration, the
number of unresolved queries becomes small enough to suitably
simplify the structure of the constraints and overwhelm the effect of
growing constraint size. For the remaining benchmarks and analyses,
we observed a similar trend, which we omit for the sake of brevity.
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Figure 11: Running time of the MAXSAT solver for pointer analysis
on schroeder-m in each iteration.

pointer analysis typestate analysis
# variables # clauses # variables # clauses

toba-s 784k 1,485k 741k 938k
javasrc-p 470k 877k 1,022k 1,333k
weblech 1,620k 3,307k 1,374k 1,807k
hedc 1,245k 2,664k 606k 751k
antlr 3,621k 6,875k 2,318k 3,009k
luindex 2,406k 5,643k 2,829k 3,784k
lusearch 2,103k 5,011k 2,626k 3,524k
schroeder-m 6,706k 23,680k 16,293k 22,257k

Table 5: Statistics of MAXSAT formula in the final iteration.

Finally, Table 5 shows the number of variables and clauses in the
largest constraint that the MAXSAT solver had to solve for a given
analysis and benchmark. Though the structure of the constraints is
not apparent from these numbers, the large size of the constraints
indicates the difficulty of the problems that the solver is tackling.

6. Related Work
Our approach is broadly related to work on constraint-based analysis,
including analysis based on boolean constraints, set constraints, and
SMT constraints. Constraint-based analysis has well-known benefits
that our approach also avails, such as the ability to reason about
the analysis and leveraging sophisticated solvers to implement the
analysis. A key difference is that constraint-based analyses typically
solve constraints generated from program text, whereas our approach
solves constraints generated from an analysis run, which is itself
obtained by solving constraints generated from program text.

Our approach is also related to work on CEGAR-based model
checking and program analyses using Datalog, as we discuss next.

CEGAR-based Model Checking. CEGAR was originally pro-
posed to enable model checkers to scale to even larger state-spaces
than those possible by symbolic approaches such as BDDs [8]. Our
motivation for using CEGAR, in contrast, is to enable designers of
analyses in Datalog to express flexible abstractions. Moreover, our
notions of counterexamples and refined abstractions differ radically
from those in model checkers. Despite these differences, however,
there are similarities. Notably, SAT-based approaches have also been



applied in model checkers [3, 6, 7], albeit for different purposes:
they use SAT either to perform bounded model checking itself [7]
or to decide whether a counterexample is real or spurious [3, 6],
whereas we use SAT to generalize a counterexample and find a
refined abstraction.

Our work is most closely related to recent work on synthesizing
software verifiers from proof rules for safety and liveness properties
in the form of Horn-like clauses [2, 4, 10]. Their approach is also
CEGAR-based but differs in two key ways: (1) they can identify
internal nodes of derivations where information gets lost due to
the current abstraction, which they subsequently refine, whereas
we focus on leaf nodes of derivations; and (2) they use CEGAR to
solve difficult Horn constraints formulated even on infinite domains,
whereas we use CEGAR for finding a better abstraction, which is
then used to generate new Horn constraints. As such, their approach
is more expressive and flexible, but ours appears to scale better.

Zhang et al. [26] propose a CEGAR-based approach for effi-
ciently finding an optimal abstraction in a parametric program anal-
ysis. Our approach improves on Zhang et al. in three aspects. First,
their counterexample generation requires a parametric static analy-
sis to be disjunctive (which implies path-sensitivity), whereas any
analysis written in Datalog, including non-disjunctive ones, can be
handled by our approach. As a result, their approach is not applica-
ble to the pointer analysis in Section 5. Second, their approach relies
on a nontrivial backward analysis for analyzing a counterexample
and selecting a next abstraction to try, but this backward analysis is
not generic and should be designed for each parametric analysis. Our
approach, on the other hand, uses a generic MAXSAT-based algo-
rithm for the counterexample analysis and the abstraction selection,
which only requires users to define the cost model of abstractions.
Conversely, [26] converges faster for certain problems. Finally, the
approach in [26] cannot mix counterexamples across iterations to
generate new counterexamples for free, a feature that is present in
our approach as illustrated in Section 2.

Program Analysis Using Datalog. Recent years have witnessed
a surge of interest in using Datalog for program analysis (see
Section 1). Datalog solvers have simultaneously advanced, using
either symbolic representations of relations such as BDDs (e.g.,
BDDBDDB [25] and Jedd [16]) or even explicit representations
(e.g., Doop [22]). More recently the popular Z3 SMT solver has
been extended to compute least fixpoints of constraints expressed
in Datalog [12]. Our CEGAR approach is independent of the
underlying Datalog solver and leverages these advances.

Liang et al. [17] propose a cause-effect dependence analysis
technique for analyses in Datalog. The technique identifies input
tuples that definitely do not affect output tuples. More specifically, it
computes the transitive closure of all derivations of an output tuple
to identify an over-approximation of the set of input tuples needed in
any derivation (e.g., {t1, t2, t3}). In contrast, our approach identifies
the exact set of input tuples needed in each of even exponentially
many derivations (e.g., {{t1}, {t2, t3}}). Thus, in our example, their
approach prunes abstractions that contain {t1, t2, t3}, whereas ours
also prunes those that only contain {t1} or {t2, t3}.

7. Conclusion
We presented a novel CEGAR-based approach to automatically find
effective abstractions for program analyses written in Datalog. We
formulated the abstraction refinement problem for each iteration
as a MAXSAT problem that not only successfully eliminates all
abstractions which fail in a similar way but also finds the next cheap-
est viable abstraction. We showed the generality of our approach
by applying it to two different and realistic static analyses. Finally,
we demonstrated its practicality by evaluating it on a suite of eight
real-world Java benchmarks.
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