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Fuzzing Guided by Bayesian Program Analysis

YIFAN ZHANG, Peking University, China

XIN ZHANG
∗
, Peking University, China

We propose a novel approach that leverages Bayesian program analysis to guide large-scale target-guided

greybox fuzzing (LTGF). LTGF prioritizes program locations (targets) that are likely to contain bugs and

applies directed mutation towards high-priority targets. However, existing LTGF approaches suffer from

coarse and heuristic target prioritization strategies, and lack a systematic design to fully exploit feedback

from the fuzzing process. We systematically define this prioritization process as the reachable fuzzing targets

problem. Bayesian program analysis attaches probabilities to analysis rules and transforms the analysis results

into a Bayesian model. By redefining the semantics of Bayesian program analysis, we enable the prediction of

whether each target is reachable by the fuzzer, and dynamically adjust the predictions based on fuzzer feedback.

On the one hand, Bayesian program analysis builds Bayesian models based on program semantics, enabling

systematic and fine-grained prioritization. On the other hand, Bayesian program analysis systematically learns

feedback from the fuzzing process, making its guidance adaptive. Moreover, this combination extends the

application of Bayesian program analysis from alarm ranking to fully automated bug discovery. We implement

our approach and evaluate it against several state-of-the-art fuzzers. On a suite of real-world programs, our

approach discovers 3.25× to 13× more unique bugs compared to baselines. In addition, our approach identifies

39 previously unknown bugs in well-tested programs, 30 of which have been assigned CVEs.
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1 Introduction

Large-scale target-guided greybox fuzzing (LTGF) [5, 33, 49, 50] is one of the most effective methods

in recent years for discovering unknown bugs in programs. LTGF uses multiple locations in

a program as a target set (usually derived from static analysis results and sanitizers [38]) and

continuously performs target prioritization during the fuzzing process. For high-priority targets,

LTGF leverages techniques from directed greybox fuzzing (DGF) [2] to mutate the seeds that are

more likely to trigger bugs at these targets. As a result, LTGF can trigger more bugs within the

same amount of time compared to conventional coverage-guided greybox fuzzing (CGF) [46].

However, the target prioritization in existing LTGF approaches is coarse and lacks systematic

design. For example, in two recent LTGF works, FishFuzz [50] and Prospector [49], they prioritize

targets that have been exercised fewer times by the generated test inputs. Specifically, for two

targets 𝑙1 and 𝑙2, let Count(𝑙1) and Count(𝑙2) denote the number of generated test inputs that
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have exercised the location of 𝑙1 and 𝑙2, respectively. If Count(𝑙1) < Count(𝑙2), these approaches
will prioritize attempting to trigger vulnerabilities at 𝑙1. Such heuristic-based prioritization is not

only ad-hoc and coarse-grained, but also fails to fully leverage feedback from the fuzzing process,

thereby restricting the effectiveness and full potential of LTGF.

To systematically optimize this process, we first formally define target prioritization as a reachable

fuzzing targets problem. Specifically, we define the probability that each target program property

can be reached by a directed fuzzer. We then formulate the reachable fuzzing targets problem as

predicting whether the probability for each property to be reached by the fuzzer exceeds a given

threshold. To address this problem, we propose a method based on Bayesian program analysis

[26] to predict reachable fuzzing targets. Our method constructs a Bayesian model on top of static

analysis derivations, learns from the fuzzer feedback as posterior information, and ultimately uses

probabilistic inference to compute the probability that each target program property is reachable

by the fuzzer.

Our approach offers two major advantages for guiding LTGF: (1) Compared to previous work

[4, 11, 15, 20, 34, 47] on Bayesian program analysis, we fundamentally redefine the semantics of

the Bayesian network. For each program property that is over-approximated from the program

semantics, we redefine the prediction task from determining whether the property is satisfied by at

least one input to determining whether the property is reachable by the fuzzer. This enables our

approach to be semantics-aware and fine-grained. (2) Based on the semantics we defined for the

Bayesian network, we systematically present a method to generalize fuzzer feedback as posterior

information, which makes our approach adaptive.
In addition, all existing work [4, 11, 15, 20, 26, 34, 47] has focused on applying Bayesian program

analysis to prioritize static analysis alarms to assist users in manual inspection. In this paper, we

aim to extend the application of Bayesian program analysis to guiding fuzzing, enabling fully

automated bug discovery and demonstrating greater practical utility.

We present Bayzzer, a framework that applies Bayesian program analysis to guide LTGF. The

Bayesian program analysis continuously guides the fuzzer through multiple rounds of interaction.

In each interaction round: (1) The Bayesian model calculates the probability that each target is

reachable by the fuzzer and ranks them accordingly. The fuzzer then attempts to trigger bugs

at the top-ranked targets. (2) For targets where bugs are successfully triggered, it indicates that

such bugs are reachable for the fuzzer. The fuzzer gives positive feedback to the Bayesian model,

increasing the probabilities associated with similar targets, allowing the fuzzer to trigger similar

bugs more quickly. For targets where no bugs are triggered, it indicates that they are false positives

over-approximated by static analysis, or that the fuzzer is currently not capable of triggering them

(for instance, the target is only reachable when a strict condition like if(x == 998244353) is

satisfied, which makes it hard to trigger during fuzzing). The fuzzer gives negative feedback to the

Bayesian model, decreasing the probabilities of the associated targets, thereby avoiding wasted

effort on such bugs. (3) As fuzzing progresses, the fuzzer accumulates more seeds and becomes

increasingly capable. Some previously untriggerable bugs may become triggerable. At this point,

the interaction process restarts, and all previous negative feedback is cleared.

We have implemented Bayzzer on top of the LTGF framework FishFuzz [50], and compared it

against the following fuzzers: (1) Prospector [49], a state-of-the-art LTGF; (2) FishFuzz, the base

framework of Bayzzer; (3) FunFuzz [45], a non-Bayesian static-analysis-based state-of-the-art CGF;

(4) AFL++ [8], the base framework for all other fuzzers used in our evaluation. We use the same set

of 24 real-world programs and evaluation metrics as Prospector. The results show that Bayzzer

discovers 3.25×, 6.5×, 6.5×, and 13× more unique bugs compared to these baselines. Moreover,

Bayzzer discovers 39 new bugs from well-tested programs, including latest versions of the above
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programs and popular open-source projects supported by OSS-Fuzz [10], 30 of which have been

assigned CVEs.

Contributions. This paper makes the following contributions:

(1) We systematically define the reachable fuzzing targets problem, and by redefining the seman-

tics of Bayesian program analysis, we enable both accurate prediction of this problem and

generalization of fuzzer feedback.

(2) We propose a framework Bayzzer for leveraging Bayesian program analysis to systematically

provide fine-grained, semantics-aware, and adaptive guidance to fuzzing.

(3) We extend the application scope of Bayesian program analysis from ranking static analysis

alarms to guiding fuzzing for fully automated bug discovery.

(4) We show the effectiveness of Bayzzer on a suite of real-world programs. Bayzzer demon-

strates stronger bug detection performance compared to the baselines.

2 Motivating Example

This section we illustrate the limitations of the coarse-grained target prioritization adopted by

existing LTGF approaches, and demonstrate how Bayesian program analysis can provide semantics-

aware, fine-grained, and adaptive guidance to address these issues through two case studies: (1)

We begin with the discovery of CVE-2017-14409 [27] and CVE-2017-14410 [28] in mp3gain-1.5.2.
This case study illustrates the core workflow of Bayesian program analysis and how it enables

semantics-aware and fine-grained guidance for fuzzing. (2) We then present the discovery of

CVE-2022-27941 [29] and CVE-2022-27942 [30] in tcpreplay-4.4.0. This case study shows how

Bayesian program analysis can adaptively guide fuzzing to select more suitable targets based on

the fuzzer’s own capabilities.

2.1 A Taint Analysis for Detecting Memory Errors

In this subsection, we first introduce the code used in our first case study. Then, we apply a taint

analysis written in Datalog to detect potential memory errors in the code. The generated alarms

are used as targets in large-scale target-guided greybox fuzzing (LTGF). LTGF attempts to trigger

potential vulnerabilities at these targets. This taint analysis also serves as the logical component of

the Bayesian program analysis used in the subsequent subsections.

Figure 1 shows a simplified code fragment from mp3gain-1.5.2 that contains CVE-2017-14409

and CVE-2017-14410. For clarity, we partly rewritten the code but keep the semantics related to

the vulnerabilities. Beginning at Line 29, the function get1bit() reads one bit from the input

MP3. The global structure gr_infos holds input metadata, and its field mixed_block_flag gets
the value from get1bit(). Next, at Line 30, the code invokes III_i_stereo with gr_info as

an argument. Later, gr_infos->mixed_block_flag contributes to computing is_p at Line 21.

Finally, is_p is used as an array index at Line 22. Without bounds checking on is_p, manipu-

lating gr_infos->mixed_block_flag can cause out-of-bounds access and a global buffer over-

flow. This vulnerability corresponds to CVE-2017-14410. CVE-2017-14409 has a similar cause. At

Line 31, III_dequantize_sample is called with gr_info. Then, gr_infos->mixed_block_flag
helps compute pointer m at Line 14, affecting xrpnt at Line 15. Finally, the lack of bounds checks

allows the dereference of xrpnt at Line 16 to trigger a global buffer overflow by manipulating

gr_infos->mixed_block_flag. Next, at Line 32, getbits_fast reads input and assigns it to

gr_infos->scalefac_compress. Afterwards, the code invokes III_get_scale_factors_1 and
III_get_scale_factors_2 with gr_infos at Line 33 and Line 34. At Line 3 and Line 9, the code

uses gr_infos->scalefac_compress as an array index. Since check_1 and check_2 are invoked

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.
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1 static int III_get_scale_factors_1(struct gr_info_s

* gr_infos, ...){

2 if(!check_1(gr_infos->scalefac_compress)) return

-1;

3 int num0 = slen[0][gr_infos->scalefac_compress];

4 ...

5 }

6

7 static int III_get_scale_factors_2(struct gr_info_s

* gr_infos, ...){

8 if(!check_2(gr_infos->scalefac_compress >> 1))

return -1;

9 unsigned int slen = i_slen2[gr_infos->

scalefac_compress >> 1];

10 ...

11 }

12

13 static int III_dequantize_sample(struct gr_info_s*

gr_infos, ...){

14 register int* m = map[sfreq][gr_infos->

mixed_block_flag];

15 real* xrpnt = ((real*)xr) + (*m++);

16 *xrpnt = ispow[y] * v; // CVE-2017-14409

17 ...

18 }

19

20 static void III_i_stereo(struct gr_info_s* gr_infos

, ...){

21 int is_p = scalefac[sfb * 3 + lwin - gr_infos->

mixed_block_flag];

22 real t1 = tabl1[is_p]; // CVE-2017-14410

23 ...

24 }

25

26 struct gr_info_s* gr_infos = ...

27

28 int main(){

29 gr_infos->mixed_block_flag = get1bit();

30 III_i_stereo(gr_infos, ...);

31 III_dequantize_sample(gr_infos, ...);

32 gr_infos->scalefac_compress = getbits_fast(4);

33 III_get_scale_factors_1(gr_infos, ...);

34 III_get_scale_factors_2(gr_infos, ...);

35 ...

36 }

Fig. 1. Simplified code fragment from mp3gain-1.5.2 containing CVE-2017-14409 and CVE-2017-14410.

Input relations

Input(𝑣) : The value of variable 𝑣 comes from external input.

Flow(𝑣1, 𝑣2) : There exists a data flow from 𝑣1 to 𝑣2.

Memory(𝑣, 𝑠) : 𝑣 involves in memory operations in statement 𝑠 .

Output relations

Taint(𝑣) : Variable 𝑣 is tainted.

Alarm(𝑠) : Statement 𝑠 leads to a memory error.

Derivation rules

𝑅1 : Taint(𝑣) :- Input(𝑣).
𝑅2 : Taint(𝑣2) :- Taint(𝑣1), Flow(𝑣1, 𝑣2) .
𝑅3 : Alarm(𝑠) :- Taint(𝑣),Memory(𝑣, 𝑠) .

Fig. 2. A taint analysis in Datalog.

at Line 2 and Line 8, respectively, to check the array indices used in the subsequent line, it is ensured

that the indices are within the valid range. Therefore, no out-of-bounds access occurs.

We use a taint analysis to generate alarms in the program. These alarms serve as the target

set for LTGF to attempt to trigger vulnerabilities. Figure 2 shows the taint analysis written in

Datalog. This analysis is context-insensitive but flow-sensitive. It treats all inputs as taint sources

and propagates taint via potential data flows. A value is tainted if it can be directly controlled by

an attacker through input. If a tainted variable is used in memory operations (e.g., array indexing

or pointer arithmetic), the analysis raises an alarm. Figure 2 contains full definitions of input and

output relations. The analysis uses three derivation rules: 𝑅1 taints inputs, 𝑅2 propagates taint,

and 𝑅3 handles memory operations with tainted values. All three rules over-approximate and can

produce spurious facts. Specifically, 𝑅1 and 𝑅3 ignore how branches limit variable ranges, while
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Input(gr_infos->mixed_block_flag)

𝑅1 (gr_infos->mixed_block_flag)

Taint(gr_infos->mixed_block_flag)Flow(gr_infos->mixed_block_flag, is_p)

𝑅2 (gr_infos->mixed_block_flag, is_p)

Taint(is_p)Memory(is_p, Line 22)

𝑅3 (is_p, Line 22)

Alarm(Line 22)

Flow(gr_infos->mixed_block_flag, m)

𝑅2 (gr_infos->mixed_block_flag, m)

Taint(m)Flow(m, xrpnt)

𝑅2 (m, xrpnt) Taint(xrpnt) Memory(xrpnt, Line 16)

𝑅3 (xrpnt, Line 16)Alarm(Line 16)

Input(gr_infos->scalefac_compress)

𝑅1 (gr_infos->scalefac_compress)

Taint(gr_infos->scalefac_compress)Memory(gr_infos->scalefac_compress, Line 3)

𝑅3 (gr_infos->scalefac_compress, Line 3) Alarm(Line 3)

Memory(gr_infos->scalefac_compress, Line 9)

𝑅3 (gr_infos->scalefac_compress, Line 9)Alarm(Line 9)

1
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34
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67
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2627

Fig. 3. The derivation graph of the analysis in Figure 2 applying to the code fragment in Figure 1. Vertices

with a bordered gray background represent input tuples. Vertices with a bordered white background represent

output tuples, while vertices with a double-bordered white background represent alarms tuples. Vertices

without borders represent rule instances. For brevity, we use a black-circled number at the top right corner of

each vertex to indicate its identifier.

𝑅2 ignores context differences. A Datalog engine applies the derivation rules to input tuples and

iterates until reaching a fixed point, where no new output tuples are produced.

We visualize the Datalog derivation as a directed graph for clarity. We refer to such a graph

as the derivation graph. Figure 3 shows the derivation graph from Figure 2 applied to the code

in Figure 1. The graph includes input tuples (bordered, grey), output tuples (bordered, white),

and rule instances (no borders) generating the output tuples. A rule instance represents a single

application of a derivation rule that produces a new output tuple. For instance, 𝑅2 (m, xrpnt) uses
Taint(m) and Flow(m, xrpnt) to derive Taint(xrpnt). Specifically, vertices with double borders and

white backgrounds denote alarm tuples. Alarm(Line 16) and Alarm(Line 22) match real bugs CVE-

2017-14409 and CVE-2017-14410. Alarm(Line 3) and Alarm(Line 9) are false positives from static

analysis over-approximation. Since the taint analysis only models whether variables are tainted by

external input and does not model the specific values, it cannot determine that the bounds checks

at Line 2 and Line 8 will prevent out-of-bounds array accesses.

If we adopt the existing LTGF target prioritization strategy, which prioritizes targets that have

been exercised the fewest times by generated inputs, two main issues arise: (1) Because the number

of times a focused target is exercised can rapidly increase, all targets tend to receive equal attention in

the long run. As a result, this strategy cannot distinguish between false alarms such asAlarm(Line 3)
and Alarm(Line 9), leading to significant time wasted on these false targets. (2) It fails to associate

alarms. For example, triggering the vulnerabilities at Line 16 and Line 22 is closely related, but

even after successfully triggering the vulnerability at Line 16, the strategy cannot leverage this

information to focus on Alarm(Line 22). Next, we show how Bayesian program analysis addresses

these two issues and helps the fuzzer prioritize more promising alarms.

2.2 Semantics-Aware and Fine-Grained Fuzzing Guidance via Bayesian Program

Analysis

In this subsection, we use the previously introduced taint analysis as the logic for Bayesian program

analysis, and show how it guides fuzzing to find CVE-2017-14409 and CVE-2017-14410 while

minimizing the prioritization of false alarms. The core idea is that (1) Bayesian program analysis

builds a semantics-based Bayesian network for semantics-aware guidance; and (2) Bayesian program
analysis ranks fuzzing targets via systematic Bayesian inference. The ranking adapts to fuzzer
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Reachable alarm ranking

with no evidence

Directed mutation

towards Alarm(Line 3)
Reachable alarm ranking

with ¬𝑥Alarm(Line 3)

Directed mutation

towards Alarm(Line 22)
Reachable alarm ranking with

¬𝑥Alarm(Line 3) ∧ 𝑥Alarm(Line 22)
Directed mutation

towards Alarm(Line 16)

Alarm(Line 3)
Alarm(Line 3)
is not reachable

Alarm(Line 22)
Alarm(Line 22)
is reachable

Alarm(Line 16)

Fig. 4. The full workflow of Bayesian program analysis guiding fuzzing for the code fragment in Figure 1.

feedback, avoiding false positives and revealing bugs with shared root causes, thereby enabling

fine-grained guidance.

Returning to the case study: since 𝑅1, 𝑅2, and 𝑅3 over-approximate, we assign probabilities to

derivations to capture uncertainty. We simplify by assigning 0.9 probability to each rule. With

this view, the derivation graph becomes a Bayesian network [17]. Each tuple or rule instance 𝑡

maps to a Bernoulli variable 𝑥𝑡 , which indicates whether it holds under the set of inputs that the

fuzzer can generate. For example, Taint(xrpnt) and 𝑅2 (m, xrpnt) correspond to 𝑥Taint(xrpnt) and
𝑥𝑅2 (m,xrpnt) . Their dependencies follow the structure of the derivation graph. For each rule instance,

we specify a corresponding conditional probability. We provide the explicit conditional probability

distribution for this Bayesian network. For brevity, we use the identifiers at the top right corner of

each vertex in Figure 3 to denote the corresponding vertex:

(1) Input tuple facts: For vertices 𝑎 ∈ {1, 4, 7, 10, 13, 16, 19, 22, 25}, we have Pr(𝑥𝑎) = 1.

(2) Over-approximated inferences of rule 𝑅1: For vertices (𝑎, 𝑏, 𝑐) ∈ {(1, 2, 3), (19, 20, 21)},
we have:

Pr(𝑥𝑏 | 𝑥𝑎) = 0.9 Pr(¬𝑥𝑏 | 𝑥𝑎) = 0.1

Pr(𝑥𝑏 | ¬𝑥𝑎) = 0 Pr(¬𝑥𝑏 | ¬𝑥𝑎) = 1

Pr(𝑥𝑐 | 𝑥𝑏) = 1 Pr(¬𝑥𝑐 | 𝑥𝑏) = 0

Pr(𝑥𝑐 | ¬𝑥𝑏) = 0 Pr(¬𝑥𝑐 | ¬𝑥𝑏) = 1

(3) Over-approximated inferences of rules 𝑅2 and 𝑅3: For vertices

(𝑎, 𝑏, 𝑐, 𝑑) ∈
{(3, 4, 5, 6), (3, 10, 11, 12), (12, 13, 14, 15), (6, 7, 8, 9),
(15, 16, 17, 18), (21, 22, 23, 24), (21, 25, 26, 27)

}
we have:

Pr(𝑥𝑐 | 𝑥𝑎 ∧ 𝑥𝑏) = 0.9 Pr(¬𝑥𝑐 | 𝑥𝑎 ∧ 𝑥𝑏) = 0.1

Pr(𝑥𝑐 | ¬𝑥𝑎 ∨ ¬𝑥𝑏) = 0 Pr(¬𝑥𝑐 | ¬𝑥𝑎 ∨ ¬𝑥𝑏) = 1

Pr(𝑥𝑑 | 𝑥𝑐 ) = 1 Pr(¬𝑥𝑑 | 𝑥𝑐 ) = 0

Pr(𝑥𝑑 | ¬𝑥𝑐 ) = 0 Pr(¬𝑥𝑑 | ¬𝑥𝑐 ) = 1

This conditional probability distribution links Bernoulli variables via semantics-based probabilistic

relationships.

We present the complete workflow of Bayesian program analysis guiding fuzzing to ultimately

trigger the target vulnerability in Figure 4. Next, we provide a detailed description of this process.

We compute the probability of each alarm being true by performing marginal inference [32] on the

Bayesian network derived from Figure 3, as shown in Table 1a. As Figure 1 covers only part of the

program, the taint analysis also reports alarms in other parts, including both true and false ones.

To simplify presentation, we include only the four relevant alarms (Line 3, Line 9, Line 22, Line 16)

and exclude the rest.
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Table 1. The probability that each alarm can be reached by the fuzzer, based on the Bayesian network

transformed from Figure 3, before and after fuzzer feedback on Line 3 and Line 22.

(a) Pr

(
𝑥Alarm(𝑠 )

)
Rank Prob. Target 𝑠

1 0.810 Line 3

2 0.810 Line 9

3 0.729 Line 22

· · · · · · · · ·
23 0.656 Line 16

· · · · · · · · ·
· · · · · · · · ·

(b) Pr

(
𝑥Alarm(𝑠 ) | ¬𝑥Alarm(Line 3)

)
Rank Prob. Target 𝑠

1 0.729 Line 22

· · · · · · · · ·
22 0.656 Line 16

· · · · · · · · ·
233 0.426 Line 9

· · · · · · · · ·
- 0.000 Line 3

(c) Pr

(
𝑥Alarm(𝑠 ) | ¬𝑥Alarm(Line 3) ∧ 𝑥Alarm(Line 22)

)
Rank Prob. Target 𝑠

- 1.000 Line 22

1 0.729 Line 16

· · · · · · · · ·
232 0.426 Line 9

· · · · · · · · ·
· · · · · · · · ·
- 0.000 Line 3

Alarm(Line 3) and Alarm(Line 9) have the highest probabilities since they involve fewer imprecise

derivations. We select the highest-probability alarm, assumed to be Line 3, as the fuzzing target.

The fuzzer uses directed fuzzing to mutate inputs toward the target, aiming to trigger the potential

bug. As Line 3 is a false positive, the fuzzer fails to trigger the bug. After a period of mutation, the

fuzzer feeds back that the bug is not triggerable. The Bayesian network adds negative evidence

to 𝑥Alarm(Line 3) and updates the probabilities of other alarms accordingly, as shown in Table 1b.

Because 𝑥Alarm(Line 9) is linked to 𝑥Alarm(Line 3) in the network, its probability also drops, leading to

a lower rank. This helps the fuzzer focus on higher-ranked alarms and avoid wasting effort on false

positives from the same root cause.

The next highest-probability alarm isAlarm(Line 22), chosen as the next fuzzing target. This alarm

corresponds to CVE-2017-14410. As the bug lacks strict conditions, the fuzzer triggers it quickly.

After triggering, the fuzzer provides positive feedback to the Bayesian network. The network adds

positive evidence to 𝑥Alarm(Line 22) and updates alarm probabilities, as shown in Table 1c. Because

𝑥Alarm(Line 16) is linked to 𝑥Alarm(Line 22), its probability rises and becomes the top-ranked alarm. The

fuzzer then targets Line 16. This alarm corresponds to CVE-2017-14409, which shares the same

root cause as CVE-2017-14410. Both derive from the manipulation of gr_infos->mixed_block
_flag. So the fuzzer quickly triggers this bug as well. Thus, the Bayesian network helps the fuzzer

efficiently find both CVE-2017-14409 and CVE-2017-14410.

2.3 Adaptive Fuzzing Guidance via Bayesian Program Analysis

In this subsection, we present the code for our second case study and show how to improve the

previous approach to guide fuzzing toward CVE-2022-27941 and CVE-2022-27942. The core insight

is that the fuzzer becomes stronger over time. Here, “strong” refers to the increased number of

seeds collected, which enhances the fuzzer’s targeted triggering capability. In early stages,

a weak fuzzer may miss bugs at some targets. We let the fuzzer give negative feedback, and the

Bayesian model steers it away from similar hard-to-trigger patterns. Once the fuzzer improves, we

restart interaction and clear earlier negative feedback. The stronger fuzzer may now reach bugs

that were missed before. When it finds such bugs, the Bayesian model again guides prioritization

of related targets. This enables adaptive guidance by adjusting feedback types to match the fuzzer’s

evolving capability.

Figure 5 shows simplified code from tcpreplay-4.4.0 with CVE-2022-27941 and CVE-2022-

27942. As in the previous case, the code is simplified for clarity. Beginning at Line 18, safe_pcap
_next() reads a packet from the input PCAP file and assigns it to pktdata. Then, the code invokes
get_l2len_protocol()with pktdata at Line 20. At Line 8, the code checks the first three bytes of
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1 int parse_mpls(u_char* pktdata, uint32_t* l2len,

...){

2 struct tcpr_mpls_label* mpls_label = pktdata + *

l2len;

3 bool bos = mpls_label->entr; // CVE-2022-27942

4 ...

5 }

6

7 int get_l2len_protocol(u_char* pktdata, uint32_t*

l2offset, ...){

8 if(memcmp(pktdata, "MGC", 3)) return -1;

9 *l2offset = *((uint16_t*)&pktdata[4]);

10 eth_hdr_t* eth_hdr = (eth_hdr_t*)(pktdata + *

l2offset);

11 uint32_t l2_net_off = sizeof(*eth_hdr) + *

l2offset;

12 uint16_t ether_type = eth_hdr->ether_type; // CVE

-2022-27941

13 parse_mpls(pktdata, &l2_net_off);

14 ...

15 }

16

17 int main(){

18 u_char* pktdata = safe_pcap_next(...);

19 uint32_t l2offset;

20 get_l2len_protocol(pktdata, &l2offset, ...);

21 ...

22 }

Fig. 5. Simplified code fragment from tcpreplay-4.4.0 containing CVE-2022-27941 and CVE-2022-27942.

Input(pktdata[4])𝑅1 (pktdata[4])

Taint(pktdata[4])Flow(pktdata[4], l2offset)

𝑅2 (pktdata[4], l2offset)

Taint(l2offset)Flow(l2offset, eth_hdr)

𝑅2 (l2offset, eth_hdr) Taint(eth_hdr)

Memory(eth_hdr, Line 12) 𝑅3 (eth_hdr, Line 12) Alarm(Line 12)

Flow(l2offset, l2_net_off)

𝑅2 (l2offset, l2_net_off) Taint(l2_net_off) Flow(l2_net_off, mpls_label)

𝑅2 (l2_net_off, mpls_label) Taint(mpls_label) 𝑅3 (mpls_label, Line 3)

Memory(mpls_label, Line 3) Alarm(Line 3)

Fig. 6. The derivation graph of the analysis in Figure 2 applying to the code fragment in Figure 5. Vertices

with a bordered gray background represent input tuples. Vertices with a bordered white background represent

output tuples, while vertices with a double-bordered white background represent alarms tuples. Vertices

without borders represent rule instances.

pktdata. Execution continues only if the bytes match magic number MGC; otherwise, it exits early.
At Line 9, pktdata[4] is assigned to l2offset, later used to compute eth_hdr and l2_net_off
at Line 10 and Line 11. At Line 12, the code accesses a field through eth_hdr. Insufficient bounds

checks may cause this access to trigger a heap buffer overflow. This corresponds to CVE-2022-27941.

Next, the code invokes parse_mpls() at Line 13 with l2_net_off as l2len. At Line 2, l2len is
used to compute mpls_label. Finally, at Line 3, a field is accessed through mpls_label. Again,
lack of bounds checks may lead to a heap buffer overflow. This corresponds to CVE-2022-27942.

We apply the taint analysis from Figure 2 to Figure 5, obtaining the derivation graph shown

in Figure 6. The two alarms, Alarm(Line 12) and Alarm(Line 3), correspond to CVE-2022-27941

and CVE-2022-27942, respectively. We convert the graph into a Bayesian network using the same

conditional probability distribution settings as in the previous case study. We present the complete

workflow of Bayesian program analysis guiding fuzzing to ultimately trigger the target vulnerability

in Figure 7. Next, we provide a detailed description of this process.

We compute the marginal probabilities of each alarm using Bayesian inference. The resulting

ranking is shown in Table 2a. As before, other alarms are omitted for clarity. We choose the

highest-ranked alarm at Line 12 as the fuzzing target. At the start of fuzzing, the magic number

check at Line 8 stops execution unless the input begins with MGC. Greybox fuzzing lacks semantic

awareness, so the chance of producing an input with the correct MGC prefix is very low. As a
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Reachable alarm ranking

with no evidence

Directed mutation

towards Alarm(Line 12)
Reachable alarm ranking

with ¬𝑥Alarm(Line 12)

The fuzzer accumulates

seeds over time

Reachable alarm ranking

without negative feedback

Directed mutation

towards Alarm(Line 12)

Reachable alarm ranking

with 𝑥Alarm(Line 12)

Directed mutation

towards Alarm(Line 3)

Alarm(Line 12)
Alarm(Line 12)
is not reachable

Targets other

than Alarm(Line 3)
Negative feedback

eliminationAlarm(Line 12)

Alarm(Line 12)
is reachable

Alarm(Line 3)

Fig. 7. The full workflow of Bayesian program analysis guiding fuzzing for the code fragment in Figure 5.

Table 2. The probability that each alarm can be reached by the fuzzer, as computed from the Bayesian

network derived from Figure 6, before and after incorporating feedback on Line 12 from fuzzers with different

capabilities.

(a) Pr

(
𝑥Alarm(𝑠 )

)
Rank Prob. Target 𝑠

1 0.656 Line 12

2 0.590 Line 3

· · · · · · · · ·
· · · · · · · · ·

(b) Pr

(
𝑥Alarm(𝑠 ) | ¬𝑥Alarm(Line 12)

)
Rank Prob. Target 𝑠

· · · · · · · · ·
233 0.326 Line 3

· · · · · · · · ·
- 0.000 Line 12

(c) Pr

(
𝑥Alarm(𝑠 ) | 𝑥Alarm(Line 12)

)
Rank Prob. Target 𝑠

- 1.000 Line 12

1 0.729 Line 3

· · · · · · · · ·
· · · · · · · · ·

result, the fuzzer cannot trigger the real bug due to its limited mutation ability. Later, the fuzzer

reports to the Bayesian network that the bug at Line 12 is not triggered. The network adds negative

evidence to the alarm and updates the probabilities of the other alarms, as shown in Table 2b.

Because 𝑥Alarm(Line 3) is linked to 𝑥Alarm(Line 12), its probability also drops. The paths to both alarms

are similar, and attempts to reach Line 3 are also blocked by the magic number check. This helps

the fuzzer focus on other targets and avoid wasting effort on unreachable bugs at the current stage.

Over time, the fuzzer collects more seeds and becomes more effective at triggering bugs. Previ-

ously unreachable bugs may now become triggerable. We restart the interaction and clear prior

negative feedback, as those bugs may now be reachable. The updated ranking matches Table 2a, so

we again select Line 12 as the fuzzing target. Through prolonged mutation, the fuzzer eventually

generates an input that passes the magic number check. Once past the check, the bug at Line 12

is easy to trigger and is quickly exposed. The fuzzer reports success to the Bayesian network,

which adds positive evidence to Alarm(Line 12). The Bayesian network then updates the alarm

probabilities based on the new posterior, as shown in Table 2c.

Because 𝑥Alarm(Line 3) is linked to 𝑥Alarm(Line 12), its probability increases and it becomes top-ranked.

The fuzzer then prioritizes Line 3. This corresponds to CVE-2022-27942, which shares the root

cause with CVE-2022-27941. Both derive from manipulating pktdata[4] in the input. As the fuzzer

can now pass the magic check, it quickly triggers this bug as well.

Next, we formalize the definition of the problem we address and our proposed solution in

Section 3, and present the detailed design of our Bayzzer framework in Section 4.

3 The Reachable Fuzzing Targets Problem and Our Solution

First of all, we present the problem that this paper aims to solve: how to optimize target prioritization

so that large-scale target-guided greybox fuzzing (LTGF) can trigger more vulnerabilities. We define
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a subproblem: how to predict targets that are highly likely to be reached by a fuzzer. By solving

this subproblem, we achieve optimization of the original problem. We begin by providing a formal

definition of this problem in Section 3.1, We give the formal definitions of Datalog-based program

analysis in Section 3.2. Finally, we formally define our solution to the problem in Section 3.3: we

construct a Bayesian network to predict the probability that each target is reachable by the fuzzer.

3.1 Reachable Fuzzing Targets Problem

Large-scale target-guided greybox fuzzing (LTGF) is a complex process composed of multiple

basic fuzzing processes and consists of two stages: exploration and exploitation. The exploration

stage aims to cover as much code as possible, while the exploitation stage focuses on triggering

vulnerabilities in the target set. We first define the notion of targets, then formalize the basic fuzzing

process, and on this basis, define LTGF. Finally, we introduce the subproblem of the reachable

fuzzing targets problem from the exploitation stage of LTGF.

We first provide a definition for the targets that can be reached by a fuzzer. In fact, a target

typically represents a program property, such as “p points to q”, “x is controlled by external input”,

or “an array out-of-bounds error occurs at Line 17”, and so on. A program property may only hold

under specific inputs, and we formalize this notion below.

Definition 3.1 (program property and program input). We define P as the set of program properties

and S as the set of program inputs. The function Hold(𝑝, 𝑠) : P × S → {true, false} indicates
whether the program property 𝑝 ∈ P holds when executing the program with input 𝑠 ∈ S.

Next, we define the process of fuzzing. Given an initial set of inputs, a time budget, and a strategy

(which indicates which seed to select for mutation at each iteration), an input is selected according

to the strategy, and then transformed into a new input using various mutator operators. The new

input is then used to test the program. We formally define this process as follows.

Definition 3.2 (fuzzing). We define a strategy𝐺 (𝑆, 𝑛) : P(S)×R→ S∪{⊥}, which determines, for

the current input set 𝑆 , and the remaining time 𝑛, which input is selected for the next mutation. If

𝐺 returns ⊥, it indicates that the remaining time is exhausted and no further mutation is necessary.

Let𝑀 = S × S × [0, 1] × R represent the probability and the total consumed time (mutation and

execution new input) of each input mutating into another new input after one mutation. For any

𝑠 ∈ S, we require that ∑𝑠′∈S, (𝑠,𝑠′,𝑟 ,𝑛) ∈𝑀 𝑟 = 1.

Given a strategy 𝐺 , a total time budget 𝑁 ∈ R and an initial input set 𝑆0 ⊆ S, the process of
fuzzing is formally defined as follows:

(1) Initialize the current input set 𝑆cur ← 𝑆0 and the remaining time 𝑛cur ← 𝑁 .

(2) At each step, apply the strategy 𝐺 . If 𝐺 (𝑆cur, 𝑛cur) = ⊥, terminate the fuzzing process. Other-

wise, select a seed 𝑠 =𝐺 (𝑆cur, 𝑛cur) ∈ 𝑆cur, and for all 𝑠′ ∈ S such that (𝑠, 𝑠′, 𝑟 , 𝑛) ∈ 𝑀 , mutate

𝑠 into 𝑠′ with probability 𝑟 . If 𝑛cur < 𝑛, terminate the fuzzing process. Otherwise, consume

time 𝑛cur ← 𝑛cur−𝑛, and add the new input to the current input set 𝑆cur ← 𝑆cur∪{𝑠′}. Repeat
this step.

Let 𝑆final denote the final value of 𝑆cur. We define Fuzzing(𝐺, 𝑁, 𝑆0) as a random vari-

able whose value is the set of 𝑆final. We define Reached(𝐺, 𝑁, 𝑆0) as a random variable

whose value is the set of program properties satisfied by at least one input in 𝑆final:

{ 𝑝 | 𝑝 ∈ Target, ∃𝑠 ∈ 𝑆final such that Hold(𝑝, 𝑠) is satisfied }. We assume that if 𝑆0 ⊆ 𝑆 ′
0

then Pr(Reached(𝐺, 𝑁, 𝑆0) contains 𝑝) ≤ Pr(Reached(𝐺, 𝑁, 𝑆 ′
0
) contains 𝑝) holds for each 𝑝 ∈ P.

In practical fuzzers, various strategies are employed. For example, the strategy of a coverage-

guided fuzzer selects inputs that are more likely to reach previously uncovered code, while the

strategy of a directed fuzzer prefers inputs that are closer to the target locations. The last assumption
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Algorithm 1 Large-scale target-guided greybox fuzzing.

Input: The strategy Exploration and the time budget 𝑁Exploration on exploration stage , the

strategy Exploitation and the time budgets 𝑁Exploitation, 𝛽 on exploitation stage, the initial

input set 𝑆0, the total time budget 𝑁0, and the target program properties Target.

Output: The set of reached target program properties.

1: procedure LTGF(Exploration, 𝑁Exploration, Exploitation, 𝑁Exploitation, 𝛽, 𝑆0, 𝑁0,Target)

2: stage← Exploration, 𝑆 ← 𝑆0, 𝑁 ← 𝑁0

3: while 𝑁 > 0 do

4: if stage = Exploration then

5: 𝑛stage ← min(𝑁, 𝑁Exploration), 𝑁 ← 𝑁 − 𝑛stage
6: 𝑆 ′ ← A sample from Fuzzing(Exploration, 𝑛stage, 𝑆)
7: 𝑆 ← 𝑆 ′

8: stage← Exploitation

9: else

10: 𝑛stage ← min(𝑁, 𝑁Exploitation), 𝑁 ← 𝑁 − 𝑛stage
11: repeat

12: 𝑃 ← TargetPrioritization(Target, 𝑆)
13: for 𝑝 ∈ 𝑃 do

14: 𝑆 ′ ← A sample from Fuzzing(Exploitation(𝑝), 𝛽, 𝑆)
15: 𝑆 ← 𝑆 ′

16: until The time limit 𝑛stage is reached

17: stage← Exploration

18: return {𝑝 | 𝑝 ∈ Target, ∃𝑠 ∈ 𝑆 such that Hold(𝑝, 𝑠) is safisfied}

in our definition can be intuitively explained as follows: when using the same strategy, a larger

input set makes it easier to reach more program properties. Our definition does not restrict to any

specific strategy; any strategy that satisfies the above assumption can be applied. In practice, all

commonly used strategies meet this criterion.

Next, we formalize large-scale target-guided greybox fuzzing (LTGF) based on the above definition.

LTGF consists of two stages: the exploration stage and the exploitation stage, each employing a

different strategy. We define it as follows.

Definition 3.3 (large-scale target-guided greybox fuzzing). Algorithm 1 formalizes the workflow of

LTGF. The inputs to LTGF include the strategy for the exploration stage, Exploration : P(S)×R→
S ∪ {⊥}, and its time budget 𝑁exploration ∈ R; the strategy mapping for the exploitation stage,

Exploitation : P → (P(S) × R → S ∪ {⊥}), where Exploitation(𝑝) denotes the strategy for

targeting program property 𝑝; two time budgets for the exploitation stage, 𝑁exploitation, 𝛽 ∈ R; the
initial input set 𝑆0 ⊆ S; the total time budget 𝑁0 ∈ R; and the set of target program properties

Target ⊆ P. The output of LTGF is the set of target program properties that are finally reached.

LTGF alternates between the two stages. It starts with the exploration stage, initializing the

current input set 𝑆 and the remaining time 𝑁 (Line 2). For the exploration stage, LTGF calculates the

duration of this stage 𝑛stage (Line 5) and performs one fuzzing iteration using the Exploration strat-

egy on the current input set 𝑆 (Line 6). For the exploitation stage, LTGF also calculates the stage du-

ration 𝑛stage (Line 10), and within this period, it invokes TargetPrioritization(Target, 𝑆) based
on the target set and the existing inputs to generate a critical subset of targets 𝑃 ⊆ Target (Line 12).

For each target 𝑝 ∈ 𝑃 , it performs a fuzzing run with a time limit 𝛽 using the Exploitation(𝑝)
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strategy and the current input set 𝑆 (Line 15). Finally, LTGF returns all target program properties

that can be reached by the generated inputs (Line 18).

The goal of the exploration stage is to cover as much code as possible, while the goal of the

exploitation stage is to leverage the inputs accumulated during the exploration stage to trigger as

many vulnerabilities as possible. In practical fuzzers, for example in FishFuzz [50], the Exploration

strategy preferentially selects inputs that are closest to uncovered functions associated with existing

targets, and the Exploitation(𝑝) strategy selects seeds that pass through the location of target 𝑝

and have the fastest execution speed. The reason for selecting multiple seeds in each round via

TargetPrioritization(Target, 𝑆) is that, in real-world fuzzing, a single seed may cover multiple

target locations; in this case, it can be regarded as simultaneously applying the Exploitation(𝑝)
strategy to multiple targets during fuzzing.

The problem this paper aims to address is how to design an appropriate TargetPrioritization

algorithm so as to maximize the number of program properties ultimately reached, i.e., maximize

|LTGF(Exploration, 𝑁Exploration, Exploitation, 𝑁Exploitation, 𝛽, 𝑆0, 𝑁0,Target) |. Our core idea is, in
the exploitation stage, the targets 𝑝 selected each time should have a high probability of being

reached by the fuzzer, that is, to make Reached(Exploitation(𝑝), 𝛽, 𝑆) contain 𝑝 .

The probability distribution of Reached(Exploitation(𝑝), 𝛽, 𝑆) is difficult to compute directly.

Instead of attempting to solve it explicitly, we consider, for a fixed input set 𝑆 , which program

properties 𝑝 satisfy that Pr(Reached(Exploitation(𝑝), 𝛽, 𝑆) contains 𝑝) is no less than a threshold
set by us.

Definition 3.4 (𝐴-reachable set). Given a threshold 𝐴 ∈ [0, 1], we define Reachable𝐴 (𝑆) = {𝑝 |
𝑝 ∈ P, Pr(Reached(Exploitation(𝑝), 𝛽, 𝑆) contains 𝑝) ≥ 𝐴}.

Finally, we define a smaller subproblem, the solution to which can effectively facilitate solving

the original problem: given a set of program properties (typically potential vulnerabilities in the

program), we seek to predict whether these properties can be triggered with high probabilities by a

fuzzer using a specific strategy within a limited time. We formally define this problem as follows.

Definition 3.5 (reachable fuzzing targets problem). Given a set of program properties Target ⊆ P
and an input set 𝑆 , for each program property 𝑝 ∈ Target, predict Pr(Reachable𝐴 (𝑆) contains 𝑝).
Our idea is to select program properties 𝑝 with a high Pr(Reachable𝐴 (𝑆) contains 𝑝) in Tar-

getPrioritization, thereby increasing the number of target properties ultimately discovered. We

will show how to use Bayesian program analysis to address this problem. Next, we first define

Datalog-based program analysis, and then, based on it, further define Bayesian program analysis

for solving this problem.

3.2 Datalog-Based Program Analysis

We first formalize the syntax and semantics of a Datalog program, and then describe its correspon-

dence with the Datalog-based program analysis.

Definition 3.6 (Datalog syntax). We present the auxiliary definitions and notations of Datalog in

Figure 8. A relation symbol 𝑟 represents a relation type. A literal 𝑝 is an 𝑛-ary atom with relation

symbol 𝑟 and 𝑛 arguments, each being a variable 𝑣 ∈ V or a constant 𝑑 ∈ D. A tuple 𝑡 is an 𝑛-ary

atom where all elements are constants. A clause 𝑐 is a derivation rule with literals 𝑙0, 𝑙1, . . . , 𝑙𝑛 ,

stating that 𝑙0 follows if 𝑙1, . . . , 𝑙𝑛 hold. A Datalog program 𝐷 = (𝐼 ,𝑂, 𝑅) includes input relations
𝐼 ⊆ L, output relations 𝑂 ⊆ L, and derivation rules 𝑅 ⊆ C.

Definition 3.7 (Datalog semantics). We present the semantics of Datalog in Figure 9. Given

𝐷 = (𝐼 ,𝑂, 𝑅) and tuple set 𝑇 , 𝐹𝑅 (𝑇 ) denotes one round of derivation using rules 𝑅. For each rule
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(variables) V = {𝑣, 𝑣1, 𝑣2, 𝑠, . . . }
(constants) D = {is_p, xrpnt, Line 16, Line 22, 0, 1, . . . }
(relations) R = {Input, Flow,Memory, Taint,Alarm, . . . }
(literals) L = R × (D ∪ V)∗ = {Taint(𝑣), Flow(𝑣1, 𝑣2), . . . }
(tuples) T = R × D∗ = {Taint(m), Flow(m, xrpnt), . . . }
(clauses) C = L × L∗ = {[𝑙0:-𝑙1, . . . , 𝑙𝑛], . . . }

= {[Taint(𝑣2) :- Taint(𝑣1), Flow(𝑣1, 𝑣2)], . . . }

Fig. 8. Auxiliary definitions and notations of Datalog.

𝐹𝑅, 𝑓𝑐 ∈ 𝒫(T) → 𝒫(T)
𝐹𝑅 (𝑇 ) =𝑇 ∪ {𝑓𝑐 (𝑇 ) | 𝑐 ∈ 𝑅}
𝑓𝑐 (𝑇 ) = 𝑓[𝑙0:-𝑙1,...,𝑙𝑛 ] (𝑇 )

= {𝜎 (𝑙0) | 𝜎 (𝑙𝑖 ) ∈ 𝑇 for 1 ≤ 𝑖 ≤ 𝑛, 𝜎 ∈ 𝚺}
[[𝐷,𝑇0]] = lfp(𝐹𝑅,𝑇0)

Fig. 9. Semantics of Datalog.

𝑐 ∈ 𝑅, 𝑓𝑐 (𝑇 ) is the set of new tuples derived from𝑇 using 𝑐 . Thus, 𝐹𝑅 (𝑇 ) is𝑇 combined with all newly

derived tuples. A substitution function 𝜎 ∈ Σ = V→ D maps variables to constants. We extend this

notation to literals by applying the substitution 𝜎 element-wise, replacing each variable with its

corresponding constant and thereby converting the literal into a tuple. For 𝑐 = [𝑙0 :- 𝑙1, . . . , 𝑙𝑛] ∈ 𝑅,
if 𝜎 (𝑙1), . . . , 𝜎 (𝑙𝑛) ∈ 𝑇 , then 𝜎 (𝑙0) is derivable. 𝑓𝑐 (𝑇 ) collects all such derived tuples. Given input

𝑇0 ⊆ T, the output of Datalog program is [[𝐷,𝑇0]]. [[𝐷,𝑇0]] is the least fixed point of 𝐹𝑅 , computed

by iterating 𝑇 ← 𝐹𝑅 (𝑇 ) from 𝑇0 until convergence.

A Datalog-based program analysis is also a Datalog program, with the additional constraint that

each tuple in [[𝐷,𝑇0]] corresponds to a program property. For example, Alarm(Line 16) indicates

that there may be a memory error at Line 16.

Definition 3.8 (Datalog-based program analysis). A Datalog-based program analysis D = (𝐷,
Property) consists of a Datalog program 𝐷 and a mapping function Property : [[𝐷,𝑇0]] → P.
For each tuple 𝑡 ∈ [[𝐷,𝑇0]], Property(𝑡) ∈ P denotes the corresponding program property. We

further require that for any target program property 𝑝 ∈ Target, there exists an injective mapping

TargetTuple : P→ [[𝐷,𝑇0]] from target properties to tuples. For convenience, we use [[D,𝑇0]] to
refer to [[𝐷,𝑇0]].

3.3 Bayesian Program Analysis for Reachable Fuzzing Targets Problem

Wefirst formalize how to transform the results of a Datalog-based program analysis into a derivation

graph, which will later serve as the structure of the Bayesian network. Then, we formalize the

Bayesian network for predicting reachable fuzzing targets and describe how to incorporate fuzzer

feedback as posterior information for the Bayesian network.

Definition 3.9 (derivation graph). Given a Datalog-based program analysis D and input tu-

ples 𝑇0, a rule instance is a derivation using rule 𝑐 = [𝑙0 :- 𝑙1, . . . , 𝑙𝑛]. Formally, a rule instance

is ( [𝑙0 :- 𝑙1, . . . , 𝑙𝑛], 𝑡0, . . . , 𝑡𝑛) ∈ C × T∗ where each 𝑡𝑖 ∈ [[D,𝑇0]] and 𝜎 (𝑙𝑖 ) = 𝑡𝑖 for some substi-

tution function 𝜎 ∈ 𝚺. All rule instances form the set Instance(D,𝑇0). The derivation graph
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is Graph(D,𝑇0) = (𝑉 , 𝐸). Vertices 𝑉 include all tuples and rule instances: 𝑉 = [[D,𝑇0]] ∪
Instance(D,𝑇0). Edges 𝐸 represent rule logic: each rule instance 𝑖 = (𝑐, 𝑡0, . . . , 𝑡𝑛) has 𝑛 + 1

edges (𝑡1, 𝑖), . . . , (𝑡𝑛, 𝑖) and (𝑖, 𝑡0). Cycles may appear in the derivation graph, which significantly

reduces the efficiency of probabilistic inference. Following prior work [34], we remove cycles and

treat the graph as a directed acyclic graph (DAG).

The derivation graph represents the process by which Datalog-based program analysis over-

approximates program semantics. Each tuple 𝑡 ∈ [[D,𝑇0]] corresponds to a program property

obtained through this semantic over-approximation. Our core idea is to associate a Bernoulli vari-

able with each tuple 𝑡 , indicating whether the corresponding program property Property(𝑡) can be

reached by the fuzzer with high probability (i.e., whether Reachable𝐴 (𝑆) contains Property(𝑡)).
We use the derivation relationships in the graph to set the conditional probabilities for each

variable, thereby transforming the entire derivation graph into a Bayesian network. Each rule

instance 𝑖 = (𝑐, 𝑡0, . . . , 𝑡𝑛) ∈ Instance(D,𝑇0) in the derivation graph is similarly converted into a

Bernoulli variable. This variable represents whether the resulting program property Property(𝑡0)
can be reached by the fuzzer with high probability, given that all the premise program prop-

erties Property(𝑡1), . . . , Property(𝑡𝑛) can also be reached by the fuzzer with high probabil-

ity. In other words, it indicates whether Reachable𝐴 (𝑆) contains Property(𝑡0), conditioned on

Reachable𝐴 (𝑆) containing Property(𝑡1), . . . , Property(𝑡𝑛). For each target program property

𝑝 ∈ Target, TargetTuple(𝑝) is a tuple vertex in the derivation graph. Therefore, we can use

the Bayesian network to systematically and semantically predict Pr(Reachable𝐴 (𝑆) contains
Property(TargetTuple(𝑝))). We formally define the Bayesian network as follows.

Definition 3.10 (Bayesian network for predicting reachable fuzzing targets). We convert Graph(D,

𝑇0) into a Bayesian network [17] Bayesian(D,𝑇0) = (𝑋,𝑌 ). 𝑋 = {𝑥𝑣 | 𝑣 ∈ 𝑉 } is a set of Bernoulli
variables. If 𝑣 = 𝑡 ∈ [[D,𝑇0]], then 𝑥𝑣 indicates whether Reachable𝐴 (𝑆) contains Property(𝑡).
Otherwise, 𝑣 = 𝑖 = (𝑐, 𝑡0, . . . , 𝑡𝑛) ∈ Instance(D,𝑇0), then𝑥𝑣 indicates whether Reachable𝐴 (𝑆) con-
tains Property(𝑡0), conditioned on Reachable𝐴 (𝑆) containing Property(𝑡1), . . . , Property(𝑡𝑛).
Let Prob(𝑖) : C × T∗ → [0, 1] be the prior probability that a rule instance 𝑖 is correct. We define

the conditional probabilities for the Bernoulli variables. For rule instance 𝑖 = (𝑐, 𝑡0, . . . , 𝑡𝑛), 𝑥𝑖 is
true with probability Prob(𝑖) if all 𝑡1, . . . , 𝑡𝑛 are true; otherwise, 𝑥𝑖 is false. Let 𝑖1, . . . , 𝑖𝑚 be rule

instances that derive tuple 𝑡 . Then 𝑥𝑡 is true if and only if at least one 𝑖 𝑗 is correct. Formally:

Pr(𝑥𝑖 | 𝑥𝑡1 ∧ 𝑥𝑡2 ∧ · · · ∧ 𝑥𝑡𝑛 ) = Prob(𝑖)
Pr(𝑥𝑖 | ¬𝑥𝑡1 ∨ ¬𝑥𝑡2 ∨ · · · ∨ ¬𝑥𝑡𝑛 ) = 0

Pr(𝑥𝑡 | 𝑥𝑖1 ∨ 𝑥𝑖2 ∨ · · · ∨ 𝑥𝑖𝑚 ) = 1

Pr(𝑥𝑡 | ¬𝑥𝑖1 ∧ ¬𝑥𝑖2 ∧ · · · ∧ ¬𝑥𝑖𝑚 ) = 0

Although the structure of our defined Bayesian network is the same as in previous work [4,

11, 15, 20, 47] on Bayesian program analysis, we fundamentally redefine its semantics, which

distinguishes our approach from all prior work. We use the Bayesian network to predict whether

each program property can be reached by the fuzzer with high probability, whereas previous work

used the Bayesian network to predict whether each program property can be reached by any

input. Specifically, in the Bayesian network of previous work, for each 𝑣 ∈ 𝑉 , if 𝑣 = 𝑡 ∈ [[D,𝑇0]],
then 𝑥𝑣 indicates whether there exists an input 𝑠 ∈ S such that Hold(Property(𝑡), 𝑠) is satisfied.
Otherwise, 𝑣 = 𝑖 = (𝑐, 𝑡0, . . . , 𝑡𝑛) ∈ Instance(D,𝑇0), then 𝑥𝑣 indicates whether there exists an input

𝑠 ∈ S satisfying Hold(Property(𝑡0), 𝑠), conditioned on the existence of inputs 𝑠1, . . . , 𝑠𝑛 ∈ S such
that Hold(Property(𝑡𝑖 ), 𝑠𝑖 ) satisfies for each 𝑖 .
The prior probabilities Prob can be defined precisely in theory, but are difficult to compute in

practice. To bridge the gap between theory and practice, we employ approximate methods for
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estimating these probabilities, such as manual annotation by experts [34] or data-driven learning

from labeled programs [15]. For example, the final inputs generated by multiple fuzzing processes

can serve as labels to indicate whether each tuple holds or each rule instance is correct. These

methods have been shown to be effective by our empirical evaluation. Therefore, our approach

is systematic and self-consistent in theory. At the same time, by approximating the only

hard-to-compute module in practice, we achieve an effective and practical implementation.

Nevertheless, when facedwith the complexity of real-world fuzzing problems, a Bayesian network

based solely on prior knowledge may not deliver satisfactory results. To address this limitation, we

propose a method for generalizing posterior information by leveraging fuzzer feedback.

Definition 3.11 (fuzzer feedback). The evidence set of the initial Bayesian network is 𝐸 =

∅. For a target program property 𝑝 ∈ Target, if we take a sample of the random variable

Reached(Exploitation(𝑝), 𝛽, 𝑆) and it contains 𝑝 , we give positive feedback to the Bayesian net-

work by updating 𝐸 ← 𝐸∪{𝑥TargetTuple(𝑝 ) }; otherwise, we give negative feedback by updating 𝐸 ←
𝐸 ∪ {¬𝑥TargetTuple(𝑝 ) }. At any time, for a target program property 𝑝 ∈ Target, we can use a prob-

abilistic inference algorithm on the Bayesian network [32] to compute Pr

(
𝑥TargetTuple(𝑝 ) |

∧
𝑒∈𝐸 𝑒

)
under the current evidence 𝐸 in order to make predictions for the reachable fuzzing targets problem.

We define three interactive operations:

(1) Update(𝐵, 𝑡, 𝑒) updates the evidence for variable 𝑥𝑡 in the evidence set 𝐸 to 𝑒 . Here, 𝑡 ∈
[[D,𝑇0]], and 𝑒 can be true evidence (𝐸 ← 𝐸 ∪ {𝑥𝑡 }), false evidence (𝐸 ← 𝐸 ∪ {¬𝑥𝑡 }), or no
evidence (𝐸 ← 𝐸 − {𝑥𝑡 } − {¬𝑥𝑡 }).

(2) Inference(𝐵) performs inference [32] on 𝐵 to compute probabilities of all variables given

the current evidence 𝐸.

(3) Query(𝐵, 𝑡) returns Pr (𝑥𝑡 |
∧

𝑒∈𝐸 𝑒), the probability that 𝑥𝑡 is true given the current evidence

𝐸. Here, 𝑡 ∈ [[D,𝑇0]].
The fuzzer feedback can be easily obtained during the exploitations stage (Line 15). However,

since 𝑥TargetTuple(𝑝 ) being true is equivalent to the fuzzer reaching 𝑝 with probability at least 𝐴,

which is not the same as a single sample of Reached(Exploitation(𝑝), 𝛽, 𝑆) containing 𝑝 , our

definition of the posterior information feedback introduces an error rate. We compute this error

rate as follows.

Theorem 3.12. Suppose the probability of giving positive feedback is 𝑟+, and the probability of
giving negative feedback is 1 − 𝑟+, then the average error rate does not exceed 𝑟+ + 1 −𝐴.

Proof. Let the Bernoulli variables 𝑊1 denote “giving positive feedback” and 𝑊2 denote

𝑥TargetTuple(𝑝 ) . Then the average error rate is

𝑊average = Pr(𝑊1) Pr(¬𝑊2 |𝑊1) + Pr(𝑊2) Pr(¬𝑊1 |𝑊2)
where Pr(𝑊1) = 𝑟+, Pr(¬𝑊2 |𝑊1) ≤ 1, and Pr(𝑊2) ≤ 1. Pr(¬𝑊1 |𝑊2) denotes the probability of still
giving negative feedback (i.e., obtaining a sample without 𝑝 from Reached(Exploitation(𝑝), 𝛽, 𝑆))
when 𝑥TargetTuple(𝑝 ) holds (i.e., Pr(Reached(Exploitation(𝑝), 𝛽, 𝑆) contains 𝑝) ≥ 𝐴). Thus,

Pr(¬𝑊1 |𝑊2) ≤ 1 −𝐴. Therefore, we have:
𝑊average = Pr(𝑊1) Pr(¬𝑊2 |𝑊1) + Pr(𝑊2) Pr(¬𝑊1 |𝑊2)

≤ Pr(𝑊1) + Pr(¬𝑊1 |𝑊2)
≤ 𝑟+ + 1 −𝐴

□

We can make a conservative estimate: a sound static analysis typically produces about 10% true

positive reports, and a fuzzer, due to its mutation capabilities, can generally discover only around
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Fig. 10. Overview of framework Bayzzer for guiding large-scale target-guided grey-box fuzzing.

10% of vulnerabilities. Thus, 𝑟+ = 0.1 × 0.1 = 0.01. If we set 𝐴 = 99%, the average error rate is

𝑊average ≤ 𝑟+ + 1 −𝐴 = 0.01 + 1 − 0.99 = 0.02.

In summary, we have rigorously defined a Bayesian program analysis. This analysis uses Bayesian

networks to semantically predict the reachable fuzzing targets problem. At the same time, it can

generalize feedback from the fuzzer as posterior information with a very low error rate. We will

describe in the next section how to use this analysis to guide LTGF thus enhance its vulnerability

detection capability.

4 The Bayzzer Framework

Recall that the problem this paper aims to solve is how to optimize target prioritization so that large-

scale target-guided greybox fuzzing (LTGF) can ultimately reach more vulnerabilities. Figure 10

presents the workflow of Bayzzer for addressing this problem. Bayzzer predicts the probability

that each target program property is reachable by the fuzzer through Bayesian program analysis,

prioritizing targets with higher probabilities. Meanwhile, Bayzzer processes fuzzer feedback in

the following two ways to make predictions more accurate: (1) Bayzzer generalizes the directed

fuzzing results for each target during the exploitation phase as posterior information; (2) after each

exploration phase, when the fuzzer has accumulated a large number of seeds and its capability has

increased, previous negative feedback may become inaccurate, so Bayzzer removes them to ensure

the precision of its predictions. In this section, we present the framework of Bayzzer. We begin by

describing the overall workflow of our framework in Section 4.1, followed by the formalization

of the target prioritization algorithm in Section 4.2. Finally, we present the details of how fuzzer

feedback is processed in Section 4.3.

4.1 Overall Workflow

Algorithm 2 formalizes the workflow of Bayzzer. The workflow of Bayzzer is based on LTGF.

Compared with LTGF, the inputs of Bayzzer are extended with an additional Bayesian network

𝐵 = Bayesian(D,𝑇0), where D is the Datalog-based program analysis and 𝑇0 is its input tuples,

obtained via the compiler front-end or through a pre-analysis. The output of Bayzzer is the same

as that of LTGF, namely, the set of target program properties ultimately reached by the fuzzer. All

lines that differ from LTGF are highlighted in gray shade. First, in the exploitation stage, Bayzzer
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Algorithm 2 The Bayzzer framework.

Input: The strategy Exploration and the time budget 𝑁Exploration on the exploration stage , the

strategy Exploitation and the time budgets 𝑁Exploitation, 𝛽 on the exploitation stage, the initial

input set 𝑆0, the total time budget 𝑁0, the target program properties Target, and the Bayesian

network 𝐵 for predicting reachable fuzzing targets.

Output: The set of reached target program properties.

1: procedure Bayzzer(Exploration, 𝑁Exploration, Exploitation, 𝑁Exploitation, 𝛽, 𝑆0, 𝑁0,Target, 𝐵)

2: stage← Exploration, 𝑆 ← 𝑆0, 𝑁 ← 𝑁0

3: while 𝑁 > 0 do

4: if stage = Exploration then

5: 𝑛stage ← min(𝑁, 𝑁Exploration), 𝑁 ← 𝑁 − 𝑛stage
6: 𝑆 ′ ← A sample from Fuzzing(Exploration, 𝑛stage, 𝑆)
7: 𝑆 ← 𝑆 ′

8: stage← Exploitation

9: Reconstruction(𝐵,Target)
10: else

11: 𝑛stage ← min(𝑁, 𝑁Exploitation), 𝑁 ← 𝑁 − 𝑛stage
12: repeat

13: 𝑃 ← TargetPrioritization(𝐵,Target)
14: for 𝑝 ∈ 𝑃 do

15: 𝑆 ′ ← A sample from Fuzzing(Exploitation(𝑝), 𝛽, 𝑆)
16: 𝑆 ← 𝑆 ′

17: FuzzerFeedback(𝐵, 𝑆, 𝑃)
18: until The time limit 𝑛stage is reached

19: stage← Exploration

20: return {𝑝 | 𝑝 ∈ Target, ∃𝑠 ∈ 𝑆 such that Hold(𝑝, 𝑠) is safisfied}

ranks the reachable fuzzing targets based on their predicted probabilities obtained from Bayesian

program analysis (Line 13). Then, Bayzzer uses the results of directed fuzzing on these targets as

feedback to the Bayesian network, improving the accuracy of predictions (Line 17). Finally, after

each round of the exploration stage, the input set 𝑆 increases significantly. Bayzzer updates its

prediction of reachable fuzzing targets for the new input set by reconstructing the fuzzer feedback

accordingly (Line 9). In Section 4.2, we describe the specific target prioritization algorithm (Line 13),

and in Section 4.3, we detail how to handle fuzzer feedback (Line 9 and Line 17).

4.2 Target Prioritization

Algorithm 3 formalizes the target prioritization algorithm used in Bayzzer. Given a Bayesian net-

work 𝐵 and a target set Target, the algorithm outputs a prioritized subset of targets 𝑃 . Bayzzer first

performs probabilistic inference on the Bayesian network 𝐵 to compute the probability distribution

over relevant variables (Line 2). Then, Bayzzer maintains a critical target set 𝑃 (initially empty)

and a set of targets without feedback (i.e., no evidence assigned to 𝑥TargetTuple(𝑝 ) in the Bayesian

network 𝐵), denoted 𝑃N ⊆ 𝑃 (Line 3). For each target 𝑝 ∈ 𝑃N, Bayzzer computes the probability

𝑟𝑝 that the target 𝑝 is reachable, based on the inference results from 𝐵 (Line 5). Finally, Bayzzer

selects the top-𝛼 · |Target| targets (rounded down) with the highest probabilities into 𝑃 (Line 7),

where 𝛼 ∈ (0, 1) is a tunable hyperparameter. If 𝑃N contains fewer than 𝛼 · |Target| targets, all of
them are included in 𝑃 .
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Algorithm 3 The target prioritization algorithm in the Bayzzer framework.

Input: The Bayesian network 𝐵 and the target set Target.

Output: The critical target set 𝑃 .

1: procedure TargetPrioritization(𝐵,Target)

2: Inference(𝐵)
3: 𝑃 ← ∅, 𝑃N ←

{
𝑝 | 𝑝 ∈ Target,No evidence on 𝑥TargetTuple(𝑝 )

}
4: for 𝑝 ∈ 𝑃N do

5: 𝑟𝑝 ←Query(𝐵,TargetTuple(𝑝))
6: Let 𝑙𝑖 be the 𝑖-th largest target 𝑝 ∈ 𝑃N ranked by 𝑟𝑝
7: for 𝑖 = 1→ min (|𝑃N |, ⌊𝛼 · |Target|⌋) do
8: 𝑃 ← 𝑃 ∪ {𝑙𝑖 }
9: return 𝑃

Algorithm 4 The fuzzer feedback algorithm in the Bayzzer framework.

Input: The Bayesian network 𝐵, the current seed set 𝑆 , and the critical target set 𝑃 .

1: procedure FuzzerFeedback(𝐵, 𝑆, 𝑃 )

2: for 𝑝 ∈ 𝑃 do

3: if ∃𝑠 ∈ 𝑆 such that Hold(𝑝, 𝑠) is satisfied then

4: Update(𝐵, TargetTuple(𝑝), true evidence)

5: else

6: Update(𝐵, TargetTuple(𝑝), false evidence)

For a target program property 𝑝 ∈ 𝑃 and the current input set 𝑆 , the probability we pre-

dict is 𝑟𝑝 = Pr

(
𝑥TargetTuple(𝑝 ) |

∧
𝑒∈𝐸 𝑒

)
, where each evidence 𝑒 comes from a sampling of

Reached(Exploitation(𝑝′), 𝛽, 𝑆 ′) during the current exploitation stage. Here, 𝑝′ ∈ Target is

the target corresponding to this sampling, and 𝑆 ′ denotes the input set at the time of sampling.

However, 𝑥TargetTuple(𝑝 ) predicts whether Reached(Exploitation(𝑝), 𝛽, 𝑆) contains 𝑝 under the

current input set 𝑆 . Because the goal of the exploitation stage is not to further increase coverage,

the input set remains largely unchanged within a single round. We therefore assume 𝑆 ≈ 𝑆 ′, i.e.,
the two are nearly identical. As a result, the predictions produced by our Bayesian network are

approximate, but the associated error is minimal and can be considered negligible.

4.3 Processing Fuzzer Feedback

Algorithm 4 formalizes the fuzzer feedback algorithm used in Bayzzer. It takes as input the

Bayesian network 𝐵, the current input set 𝑆 and the critical target set 𝑃 used in the current round

of exploitation stage. For each target 𝑝 ∈ 𝑃 , Bayzzer checks whether a new input has been

found in this round of mutation that reaches 𝑝 (Line 3). If so, this indicates that the sample on

Reached(Exploitation(𝑝), 𝛽, 𝑆) contains 𝑝 . In this case, Bayzzer sends a positive feedback to the

Bayesian network 𝐵 (Line 4). If not, this indicates that the sample on Reached(Exploitation(𝑝),
𝛽, 𝑆) does not contain 𝑝 . In this case, Bayzzer sends a negative feedback to the Bayesian network 𝐵

(Line 6).

Algorithm 5 formalizes the feedback reconstruction algorithm used in Bayzzer. During the

new round of the exploration stage, the fuzzer accumulates a large number of new seeds; con-

sequently, the current input set 𝑆 will differ significantly from the input set 𝑆 ′ during the last

exploitation stage. Therefore, feedback reconstruction is necessary in order to perform more

accurate computations based on the current seed set 𝑆 . Since if the input set 𝑆 ′ ⊆ 𝑆 , then
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Algorithm 5 The feedback reconstruction algorithm in the Bayzzer framework.

Input: The Bayesian network 𝐵 and the target set Target.

1: procedure Reconstruction(𝐵,Target)

2: for 𝑝 ∈ 𝑃 do

3: if False evidence on 𝑥TargetTuple(𝑝 ) then
4: Update(𝐵,TargetTuple(𝑝), no evidence)

we have Pr(Reached(Exploitation(𝑝), 𝛽, 𝑆 ′) contains 𝑝) ≤ Pr(Reached(Exploitation(𝑝), 𝛽, 𝑆)
contains 𝑝) holds for each 𝑝 ∈ P, thus Reachable𝐴 (𝑆 ′) ⊆ Reachable𝐴 (𝑆). Based on this con-

clusion, our reconstruction algorithm is as follows: we retain all positive feedback, because if

Reachable𝐴 (𝑆 ′) contains 𝑝 , then Reachable𝐴 (𝑆) will also contain 𝑝 . In contrast, we remove all

negative feedback (Line 4), since if Reachable𝐴 (𝑆 ′) does not contain 𝑝 , it is still possible that

Reachable𝐴 (𝑆) contains 𝑝 . Intuitively, as the input set grows, the fuzzer becomes more powerful,

and previously unreachable targets may become reachable. Through reconstruction, we effectively

avoid inaccurate predictions.

5 Experimental Evaluation

Our evaluation aims to answer the following questions:

RQ1. How effective is Bayzzer at finding bugs compared to other fuzzers?

RQ2. What is the performance overhead introduced by the Bayesian program analysis in Bayzzer?

RQ3. As the fuzzer accumulates more seeds, we remove all negative feedback to avoid inaccurate

predictions. Is this step necessary?

RQ4. Can Bayzzer discover real-world bugs?

We first describe our experimental setup in Section 5.1. Then, we answer the four research

questions in Section 5.2 to Section 5.5, respectively.

5.1 Experimental Setup

We conduct our experiments on Linux machines with 256 processors (2.25 GHz) and 256 GB of

RAM. We implement Bayzzer on top of FishFuzz [50]. All LTGF logic (as described in Section 3.1)

is preserved exactly as in FishFuzz. We use libDAI [31] to perform probabilistic inference on the

Bayesian network.

Instance analysis.We use the Datalog analysis shown in Figure 2 as the logic core of our Bayesian

program analysis. To construct the input tuples: (1) We use the SVF [42] framework to build a

sparse value-flow graph (SVFG) for the program. Each edge in this graph represents a potential

data flow and we convert it into a corresponding Flow input tuple. (2) We use ASan [38] to detect

potential memory errors. ASan inserts runtime checks at locations that may trigger memory errors.

We convert each of these alarm sites into a corresponding Alarm input tuple. (3) We conservatively

assume all variables may be influenced by inputs by adding an Input(𝑣) tuple for each variable

𝑣 . This simplifies control-dependence handling, avoiding missed taints when input values affect

control flow (e.g., loop conditions). While this leads to an imprecise taint analysis and preserves all

ASan alarms, it remains effective since Bayesian program analysis relies more on the derivation

graph structure than the analysis precision [47].

Hyperparameter. We set the selected ratio 𝛼 of critical targets to 0.25. Our experiments show

that this choice of hyperparameter leads to strong performance. In practice, fuzzing tools often

involve many such hyperparameters. These can be tuned by evaluating different settings on similar

programs to identify more effective configurations.
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Baselines.We compare our approach against the following baselines: (1) Prospector [49], the cur-

rent state-of-the-art LTGF technique. Prospector builds upon FishFuzz and introduces enhanced

strategies for each phase of the LTGF workflow. (2) FishFuzz [50], the LTGF-based fuzzer that our

approach is built upon. (3) FunFuzz [45], the current state-of-the-art CGF technique. FunFuzz uses

a coarse-grained non-Bayesian static analysis to assign significance scores to functions based on the

call graph, guiding the fuzzer to mutate seeds more effectively. We include FunFuzz to demonstrate

that our Bayesian program analysis provides stronger guidance for fuzzing than conventional static

analysis. (4) AFL++ [8], which serves as the foundational fuzzer for all three baselines and our

approach.

Benchmarks. We use the same benchmark suite as Prospector, which consists of 24 real-world

programs. Among them, 19 programs are from UniFuzz [21], and the remaining 5 are taken from

the benchmark used by FishFuzz. During compilation, we instrument all programs with ASan [38],

and treat all ASan alarms as the target set for our method as well as for the two LTGF baselines

(Prospector and FishFuzz). The number of targets per program ranges from 382 (gif2tga) to
108,495 (MP4Box), with an average of 21,214 targets per program.

Metrics. We repeat the experiments for each fuzzer on each program 10 times, with a runtime of

60 hours per experiment (the same as FishFuzz, and longer than the 24 hours used by Prospector).

Our total experimental runtime amounts to approximately 9.86 CPU-years. We conduct each run

in a Docker container, with a specific CPU core assigned. We adopt the same bug triage scheme as

Prospector, where each crash is classified into a unique bug identified by a CVE or issue number

based on the ASan stack trace. This mapping scheme is identical to that used by Prospector. For

each bug, we record the time-to-exposure (TTE) of the first trigger during each fuzzing process.

For the 10 repeated experiments, we compute the median TTE. If a bug is not triggered in any

given run, its TTE is set to +∞. If no more than half of the repeated experiments trigger the bug,

the median TTE is also computed to +∞, indicating that the corresponding fuzzer is unable to

consistently trigger the bug. We compare the effectiveness of different fuzzers by counting the

number of bugs uniquely discovered by each fuzzer, where a bug is considered uniquely discovered

if it is the only fuzzer with a median TTE ≠ +∞ for that bug.

5.2 Effectiveness

We visualize the bug sets in a Venn diagram in Figure 11 to provide an intuitive view of bug discovery

overlap among fuzzers. Each number in the diagram represents the size of the intersection between

the corresponding sets. Bayzzer uniquely discovers 13 bugs, whereas Prospector, FishFuzz,

FunFuzz, and AFL++ only find 4, 2, 2, and 1 unique bugs, respectively. The number of unique bugs

discovered by Bayzzer is not only 3.25× to 13× higher than each baseline, but also 1.4× higher

than the total number of unique bugs found by the other baselines combined (9 bugs), which fully

demonstrates the effectiveness of Bayzzer in finding vulnerabilities. A key observation is that,

beyond the 46 basic bugs found by all fuzzers, the 13 bugs discovered uniquely by Bayzzer form the

largest subset, even exceeding the 8 bugs jointly found by all three LTGF-based fuzzers (Bayzzer,

Prospector, and FishFuzz). This further highlights that Bayzzer transforms LTGF into a more

powerful framework through the integration of Bayesian program analysis.

We present the bug discovery curves over time in Figure 12, where the discovery time of each

bug is measured using its median TTE. The performance of Bayzzer in the first 40 hours shows

only limited improvement compared to the two LTGF-based fuzzers. This is because, in the initial

phase of fuzzing, the Bayesian network receives limited feedback, making its probability rankings

less effective in guiding the fuzzer. However, as fuzzing progresses, the Bayesian network adapts

based on increasing feedback, allowing it to provide more focus guidance. As a result, Bayzzer

discovers a large number of bugs in the final 20 hours, significantly outperforming all other fuzzers.
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Fig. 11. Venn diagram of bugs discovered by each fuzzer.
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Fig. 12. Number of bugs discovered by each fuzzer throughout the entire fuzzing process. The discovery time

of each bug is represented by its median TTE across 10 runs.

We present the median TTE for each fuzzer on the bugs it discovered in Table 3. Due to space

constraints, we only present a subset of bugs where Bayzzer exhibits significantly better per-

formance compared to the other baselines. We present the complete results in the appendix. We

demonstrate that Bayzzer triggers bugs in multiple programs much faster than other baselines,

which intuitively indicates that Bayzzer possesses a significantly different vulnerability exploration

capability compared to other fuzzers. Moreover, Bayzzer achieves strong performance across

various types of programs. To quantitatively support this conclusion, we follow the same evaluation

strategy as used in Prospector to summarize the performance of Bayzzer against each baseline
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Table 3. Median TTE (time-to-exposure) of each fuzzer over 10 runs on 24 real-world programs. N.A. (𝑥)

indicates that the median TTE is +∞, and the corresponding fuzzer triggered the bug in 𝑥 out of 10 runs.

For each bug, the best-performing fuzzer is highlighted in bold. Due to space constraints, we only present a

subset of bugs where Bayzzer exhibits significantly better performance compared to the other baselines. The

complete results are provided in the appendix. In the row Performance vs. Bayzzer, the value 𝑎/𝑏 indicates

that Bayzzer outperforms the compared fuzzer on 𝑎 bugs, while the compared fuzzer performs better on 𝑏

bugs. This count is used to compute the p-value from the sign test, as shown in the next row.

Program Bug ID Bayzzer Prospector FishFuzz FunFuzz AFL++

jhead jhead-issue-8 15m18s 15m28s 19m18s N.A. (2) N.A. (1)

wav2swf
CVE-2017-11099 10s 16s 14s 17s 13s

wav2swf-unknown-1 1m5s 41m52s 41m30s 1h31m 59m7s

tiffsplit
libtiff-issue-2243 19m10s 1h18m 1h44m 57m14s 2h21m

libtiff-issue-1936 2h21m 18h10m 7h15m 13h59m 43h53m

libtiff-unknown-6 33h25m N.A. (4) N.A. (5) N.A. (5) N.A. (4)

MP4Box
gpac-unknown-101 39h23m N.A. (4) 57h12m N.A. (5) N.A. (3)

CVE-2018-13005 45h52m N.A. (1) N.A. (3) N.A. (1) N.A. (0)

nasm
CVE-2018-8882 20h25m N.A. (5) N.A. (3) N.A. (2) N.A. (1)

CVE-2018-16517 45h44m N.A. (3) N.A. (1) N.A. (1) N.A. (1)

mujs CVE-2016-7564 2m53s 13m25s 4m7s 5m1s 6m58s

tcpdump
515bf64e 20h57m N.A. (0) N.A. (3) N.A. (3) N.A. (3)

64f63920 40h13m N.A. (2) N.A. (0) N.A. (1) N.A. (2)

jq jq-unknown-1 53m49s 1h32m 1h41m 1h47m 1h36m

tic CVE-2017-13730 15h11m 21h41m 36h23m 23h2m 20h3m

mp3gain CVE-2017-14407 6m32s 7m56s 56m7s 10m30s 11m16s

Performance vs. Bayzzer 101/66 94/70 109/61 123/43

P-value in the sign test 0.004 0.036 1.4 × 10−4 2 × 10−10

on a per-bug basis, as shown in the Performance vs. Bayzzer row in Table 3. For each bug, the

fuzzers are compared based on their median TTE. If the median TTE is +∞ for both fuzzers, we

instead compare the number of runs in which the bug is successfully triggered. This results in

a count of 𝑎/𝑏, where 𝑎 denotes the number of bugs for which Bayzzer performs better, and 𝑏

indicates the opposite. We then perform a one-tailed sign test [12] using these counts, with 𝑎 and 𝑏

corresponding to the number of positive and negative signs, respectively. We present the resulting

p-values in Table 3. All p-values are below 0.05, indicating that Bayzzer significantly outperforms

the baselines in terms of bug discovery performance.

We present the median TTE for the four CVEs discussed in the two case studies in Section 2, as

shown in Table 4. For the two CVEs in mp3gain, Bayzzer triggered both in the shortest amount of

time. For the two CVEs in tcpprep, as described in Section 2.3, CVE-2022-27942 involves a longer

call chain than CVE-2022-27941 and is therefore more difficult to trigger. Bayzzer is the only fuzzer

that consistently triggered CVE-2022-27941, and also the only one that triggered CVE-2022-27942

in 4 out of 10 runs, whereas all other fuzzers triggered it at most twice. By quantitatively validating

the case study observations through experiments, we further demonstrate Bayzzer’s superior

ability to expose hard-to-reach bugs through more effective guidance.
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Table 4. Median TTE of each fuzzer over 10 runs for the four CVEs discussed in the two case studies from

Section 2.

Program Bug ID Bayzzer Prospector FishFuzz FunFuzz AFL++

mp3gain
CVE-2017-14409 4m16s 7m4s 56m2s 10m24s 11m16s

CVE-2017-14410 6m13s 8m52s 56m41s 10m40s 11m51s

tcpprep
CVE-2022-27941 39h36m N.A. (5) N.A. (5) N.A. (4) N.A. (1)

CVE-2022-27942 N.A. (4) N.A. (1) N.A. (2) N.A. (1) N.A. (2)
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Fig. 13. The average runtime overhead introduced by Bayesian inference across 10 fuzzing runs for each

program.

In summary, Bayzzer leverages Bayesian program analysis to guide LTGF, enabling it to discover

bugs more effectively than other fuzzers.

5.3 Overhead of Bayesian Program Analysis

The overhead introduced by Bayesian program analysis consists of two parts: (1) the time to perform

static analysis and construct the derivation graph; (2) the time spent on Bayesian inference during

fuzzing. For (1), the graph construction time ranges from 0.151 seconds (gif2tga) to 169 seconds

(MP4Box) across programs, with an average of 21.4 seconds. This step is performed during the

compilation phase and therefore incurs no runtime cost, making it entirely acceptable. For (2),

we presents the proportion of total fuzzing time (60 hours) spent on Bayesian inference for each

program in Figure 13. The proportion ranges from 0.01% to 1.52%, with an average of 0.31%. The

variance in inference overhead is influenced by several factors, such as the size of the derivation

graph, the execution time of the program , and the stage scheduling logic in LTGF. Overall, the

overhead introduced by Bayesian program analysis is negligible and fully acceptable in practice.

5.4 Necessity to Remove Negative Feedback

We conducted an ablation experiment to demonstrate the necessity of removing negative feedback.

We refer to the configuration without removing negative feedback as Ablation, while all other
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Fig. 14. Number of bugs discovered by each fuzzer throughout the entire fuzzing process in the ablation

experiment. The discovery time of each bug is represented by its median TTE across 10 runs.

Table 5. New bugs found in the latest versions of the 24 real-world programs.

Program Version CWE CVE

ncurses 6.5-20250322 Stack-based Buffer Overflow CVE-2025-6141

nasm 888d9ab Stack-based Buffer Overflow Bug Only

swftools c6a18ab Out-of-bounds Read CVE-2025-6271

gdk-pixbuf ee5aaef0 Heap-based Buffer Overflow CVE-2025-7345

settings are kept the same as Bayzzer. We present the bug discovery curves over time by these

two fuzzers in Figure 14. During the first 15 hours, the performance of both approaches is almost

indistinguishable. This is because, at this stage, the number of seeds accumulated by the fuzzer is

still relatively small, resulting in limited changes in its capability, so removing negative feedback

has little impact. After 15 hours, as the number of accumulated seeds becomes sufficient, removing

negative feedback allows the fuzzer to refocus on reachable targets that were previously assigned

negative feedback. In contrast, without removing negative feedback, these targets will not be

prioritized again and thus cannot be discovered by the fuzzer. In the end, Bayzzer discovers 82 bugs,

while Ablation discovers only 66 bugs. The 16 undetected bugs are the consequence of failing to

remove incorrect negative feedback. Therefore, removing negative feedback can effectively improve

bug discovery capability and is indeed necessary. Moreover, this experimental finding is consistent

with the conclusion of recent work [37], indicating that resetting the fuzzer state can sometimes

facilitate escaping from local minima.

5.5 New Bugs

We apply Bayzzer to fuzz the latest versions of the 24 real-world programs in our benchmark, as well

as several popular open-source projects supported by OSS-Fuzz [10]. After one week of continuous

fuzzing, we summarize the results in Table 5 and Table 6. In total, we discover 39 new bugs, all of

which have been reported to the corresponding developers. The value of the vulnerabilities we
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Table 6. New bugs found in popular open-source projects supported by OSS-Fuzz.

Program Stars Commit CWE CVE

spdlog 26.7k 3335c38 Uncontrolled Resource Consumption CVE-2025-6140

poco 9.1k 530c2ef NULL Pointer Dereference CVE-2025-6375

oatpp 8.3k c9765f9 Stack-based Buffer Overflow CVE-2025-6566

wasm3 7.6k 79d412e Out-of-bounds Write CVE-2025-6272

wabt 7.4k a60eb26

Reachable Assertion CVE-2025-6273

Uncontrolled Resource Consumption CVE-2025-6274

Use After Free CVE-2025-6275

draco 6.8k 4e12ab2

Uncontrolled Resource Consumption Bug Only

Stack-based Buffer Overflow Bug Only

Out-of-bounds Read Bug Only

Out-of-bounds Read Bug Only

nokogiri 6.2k a024cff

Heap-based Buffer Overflow CVE-2025-6490

Heap-based Buffer Overflow CVE-2025-6494

mruby 5.4k dd68681 Heap-based Buffer Overflow CVE-2025-7207

bloaty 5.1k e115514 NULL Pointer Dereference Bug Only

tarantool 3.5k 46cc98b Reachable Assertion CVE-2025-6536

libarchive 3.2k 29fd918 Heap-based Buffer Overflow CVE-2025-5915

tidy-html5 2.8k d08ddc2

NULL Pointer Dereference CVE-2025-6496

Reachable Assertion CVE-2025-6497

Missing Release of Memory after Effective Lifetime CVE-2025-6498

plan9port 1.7k 9da5b44 NULL Pointer Dereference CVE-2025-7209

libucl 1.7k 3e7f023 Heap-based Buffer Overflow CVE-2025-6499

libyaml 1k 3e7f023 Out-of-bounds Write Bug Only

hdf5 760 17c16b6

Heap-based Buffer Overflow CVE-2025-6750

Heap-based Buffer Overflow CVE-2025-6816

Uncontrolled Resource Consumption CVE-2025-6817

Heap-based Buffer Overflow CVE-2025-6818

Use After Free CVE-2025-6856

Stack-based Buffer Overflow CVE-2025-6857

NULL Pointer Dereference CVE-2025-6858

Heap-based Buffer Overflow CVE-2025-7067

Missing Release of Memory after Effective Lifetime CVE-2025-7068

Heap-based Buffer Overflow CVE-2025-7069

librdkafka 692 826f585

Heap-based Buffer Overflow Bug Only

Stack-based Buffer Overflow Bug Only

discovered has been recognized by the community, with 30 of them being confirmed as CVEs. We

summarize Bayzzer’s practical impact as follows: (1) Bayzzer has discovered a large number of

vulnerabilities in popular programs, with about half of the bugs coming from GitHub repositories

with more than 3k stars, and the most popular repository having up to 26.7k stars. (2) Bayzzer has
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found numerous high-quality vulnerabilities. For each bug, we list the associated CWE (Common

Weakness Enumeration) in the table. For example, Uncontrolled Resource Consumption enables

attackers to illegitimately occupy system memory, causing other processes to crash; Stack-based

Buffer Overflow, Heap-based Buffer Overflow, and Out-of-bounds Write may allow illegal memory

writes, potentially leading to privilege escalation or sandbox escape; Out-of-bounds Read may allow

reading sensitive information from memory, resulting in information leakage. (3) Although the

programs we tested have already been extensively fuzzed by the community (i.e., the 24 real-world

programs) or have been continuously tested by OSS-Fuzz’s 24 × 7 infrastructure, Bayzzer is still

able to find bugs that other fuzzers cannot discover. These findings provide strong evidence of the

practical effectiveness of Bayzzer in real-world software systems.

6 Discussion

In the following, we discuss potential improvements to our approach and future research directions.

Impact of static analysis precision. Our approach adopts coarse-grained taint analysis without

checking for sanitization functions. This design choice reduces the computational overhead of static

analysis and enables our method to be applied to a wider range of programs. Notably, the logical

component of Bayesian program analysis can accommodate any static analysis based on abstract

interpretation, since the derivation process can always be represented as a derivation graph and

subsequently transformed into a Bayesian network. We choose Datalog as the formalism because

prior work in Bayesian program analysis [34] provides a systematic method for automatically

constructing a Bayesian network from a Datalog-based analysis. For analyses that do not use

Datalog, additional engineering effort is required to instrument the analysis execution and export

the derivations. Moreover, an interesting direction for future research is to investigate how to

select an appropriate level of analysis granularity to balance prior precision, analysis efficiency,

and inference efficiency, according to the specific characteristics of the program.

Handling fuzz blockers. Fuzz blockers [6, 9, 23, 35] refer to situations in which, when bug 𝐴

lies on the path to triggering bug 𝐵, the program error caused by triggering bug 𝐴 prevents bug

𝐵 from being triggered. Our approach cannot discover such blocked bugs, so the key question

is whether performance is degraded by repeatedly attempting to trigger these bugs. To address

this, we calculated the proportion of runs in directed fuzzing towards high-probability reachable

targets (as computed by the Bayesian program analysis) that are blocked by other unrelated bugs.

Our results show that, on average, only 2.6% of runs are affected in this manner. In summary,

while our approach does not attempt to solve the problem of blocking bugs, this issue does not

affect its performance in practice. This finding is corroborated by our overall experimental results.

A potential solution to mitigate this problem is to patch blocking bugs, as proposed by recent

work [35]. Our approach is orthogonal to this method and can be combined with it to achieve even

better effectiveness.

7 Related Work

Our approach is related to research on (1) Bayesian program analysis, (2) multi-target directed

greybox fuzzing, and (3) techniques that leverage static analysis to enhance greybox fuzzing. We

summarize the related prior works below.

Bayesian program analysis. Bayesian program analysis transforms static analysis derivations into

Bayesian models and compute the probability of each alarm being true. Prior work in this area can

be broadly categorized into two directions. The first line of research focuses on enabling Bayesian

program analysis to generalize across diverse forms of posterior information. Eugene [26] and

Bingo [34] enhance alarm ranking by learning from user feedback. Drake [11] leverages differences

between code versions to improve alarm ranking. DynaBoost [4] uses dynamic execution results to
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refine alarm rankings. NESA [20] combines informal information with neural-symbolic reasoning

to produce more accurate alarm rankings. The second line of research explores how to optimize the

inference of Bayesian models for more effective alarm ranking. BayeSmith [15] applies parameter

learning based on program syntactic information, while BinGraph [47] and BayesRefine [41]

perform structural learning by selecting suitable abstraction. These works mainly aim to make

alarm rankings more accurate so developers can inspect them more easily. In contrast, Bayzzer

redefines the semantics in the Bayesian network to enable the prediction of whether each target is

reachable by the fuzzer, thereby successfully extending Bayesian program analysis to guide fuzzing

for fully automated bug discovery. These prior techniques are orthogonal to Bayzzer, and their

advances can be used to further improve the fuzzing capabilities of Bayzzer.

Multi-target directed greybox fuzzing. Multi-target directed greybox fuzzing aims to trigger

potential bugs across multiple program locations. Prior work in this area can be broadly categorized

into two directions. The first direction is large-scale target-guided greybox fuzzing (LTGF), where

the target set is typically large and often consists of static analysis alarms. The goal of LTGF is

to discover previously unknown bugs. SAVIOR [5] integrates symbolic execution with fuzzing

to mutate seeds more effectively, combining the strengths of both techniques. Bayzzer can be

extended with the symbolic execution component from SAVIOR to explore paths that are difficult

for fuzzers to reach. ParmeSan [33] leverages dynamic data-flow analysis to estimate the distance

between inputs and multiple targets for seed prioritization. FishFuzz [50] improves precision by

selecting the nearest seed for each individual target. Prospector [49] builds upon FishFuzz and

introduces further optimizations across multiple phases, including target prioritization and stage

scheduling. By comparison, Bayzzer introduces a principled approach to target prioritization by

leveraging Bayesian program analysis, and experimental results demonstrate that it outperforms

existing methods. The second direction is critical-set directed greybox fuzzing (CDGF) [1, 14, 22, 36].

CDGF typically focuses on a small set of target locations that correspond to known bugs. This

setting is often used for efficiently validating or re-triggering multiple known bug within the same

program, such as for regression testing or patch validation. Bayzzer can leverage techniques from

CDGF by precisely guiding the selection of a smaller critical target set, enabling faster triggering of

bugs.

Static analysis for greybox fuzzing. For directed greybox fuzzing (DGF), static analysis is primarily

used for distance computation [2, 3, 7, 16, 18, 19, 44] and pruning of unreachable states [13, 25].

Bayzzer can be integrated with these techniques to further enhance its capability for directed bug

triggering. For coverage-guided greybox fuzzing (CGF), static analysis is mainly used to guide seed

prioritization [40, 43, 45], byte scheduling [24], and dictionary construction [39]. Our experimental

results demonstrate that Bayzzer outperforms the state-of-the-art static-analysis-based CGF tool

FunFuzz [45], providing strong evidence that Bayesian program analysis offers more effective

guidance for fuzzers compared to conventional static analysis approaches.

8 Conclusion

We present Bayzzer, a framework that leverages Bayesian program analysis to guide large-scale

target-guided greybox fuzzing. Bayzzer constructs a Bayesian model based on the semantics of

static analysis, continuously learns from feedback during fuzzing, and computes the probability

that each target is reachable by the fuzzer to prioritize target selection. We conduct experiments

totaling over 9.86 CPU-years to evaluate the effectiveness of Bayzzer. Bayzzer discovered 39

previously unknown vulnerabilities in well-tested programs, 30 of which have been confirmed as

CVEs. The results demonstrate that Bayzzer significantly outperforms existing fuzzers in terms of

bug discovery capabilities.
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Data-Availability Statement

Our artifact [48] includes all code, scripts, data, and statistics from our experiments. It contains the

following:

(1) Automatic reproduction of all results from our experiments.

(2) Automated transformation of the results into Figure 11, Figure 12, Figure 13, Figure 14, as

well as the complete table that contains Table 3 and Table 4.

(3) Detailed information on each newly discovered vulnerability not yet assigned a CVE, submit-

ted to developers and presented in Table 5 and Table 6.

(4) A reusability guide for applying the Bayzzer framework to other settings and extensions.
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