Probabilistic Graphical Models
(continued)

Xin Zhang
Peking University

Adapted from the slides of “Pattern Recognition and Machine Learning” Chapter 8
Recap: Bayesian Networks

- Directed Acyclic Graph (DAG)

\[
p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \\
p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)
\]

General Factorization

\[
p(x) = \prod_{k=1}^{K} p(x_k | pa_k)
\]
Recap: Conditional Independence

Shaded nodes are observed.
Recap: D-Separation

• A, B, and C are non-intersecting subsets of nodes in a directed graph.
• A path from A to B is blocked if it contains a node such that either
 a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
• If all paths from A to B are blocked, A is said to be d-separated from B by C.
• If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies .
D-separation: Example

\[a \not\perp b \mid c \]

\[a \perp b \mid f \]
Recap: The Markov Blanket

\[p(x_i | x_{\{j \neq i\}}) = \frac{ \frac{p(x_1, \ldots, x_M)}{\int p(x_1, \ldots, x_M) \, dx_i} }{\prod_{k} p(x_k | pa_k)} \]

\[= \frac{\prod_{k} p(x_k | pa_k)}{\int \prod_{k} p(x_k | pa_k) \, dx_i} \]

Factors independent of \(x_i \) cancel between numerator and denominator.
Recap: Markov Random Field

• Undirected, can have cycles

• Markov networks

• Reason about conditional independence using graph reachability
Recap: Markov Random Field

\[p(x) = \frac{1}{Z} \prod_C \psi_C(x_C) \]

- where \(\psi_C(x_C) \) is the potential over maximal clique \(C \) and

\[Z = \sum_x \prod_C \psi_C(x_C) \]

- is the normalization coefficient.
Recap: Markov Random Field

\[
P(A = True, B = True, C = True, D = True) = \frac{\psi_{A,B,C}(True, True, True) \times \psi_{C,D}(True, True)}{\Sigma_{A,B,C,D} \psi_{A,B,C}(A, B, C) \times \psi_{C,D}(C, D)}
\]
This Class

• Relationship between directed and undirected models

• Inference ("Exact")
Converting Directed to Undirected Graphs

\[p(x) = p(x_1)p(x_2|x_1)p(x_3|x_2) \cdots p(x_N|x_{N-1}) \]

\[p(x) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N) \]
Converting Directed to Undirected Graphs
Steps in Converting Directed to Undirected

1. Add links between all pairs of parents for each node (moralization)

2. Drop arrows, which results in a moral graph

3. Initialize all of the clique potentials to 1. Take each conditional distribution factor and multiply it into one of the clique potentials

4. \(Z = 1 \)
Example

\[\psi_{A,B,C} = P(A) \times P(B) \times P(C|A,B) \]

\[\psi_{C,D} = P(D|C) \]
Directed vs. Undirected Graphs

Can you convert the following graphs and keep the conditional indecencies?

\[A \perp B \mid \emptyset \]
\[A \not\perp B \mid C \]
\[A \not\perp B \mid \emptyset \]
\[A \perp B \mid C \cup D \]
\[C \perp D \mid A \cup B \]
Directed vs. Undirected Graphs

Distributions that can be perfectly represented by two types of graphs in terms of conditional independence
Inference in Graphical Models

• Marginal probabilities: $p(x)$ or $p(x,y)$

• Conditional probabilities: $p(x \mid o)$ or $p(x,y \mid o)$
Inference in Graphical Models

\[p(y) = \sum_{x'} p(y|x')p(x') \]

\[p(x|y) = \frac{p(y|x)p(x)}{p(y)} \]
Inference on a Chain

\[
p(x) = \frac{1}{\mathcal{Z}} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N)
\]

\[
p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} \mathcal{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N) p(x)
\]
Inference on a Chain

\[p(x_n) = \frac{1}{Z} \left[\sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \cdots \left[\sum_{x_1} \psi_{1,2}(x_1, x_2) \right] \cdots \right] \]

\[\mu_{\alpha}(x_n) \]

\[\sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \cdots \left[\sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \right] \cdots \]

\[\mu_{\beta}(x_n) \]
Inference on a Chain

\[
\begin{align*}
\mu_\alpha(x_n) &= \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \left[\sum_{x_{n-2}} \cdots \right] \\
&= \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \mu_\alpha(x_{n-1}). \\
\mu_\beta(x_n) &= \sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \left[\sum_{x_{n+2}} \cdots \right] \\
&= \sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \mu_\beta(x_{n+1}).
\end{align*}
\]
Inference on a Chain

\[\mu_\alpha(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2) \quad \mu_\beta(x_{N-1}) = \sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \]

\[Z = \sum_{x_n} \mu_\alpha(x_n) \mu_\beta(x_n) \]
Inference on a Chain

• To compute local marginals:
 • Compute and store all forward messages, $\mu_\alpha(x_n)$.
 • Compute and store all backward messages, $\mu_\beta(x_n)$.
 • Compute Z at any node x_m
 • Compute
 \[
p(x_n) = \frac{1}{Z} \mu_\alpha(x_n) \mu_\beta(x_n)
 \]
 for all variables required.
What about $p(x_{n-1}, x_n)$?

$$p(x_{n-1}, x_n) = \frac{1}{Z} \Sigma_{x_1} \cdots \Sigma_{x_{n-2}} \Sigma_{x_{n+1}} \cdots \Sigma_{x_N} \psi_{1,2}(x_1, x_2) \cdots \psi_{N-1,N}(x_{N-1}, x_N)$$

$$= \frac{1}{Z} \psi_{n-1,n}(x_{n-1}, x_n) \Sigma_{x_1} \cdots \Sigma_{x_{n-2}} \psi_{1,2}(x_1, x_2) \cdots \psi_{n-2,n-1}(x_{n-2}, x_{n-1})$$

$$\Sigma_{x_{n+1}} \cdots \Sigma_{x_N} \psi_{n,n+1}(x_n, x_{n+1}) \cdots \psi_{N-1,N}(x_{N-1}, x_N)$$

$$= \frac{1}{Z} \psi_{n-1,n}(x_{n-1}, x_n) \mu_\alpha(x_{n-1}) \mu_\beta(x_n)$$
What about $p(x_n|x_m=V)$

• Simply fix x_m to V instead of doing summarization over x_m!

• Z will also be changed accordingly
More Complex Graphs: Trees

On these graphs, we can perform efficient exact inference using local message passing!

Before introducing algorithms, we first introduce a new model.
Factor Graphs

- Bipartite graph
- Two kinds of nodes:
 - Regular random variables
 - Factor nodes
- Factor node represents a function that maps assignments to its neighbors to a real number
- $p(x) = \prod_s f_s(x_s)$

\[
p(x_1, x_2, x_3) = \frac{1}{Z} f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)
\]
Factor Graphs from Directed Graphs

\[p(x) = \frac{p(x_1)p(x_2)}{p(x_3|x_1, x_2)} \]

\[f(x_1, x_2, x_3) = \frac{p(x_1)p(x_2)p(x_3|x_1, x_2)}{p(x_3|x_1, x_2)} \]

\[f_a(x_1) = p(x_1) \]

\[f_b(x_2) = p(x_2) \]

\[f_c(x_1, x_2, x_3) = p(x_3|x_1, x_2) \]
Factor Graphs from Undirected Graphs

$\psi(x_1, x_2, x_3)$

$f(x_1, x_2, x_3)$

$fa(x_1, x_2, x_3) fb(x_2, x_3)$
The Sum-Product Algorithm

• Objective:
 i. to obtain an efficient, exact inference algorithm for finding marginals on tree-structure graphs;
 ii. in situations where several marginals are required, to allow computations to be shared efficiently.

• Key idea: Distributive Law

\[ab + ac = a(b + c)\]
The Sum-Product Algorithm

\[p(x) = \sum_{x \setminus x} p(x) \]

\[p(x) = \prod_{s \in \text{ne}(x)} F_s(x, X_s) \]
The Sum-Product Algorithm

\[p(x) = \prod_{s \in \text{ne}(x)} \left[\sum_{X_s} F_s(x, X_s) \right] \]

\[= \prod_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x). \quad \mu_{f_s \rightarrow x}(x) \equiv \sum_{X_s} F_s(x, X_s) \]
The Sum-Product Algorithm

\[F_s(x, X_s) = f_s(x, x_1, \ldots, x_M) G_1(x_1, X_{s1}) \ldots G_M(x_M, X_{sM}) \]
The Sum-Product Algorithm

\[
\begin{align*}
\mu_{f_s \rightarrow x}(x) &= \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \left[\sum_{X_{sm}} G_m(x_m, X_{sm}) \right] \\
&= \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f_s}(x_m)
\end{align*}
\]
The Sum-Product Algorithm

\[
\mu_{x_m \rightarrow f_s}(x_m) \equiv \sum_{X_{sm}} G_m(x_m, X_{sm}) = \sum_{X_{sm}} \prod_{l \in \text{ne}(x_m) \setminus f_s} F_l(x_m, X_{ml})
\]

\[
= \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \rightarrow x_m}(x_m)
\]
The Sum-Product Algorithm

- Initialization

\[\mu_{x \rightarrow f} (x) = 1 \]

\[\mu_{f \rightarrow x} (x) = f(x) \]
The Sum-Product Algorithm

• To compute local marginals:
 • Pick an arbitrary node as root
 • Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
 • Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
 • Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.
Marginal Inference on A Set

• What if I want to know $p(x_s)$ where x_s are nodes in a factor s?

\[p(x_s) = f_s(x_s) \prod_{i \in \text{ne}(f_s)} \mu_{x_i \rightarrow f_s}(x_i) \]
Sum-Product: Example

\[\tilde{p}(x) = f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4) \]
Sum-Product: Example

\[\begin{align*}
\mu_{x_1 \rightarrow f_a}(x_1) &= 1 \\
\mu_{f_a \rightarrow x_2}(x_2) &= \sum_{x_1} f_a(x_1, x_2) \\
\mu_{x_4 \rightarrow f_c}(x_4) &= 1 \\
\mu_{f_c \rightarrow x_2}(x_2) &= \sum_{x_4} f_c(x_2, x_4) \\
\mu_{x_2 \rightarrow f_b}(x_2) &= \mu_{f_a \rightarrow x_2}(x_2) \mu_{f_c \rightarrow x_2}(x_2) \\
\mu_{f_b \rightarrow x_3}(x_3) &= \sum_{x_2} f_b(x_2, x_3) \mu_{x_2 \rightarrow f_b}(x_2)
\end{align*}\]
Sum-Product: Example

\[\begin{align*}
\mu_{x_1 \rightarrow f_b}(x_3) &= 1 \\
\mu_{f_b \rightarrow x_2}(x_2) &= \sum_{x_3} f_b(x_2, x_3) \\
\mu_{x_2 \rightarrow f_a}(x_2) &= \mu_{f_b \rightarrow x_2}(x_2) \mu_{f_c \rightarrow x_2}(x_2) \\
\mu_{f_a \rightarrow x_1}(x_1) &= \sum_{x_2} f_a(x_1, x_2) \mu_{x_2 \rightarrow f_a}(x_2) \\
\mu_{x_2 \rightarrow f_c}(x_2) &= \mu_{f_a \rightarrow x_2}(x_2) \mu_{f_b \rightarrow x_2}(x_2) \\
\mu_{f_c \rightarrow x_4}(x_4) &= \sum_{x_2} f_c(x_2, x_4) \mu_{x_2 \rightarrow f_c}(x_2)
\end{align*} \]
Sum-Product: Example

\[\tilde{p}(x_2) = \mu_{f_a \rightarrow x_2}(x_2) \mu_{f_b \rightarrow x_2}(x_2) \mu_{f_c \rightarrow x_2}(x_2) \]

\[= \left[\sum_{x_1} f_a(x_1, x_2) \right] \left[\sum_{x_3} f_b(x_2, x_3) \right] \]

\[\left[\sum_{x_4} f_c(x_2, x_4) \right] \]

\[= \sum_{x_1} \sum_{x_3} \sum_{x_4} f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4) \]

\[= \sum_{x_1} \sum_{x_3} \sum_{x_4} \tilde{p}(x) \]
What about conditional probabilities?

• Fix the observed variables

• Or add a factor node

• Both need normalization
What if I want to know values of all variables that have the highest probability?

$$\text{argmax}_x p(x)$$
The Max-Sum Algorithm

Objective: an efficient algorithm for finding

i. the value x_{max} that maximises $p(x)$;
ii. the value of $p(x_{\text{max}})$.

In general, maximum marginals \neq joint maximum

<table>
<thead>
<tr>
<th></th>
<th>$x = 0$</th>
<th>$x = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = 0$</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>$y = 1$</td>
<td>0.3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

$$\arg\max_x p(x, y) = 1 \quad \arg\max_x p(x) = 0$$
The Max-Sum Algorithm

- Maximizing over a chain (max-product)

\[
p(x^{\text{max}}) = \max_x p(x) = \max_{x_1} \ldots \max_{x_M} p(x)
\]

\[
= \frac{1}{Z} \max_{x_1} \ldots \max_{x_N} \left[\psi_{1,2}(x_1, x_2) \cdots \psi_{N-1,N}(x_{N-1}, x_N) \right]
\]

\[
= \frac{1}{Z} \max_{x_1} \left[\max_{x_2} \left[\psi_{1,2}(x_1, x_2) \left[\cdots \max_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \right] \right] \right]
\]
The Max-Sum Algorithm

• Generalizes to tree-structured factor graph

\[
\max_x p(x) = \max_{x_n} \prod_{f_s \in \text{ne}(x_n)} \max_{X_s} f_s(x_n, X_s)
\]

• maximizing as close to the leaf nodes as possible

\[
\max(ab, bc) = a \max(b, c)
\]
The Max-Sum Algorithm

- Max-Product \rightarrow Max-Sum
 - For numerical reasons, use
 \[
 \ln \left(\max_x p(x) \right) = \max_x \ln p(x).
 \]
 - Again, use distributive law
 \[
 \max(a + b, a + c) = a + \max(b, c).
 \]
The Max-Sum Algorithm

• Initialization (leaf nodes)

\[\mu_{x \rightarrow f}(x) = 0 \quad \mu_{f \rightarrow x}(x) = \ln f(x) \]

• Recursion

\[\mu_{f \rightarrow x}(x) = \max_{x_1, \ldots, x_M} \left[\ln f(x, x_1, \ldots, x_M) + \sum_{m \in \text{ne}(f) \setminus x} \mu_{x_m \rightarrow f}(x_m) \right] \]

\[\phi(x) = \arg \max_{x_1, \ldots, x_M} \left[\ln f(x, x_1, \ldots, x_M) + \sum_{m \in \text{ne}(f) \setminus x} \mu_{x_m \rightarrow f}(x_m) \right] \]

Track the values

\[\mu_{x \rightarrow f}(x) = \sum_{l \in \text{ne}(x) \setminus f} \mu_{f_l \rightarrow x}(x) \]
Max-Sum Algorithm

• Termination (root node)

\[p_{\text{max}}^{\text{root}} = \max_x \left[\sum_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x) \right] \]

\[x_{\text{max}}^{\text{root}} = \arg \max_x \left[\sum_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x) \right] \]

• Back-track, for all nodes i with l factor nodes to the root (l=0)

\[x_{l}^{\text{max}} = \phi(x_{i, l-1}^{\text{max}}) \]
Sum-Product vs. Max-Sum

Sum-Product

\[
\mu_{f \rightarrow x}(x) = \sum_{x_1} \ldots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{x_m \in \text{ne}(f) \setminus x} \mu_{x_m \rightarrow f}(x_m)
\]

\[
\mu_{x \rightarrow f}(x) = \prod_{l \in \text{ne}(x) \setminus f} \mu_{f_l \rightarrow x}(x)
\]

\[
a(b+c) = ab+bc
\]

Max-Sum

\[
\mu_{f \rightarrow x}(x) = \max_{x_1, \ldots, x_M} [\ln f(x, x_1, \ldots, x_M) + \sum_{x_m \in \text{ne}(f) \setminus x} \mu_{x_m \rightarrow f}(x_m)]
\]

\[
\mu_{x \rightarrow f}(x) = \sum_{l \in \text{ne}(x) \setminus f} \mu_{f_l \rightarrow x}(x)
\]

\[
a + \max(b, c) = \max(a+b, a+c)
\]
What about inference on general graphs?

• NP-complete

• Counting problem
The Junction Tree Algorithm

• *Exact* inference on general graphs
• Works by turning the initial graph into a *junction tree* and then running a sum-product-like algorithm
• *Intractable* on graphs with large cliques
The Junction Tree Algorithm
Loopy Belief Propagation

• Sum-Product on general graphs
• Initial unit messages passed across all links, after which messages are passed around until convergence (not guaranteed!)
• Approximate but tractable for large graphs
• Sometime works well, sometimes not at all
Recap

• Bayesian networks → Markov Random Fields
 • Connect parents
 • Drop arrows
 • Multiply conditional probabilities to get potentials

• Factor graph
 • Random variable nodes
 • Factor nodes
 • $F(x) = \prod_f f(x_1, x_2, ..., x_n)$
Recap

• Marginal inference on tree-structure factor graph
 • Sum-product algorithm: a message-passing algorithm
 • Exchange sum and product using the distribution law
 • Messages from a factor to a node: sum over products of messages from other nodes to the factor
 • Messages from a node to a factor: product over messages from other factors to the node

• Inferring settings with the highest probability
 • Max-sum algorithm
Recap

• Inference on general graphs with loops is NPC
 • Exact: junction algorithm
 • Approximate: loopy belief propagation
Next Class

• Approximate inference
 • Sampling methods