Probabilistic Logic Programming

Xin Zhang
Peking University
Recap of Last Lecture

• Learning in probabilistic programming
 • Parameter learning, structure learning
 • Still an active research area
This Lecture

• Probabilistic logic programming
 • Motivation
 • Syntax
 • Semantics
 • Inference
Classical AI: Logic

• Rich logic systems provide significant expressiveness power
 • Concise and learnable models

• Example: first-order logic. Rules of chess occupy
 • 10^0 pages of first-order logic
 • 10^5 pages in propositional logic
 • 10^{38} pages in finite automata
Quick Recap on First-Order Logic

• Compared to propositional logic, introduces predicates and quantifications for expressiveness

\[\forall h_1, h_2, h_3. \text{sibling}(h_1, h_2) \land \text{sibling}(h_2, h_3) \rightarrow \text{sibling}(h_1, h_3) \]

• Undecidable
Modern AI: Probability Theory for Uncertainty

• Bayesian network

• Fixed variables in fixed ranges
 • Similar to propositional logic and Boolean logic
Probabilistic Logic Programming: Unifying Logic and Probability

• Logic: the ability to describe complex domains concisely in terms of objects and relations

• Probability: the ability to handle uncertainty

• Logic + probability = Probabilistic Logic Programming
Example Probabilistic Logic Languages

• Markov Logic Network. University of Washington

• Probabilistic Soft Logic. University of Maryland

• BLOG. UC Berkeley

•
Background: Logic Programming

• Declarative: specifies what rather than how

• Leverages powerful inference engine
Background: Prolog and Datalog

• Prolog: once popular in AI, still being used in pattern matching (NLP)
 • Turning-complete

• Datalog: a subset of Prolog
 • Can only express polynomial algorithms
 • Originates from the Database community (SQL with recursions)
 • Logic part of Problog
Background: Datalog

Input Relation:
Edge(e1, e2)

Output Relation:
Path(e1, e2)

Rules:
Path(e1, e2) :- edge(e1, e2) \forall edge(e_1, e_2) \Rightarrow path(e_1, e_2)
Path(e1, e3) :- path(e1, e2), edge(e2, e3) \forall path(e_1, e_2) \land edge(e_2, e_3) \Rightarrow path(e_1, e_2)
Background: Datalog

Edge(1, 2) Edge(2, 3)

Path(1, 2) :- Edge(1, 2)
Path(2, 3) :- Edge(2, 3)

Path(1, 3) :- Path(1, 2), Edge(2, 3)
Adding Probabilities to Datalog

• If A is a friend of B, and B is a friend of C, then A is likely a friend of C.

Can you write a program for the above sentence?
Adding Probabilities to Datalog

• Suppose edges exist with probabilities (by observation), compute path reachability.

Can you write a program for the above sentence?

Add probabilities to rules or facts?
What is the semantics?

Path(E1, E2) :- edge(E1, E2)
0.5: Path(E1, E3) :- path(E1, E2), edge(E2, E3)

Given a set of derived tuples/facts, assign a probability to them.
Problog: Introduction

• A language developed by the group led by Luc De Raedt at KU Leuven

• Extends Prolog with probabilities
 • Actually closer to Datalog
Problog: Syntax

• **Value**: numbers, mixed numbers and letters starting with a letter in lower cases

• **Variable**: starting with a capital letter
Problog: Syntax

<table>
<thead>
<tr>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>fact</td>
<td>a.</td>
</tr>
<tr>
<td>probabilistic fact</td>
<td>0.5::a.</td>
</tr>
<tr>
<td>clause</td>
<td>a :- x.</td>
</tr>
<tr>
<td>probabilistic clause</td>
<td>0.5::a :- x.</td>
</tr>
<tr>
<td>annotated disjunction</td>
<td>0.5::a; 0.5::b.</td>
</tr>
<tr>
<td>annotated disjunction</td>
<td>0.5::a; 0.5::b :- x.</td>
</tr>
</tbody>
</table>

From the documentation of Problog
Problog: Syntax

Queries:

0.5::heads(C).
two_heads :- heads(c1), heads(c2).
query(two_heads).

0.5::heads(C) :- between(1, 4, C).
query(heads(C)).

0.5::heads(C) :- between(1, 4, C).
query(heads(C)).

Evidence:

0.5::heads(C).
two_heads :- heads(c1), heads(c2).
evidence(\+ two_heads).
query(heads(c1)).

From the documentation of Problog
Example Program I

0.5 :: stayUp.
0.7 :: drinkCoffee :- stayUp.
0.5 :: drinkCoffee :- \+ stayUp.
0.9 :: fallSleep :- \+ drinkCoffee, stayUp.
0.3 :: fallSleep :- drinkCoffee, stayUp.
0.1 :: fallSleep :- \+ stayUp.

evidence(fallSleep).

query(stayUp).
What does the following program compute?

0.5 :: stayUp.
0.7 :: drinkCoffee :- stayUp.
0.5 :: drinkCoffee :- \+ stayUp.
0.9 :: fallSleep :- \+ drinkCoffee, stayUp.
0.3 :: fallSleep :- drinkCoffee, stayUp.
0.1 :: fallSleep :- \+stayUp.

query(stayUp).

evidence(fallSleep).
What does the following program compute?

0.5::heads1.
0.5::heads2.

heads1 :- heads2.

query(heads1).
query(heads2).
What does the following program compute?

0.5::heads1.
0.5::heads2.

\(+\) heads1 :- heads2.

query(heads1).
query(heads2).
Example Program 2

0.9 :: edge(0,1).
0.8 :: edge(1,2).
0.7 :: edge(2,3).
0.8 :: edge(2,4).

1 :: path(A,B) :- edge(A,B).
0.8 :: path(A,C) :- path(A,B), edge(B,C).

evidence(\ + path(0,3)).

query(path(0,4)).
Semantics of Problog

• What is the semantics of the following program?
 0.5 :: stayUp.
 0.7 :: drinkCoffee :- stayUp.
 0.3 :: fallSleep :- drinkCoffee, stayUp.

query(fallSleep).
Semantics of Problog

• For simplicity, we assume all probabilities are attached to facts

• First idea: we can convert the program into a Bayesian network, but how?
Semantics of Problog

• Converting into a Bayesian network is viable, but there are small catches

• We give another semantics that defines a distribution of Datalog programs
From a Problog program, we can sample a Datalog program by sampling the facts

0.5 :: stayUp.
0.7 :: r1.
0.3 :: r2.
0.5 :: drinkCoffee :- stayUp.
0.3 :: r1.
0.7 :: r2.
0.3 :: fallSleep :- drinkCoffee, stayUp.
drinkCoffee :- stayUp, r1.
fallSleep :- drinkCoffee, stayUp, r2.

Probability: 0.5*0.7*0.3
Semantics of Problog

• What about queries?

0.5 :: stayUp.
0.7 :: r1.
0.3 :: r2.
drinkCoffee :- stayUp, r1.
fallSleep :- drinkCoffee, stayUp, r2.

query(fallSleep)

A query calculates a marginal probability of a fact. Informally,

\[p(f) = \frac{\sum p(\text{any program that derives } f)}{\sum p(\text{any program})} \]
Semantics of Problog

• What about evidence?

0.5 :: stayUp.
0.7 :: r1.
0.3 :: r2.
drinkCoffee :- stayUp, r1.
fallSleep :- drinkCoffee, stayUp, r2.

evidence(\+ fallSleep)
query(stayUp)

Evidence filters out certain programs. Informally,

\[
p(f) = \frac{\sum p(\text{any program that derives } f|\text{evidence})}{\sum p(\text{any program}|\text{evidence})}
\]
Semantics of Problog

- What about relations and quantified variables?

 0.9 :: edge(0,1).
 0.8 :: edge(1,2).
 0.7 :: edge(2,3).
 0.8 :: edge(2,4).

 path(A,B) :- edge(A,B).
 0.8 :: path(A,C) :- path(A,B), edge(B,C).

 evidence(\ + path(0,3)).

 query(path(0,4)).
Semantics of Problog

• Move probabilities to facts

0.9 :: edge(0,1).
0.8 :: edge(1,2).
0.7 :: edge(2,3).
0.8 :: edge(2,4).
0.8 :: r(A,B,C).

path(A,B) :- edge(A,B).
path(A,C) :- path(A,B), edge(B,C), r(A,B,C).

evidence(\ + path(0,3)).

query(path(0,4)).
Semantics of Problog

• Ground

Constants: 0, 1, 2, 3 4

\[\text{path}(A,C) \leftarrow \text{path}(A,B), \text{edge}(B,C), r(A,B,C).\]

Generates

\[\begin{align*}
\text{path}(0,0) & \leftarrow \text{path}(0,0), \text{edge}(0,0), r(0,0,0). & A=0, B=0, C=0 \\
\text{path}(0,1) & \leftarrow \text{path}(0,0), \text{edge}(0,1), r(0,0,1). & A=0, B=0, C=1 \\
\text{path}(0,1) & \leftarrow \text{path}(0,0), \text{edge}(0,1), r(0,0,1). & A=0, B=0, C=1
\end{align*}\]

...
Semantics of Problog

• After grounding, each ground term can be seen as a Boolean variable, then the whole program can be solved using the semantics of the Boolean case

path(0,0) -> t1, edge(0,0) -> t2, r(0,0,0) -> t3

path(0,0) :- path(0,0), edge(0,0), r(0,0,0).

t1 :- t1,t2,t3
Semantics of Problog

• First, ground the program into a Boolean program

• The Boolean program describes a distribution of Datalog program, which in turn defines a distribution of outputs
Questions

• Can you use Problog to express uniform distributions?

• What about loops?
Logic Part in Problog is more than Datalog

:- use_module(library(aggregate)).

pull(0).
count(1).

pull(N+1) :- pull(N), N < 10.
0.1 :: pull_SSR(N) :- pull(N).

num_SSRs(sum<X>) :- pull_SSR(N),count(X).

query(num_SSRs(X)).
But It is also Not Prolog

• The following program terminates in Problog but not in Prolog

 child(anne,bridget).
 child(bridget,caroline).
 child(caroline,donna).
 child(donna,emily).
 descend(X,Y) :- descend(Z,Y), child(X,Z).
 descend(X,Y) :- child(X,Y).

 query(descend(anne,emily))
Inference

• As described before, inference can be done in two steps:
 • **Grounding.** Convert the program into a probabilistic program with only Boolean variables (no quantifiers)

• **Solving.** Solve with the Boolean program produced above.
Optimization on Grounding

• Grounding replaces all variables with their values
 • Number of grounded rules is proportional to cartesian product of the domain sizes

• How to optimize?
 • A simple idea: only ground the part that is relevant to the queries and evidence.
 • Backtrack over the rules starting from the queries and evidence (SLD resolution).
 • A further optimization: stop tracking if a rule body doesn’t hold according to the evidence
Optimization on Grounding

• If the logic part is Datalog without negation, we can use a Datalog solver to compute the grounding

• Datalog without negation is monotonic: the more rules or input facts, the more output facts

• If negation is on the input, it is still fine
Negation in Problog

- Unfortunately, Problog allows the following program:

 one(1).
 odd(X) :- one(X).
 even(X) :- \+ odd(X).

And

- \(0.5::a\).
- \(0.9 :: e:-a\).
- \(0.5::b\).
- \(0.9 :: e:-b\).
- \(0.1 :: \+e:-a,b\)

If such negations are not present, we can use a Datalog solver to ground, which is highly efficient.
Solving

• Once we have a grounded program, we can leverage existing techniques

• Idea 1: convert the program into a Bayesian network

• Idea 2: convert the program into a Boolean formula with weights (MaxSAT)
Solving: Converting into a Bayesian Net

0.8 :: a.
0.7 :: b.

0.5 :: c:- a.
0.5 :: c:- b.

query(c).
Solving: Converting into a Bayesian Net

• We move all probabilities to input facts
• We add a root node whose prior distribution is \(P(r = 1) = 1 \). Then we add a rule \(p :: f :- r \) for each input fact \(p :: f \)
• For each fact \(f \), suppose it is derived using \(r_1, \ldots, r_n \), we add arcs from all facts in the rule bodies to \(f \).
• We set conditional probabilities:
 \[
 p(f \mid \lor body(r_i) = \text{True}) = 1 \\
 p(f \mid \lor body(r_i) = \text{False}) = 0
 \]

Only works for program without cycles
Solving: Converting into a MaxSAT

- Finding the most likely solution becomes solving the MaxSAT

- Computing marginal probabilities becomes weighted model counting
Brief Introduction on MaxSAT

MaxSAT:

\[
\begin{align*}
 a \land (C1) \\
 \neg a \lor b \land (C2) \\
 4 \quad \neg b \lor c \land (C3) \\
 2 \quad \neg c \lor d \land (C4) \\
 7 \quad \neg d \land (C5)
\end{align*}
\]

Subject to

\[
\begin{align*}
 C1 \\
 C2
\end{align*}
\]

Maximize

\[
4 \times C3 + 2 \times C4 + 7 \times C5
\]

Solution: \(a = \text{true}, b = \text{true}, c = \text{true}, d = \text{false} \)

(Objective = 11)
Brief Introduction on MaxSAT

• Popular MaxSAT solving techniques: converting the problem into a series of SAT problem

• Brief idea: can any solution satisfy k clauses?
 • Linear search
 • Binary search
 • (UNSAT) core guided
Core-Guided MaxSAT Solving

• UNSAT core: a set of clauses which are not unsatisfiable
 • Minimum UNSAT core: removing any clause will make it satisfiable
 • Modern SAT solvers come with the ability to return UNSAT cores

• [Fu & Malik]: Each time allow one and only one clause to be relaxed
Example using MaxSAT for Inference

0.6 :: rain.
0.5 :: sprinkle.
0.9 :: grass_wet :- rain, sprinkle.

grass_wet :- rain, sprinkle is translated into

\[\text{grass}_wet \leftrightarrow \text{rain} \land \text{sprinkle} \land r\]
Example using MaxSAT for Inference

• When translating rules, we have to consider the least fixed point semantics of Datalog

• Suppose the rules are acyclic, for a given fact f, we have to consider all grounded rules that derive f

\[f \leftrightarrow \lor body(r_i) \]
Example using MaxSAT for Inference

• When rules are cyclic, problems become complicated:
 0.5::a. b:-a. b:-c. c:-b

• For reference:
Brief Introduction on Weighted Model Counting

• Model counting: compute the number of assignments to a SAT expression

\[
a \text{ or } b \quad 3 \text{ assignments}
\]

• Weighted model counting
 • Each variable has a weight for each assignment: \(w(v) \)
 • The model weight is the product of variable weights
 • Now the count is a weighted sum
Example using WMC for Inference

0.6 rain
0.4 !rain
0.5 sprinkle
0.5 !sprinkle
0.9 r
0.1 !r

grass_wet or !rain or !sprinkle
!grass_wet or rain
!grass_wet or sprinkle

w(rain = true) = 0.6
w(rain = false) = 0.4
w(sprinkle = true) = 0.5
w(sprinkle = false) = 0.5
w(r = true) = 0.9
w(r = false) = 0.1

P(grass_wet = true) = WMC(M\∧grass_wet=true)

What if we want to evaluate
P(rain | grass_wet = true)?
Using WMC for Marginal Inference

• Let the constructed weighted formula be M, queries be Q, evidence be E, then

$$P(Q) = \frac{WMC(M \land Q \land E)}{WMC(M \land E)}$$

• For more, refer to

Further Reading on Problog

Next Lecture

• Causality