Semantics of Probabilistic Programming

Xin Zhang
Peking University

Most of the content is from “Semantics of Probabilistic Programming: A Gentle Introduction” by Fredrik Dahlqvist, Alexandra Silva, and Dexter Kozen
Recap: Problem and Motivation

• Evaluate $P(Z|X)$ and related expectations

• Problem with exact methods
 • Curse of dimensionality

• $P(Z|X)$ has a complex form making expectations analytically intractable
Recap: Variational Inference

• Functional: a function that maps a function to a value

$$H[p] = \int p(x) \ln p(x) \, dx$$

• Variational method: find an input function that maximizes the functional

• Variational inference: find a distribution $q(z)$ to approximate $p(Z \mid X)$ so a functional is maximized
Recap: Variational Inference

\[\ln p(X) = \mathcal{L}(q) + \text{KL}(q||p) \]

\[\mathcal{L}(q) = \int q(Z) \ln \left\{ \frac{p(X, Z)}{q(Z)} \right\} \, dZ \]

\[\text{KL}(q||p) = -\int q(Z) \ln \left\{ \frac{p(Z|X)}{q(Z)} \right\} \, dZ \]

If \(q \) can be any distribution, then variational inference is precise. But in practice, it cannot.
Is the following statement right?

• Probability $p(Z,X)$ is usually easier to evaluate compared to $P(Z | X)$.
Recap: Sampling Methods

• Stochastic methods

• Also called Monte Carlo methods

\[
E[f] = \int f(z)p(z) \, dz \quad \Rightarrow \quad \hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(z^{(l)}) \quad z_1, \ldots, z_l \text{ are samples from } p
\]
Recap: Sampling Methods

• Transformation method: CDF\(^{-1}\)(uniform(0,1))

• Rejection sampling
 • A proposal distribution q(z)
 • Choose k, such that k*q(z) \(\geq\) p(z), for any x
 • Sampling process:
 • Sample \(z_0\) from q(z)
 • Sample h from uniform(0, k*q(\(z_0\)))
 • If h > p(\(z_0\)), discard it; otherwise, keep it
Is the following statement correct?

• All primitive distributions can be constructed using the transformation method.
Is the following statement right?

• In rejection sampling, given k, the probability whether a sample is accepted does not depend on the proposal distribution.
Is the following statement correct?

• The efficiency of rejection sampling depends on the choice of the proposal distribution
Recap: Sampling Methods

• Importance sampling
 • Used to evaluate $f(z)$ where z is from $p(z)$

$$E(f) = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \approx \frac{1}{L} \sum_{l=1}^{L} \frac{p(z^l)}{q(z^l)}f(z^l)$$

• How to get real samples: create a new discrete distribution using the above samples and set their probabilities using the importance weights
Recap: Sampling Methods

• Markov Chain Monte Carlo
 • A sampling method that works with a large family of distributions and high dimensions

• Workflow
 • Start with some sample z_0
 • Suppose the current sample is z^τ. Draw next sample z^* from $q(z | z^\tau)$
 • Decide whether to accept z^* as the next state based some criteria. If accepted, $z^{\tau+1} = z^*$. Otherwise, $z^{\tau+1} = z^\tau$
 • Samples form a Markov chain
Recap: Sampling Methods

<table>
<thead>
<tr>
<th>Constraints on the proposal distribution</th>
<th>Metropolis</th>
<th>Metropolis-Hasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric</td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

Accepting probability

\[
\begin{align*}
\text{Metropolis: } & \min(1, \frac{p(z')}{p(z)}) \\
\text{Metropolis-Hasting: } & \min(1, \frac{p(z')q(z'|z)}{p(z)q(z'|z')})
\end{align*}
\]
Recap: Why MCMC works?

• Markov chain:
 \[p(z^{(m+1)}|z^{(1)}, \ldots, z^{(m)}) = p(z^{(m+1)}|z^{(m)}) \].

• Stationary distribution of a Markov chain: each step in the chain does not change the distribution.

 • Detailed balance:
 \[p^*(z)T(z, z') = p^*(z')T(z', z) \]
 • \(p^*(z) \) is a stationary distribution

 • A *ergodic* Markov chain converges to the same distribution regardless the initial distribution
 • The system does not return to the same state at fixed intervals
 • The expected number of steps for returning to the same state is finite
Is the following statement right?

• The samples drawn using MCMC are independent
Is the following statement right?

• A Markov chain can have more than one stationary distribution
Use MCMC to solve the problem below

• Super optimization
 • There is a straight-line program
 • A set of test cases are given
 • The program can be modified by deleting a statement, inserting a statement from the initial program at a given place
 • Optimize the program by using the above operations
Motivations

• In order to reason about properties of a program, we need formal tools

• Example questions
 • Is the postcondition satisfied?
 • Does this program halt on all inputs?
 • Does it always halt in polynomial time?
Motivations

• In order to reason about properties of a program, we need formal tools.

• Example questions
 • What is the probability that the postcondition is satisfied?
 • What is the probability that this program halts on all inputs?
 • What is the probability that it halts in polynomial time?
Motivations

• When designing a language, rigorous semantics is needed to guarantee its correctness

• An example that didn’t have rigorous semantics: Javascript
 • https://javascriptwtf.com
Examples

\[x := 0 \]

\[\text{while } x == 0 \text{ do} \]
\[x := \text{coin()} \]

What is the probability that it runs through \(n \) iterations?
What is the expected number of iterations?
What is the probability that the program halts?

We can decompose the semantics of a program into semantics of statements.
Examples

```
main{
    u:=0;
    v:=0;
    step(u,v);
    while u!=0 || v!=0 do
        step(u,v)
}
```

```
step(u,v){
    x:=coin();
    y:=coin();
    u:=u+(x-y);
    v:=v+(x+y-1)
}
```

What is the probability that the program halts?

The program is a two-dimensional random walk. According to probability theory, the probability that it returns to the origin is 1.

By relating to concepts in probabilities, we can simplify the reasoning...
Examples

i:=0;
n:=0;
while i<1e9 do
 x:=rand();
 y:=rand();
 if (x*x+y*y) < 1 then n:=n+1;
 i:=i+1
i:=4*n/1e9;

What does this program compute?

How to reason about it?

Measure Theory
The mathematical foundation of probabilities and integration

Uniform(0,1) is called a *Lebesgue measure*
This Class

• Syntax of a simple imperative probabilistic language

• Operational semantics

• Measure theory & denotational semantics (brief)
A Simple Imperative Language

• Highly simplified version

• Enough to explain the core concepts
Syntax

• Deterministic terms (expressions)

• Terms (Deterministic + Probabilistic)

• Tests (expression that evaluate to Booleans)

• Programs
Syntax – Deterministic Terms

(i) Deterministic terms:

\[d ::= a \quad a \in \mathbb{R}, \text{ constants} \]
\[| x \quad x \in \text{Var}, \text{ a countable set of variables} \]
\[| d \text{ op } d \quad \text{op} \in \{+,-,\ast,\div\} \]
Syntax - Terms

(ii) Terms:

\[t ::= d \quad d \text{ a deterministic term} \]
\[\mid \text{coin()} \mid \text{rand()} \quad \text{sample in } \{0, 1\} \text{ and } [0, 1], \text{respectively} \]
\[\mid t \text{ op } t \quad \text{op } \in \{+, -, \ast, \div\} \]
(iii) Tests:

\[
\begin{align*}
 b & := \text{true} \mid \text{false} \\
 & \mid d == d \mid d < d \mid d > d \\
 & \mid b \&\& b \mid b \mid b \mid !b
\end{align*}
\]

- comparison of deterministic terms
- Boolean combinations of tests
Syntax - Program

(iv) Programs:

\[e ::= \text{skip} \]
\[\mid x := t \quad \text{assignment} \]
\[\mid e ; e \quad \text{sequential composition} \]
\[\mid \text{if } b \text{ then } e \text{ else } e \quad \text{conditional} \]
\[\mid \text{while } b \text{ do } e \quad \text{while loop} \]
Syntax - Example Program

if coin() == 1 then
 x := rand() * 5
else
 x := 6
if x > 4.5 then
 y := coin() + 2
else
 y := 100
Operational Semantics

• Model the step-by-step executions of a program on a machine

• Tracks the memory-state
 • Values assigned to each variable
 • Values of each random number generator
 • A stack of instructions
Random Number Generators

• Modeled as infinite streams of numbers:
 • coin(): $m_0 m_1 ...$ are i.i.d from Bernoulli(0.5)
 • rand(): $p_0 p_1 ...$ are i.i.d from uniform(0, 1)

• When invoking the generator, a number is taken from the stream
 • Pseudo-random generators
Operational Semantics: Machine States

• A memory-state is a triple \((s, m, p)\)
 • A store \(s: n \rightarrow R\), where there are \(n\) variables in the program
 • \(m \in \{0,1\}^\omega\) is the current stream of available random Boolean values
 • \(p \in [0,1]^\omega\) is the current stream of available random real values

• A machine-state is a 4-tuple \((e, s, m, p)\)
 • \(e\) corresponds to a stack of instructions
 • \((s, m, p)\) is a memory-state
Machine States: Example

\[(e, \{x \rightarrow \bot\}, 1001011..., 0.2 \ 0.5 \ 0.9 \ 0.21...)\]

if \(\text{coin()} == 1\) then
\[(x := \text{rand()} \ast 5, \{x \rightarrow \bot\}, 001011..., 0.2 \ 0.5 \ 0.9 \ 0.21...)\]
\[x := \text{rand()} \ast 5\]
\[(\text{skip}, \{x \rightarrow 1\}, 001011..., 0.5 \ 0.9 \ 0.21...)\]
else
\[x := 6\]
Operational Semantics: Introduction

• We now talk about how a program modifies the machine state

• Type of the operational semantics

\[(e, s, m, p) \rightarrow (e', s', m', p')\]

• Before talking about the reduction, we need to define semantics of terms and tests
Semantics of Terms

\[[t] : \quad R^n \times N^\omega \times R^\omega \rightarrow R \times N^\omega \times R^\omega \]

\[[r] : (s, m, p) \mapsto (r, m, p) \]

\[[x_i] : (s, m, p) \mapsto (s(i), m, p) \]

\[[\text{coin()}] : (s, m, p) \mapsto (\text{hd } m, \text{tl } m, p) \]

\[[\text{rand()}] : (s, m, p) \mapsto (\text{hd } p, m, \text{tl } p) \]

\[[t_1 \text{ op } t_2] : (s, m, p) \mapsto \text{ let } (a_1, m', p') = [t_1](s, m, p) \text{ in } \]
\[\text{ let } (a_2, m'', p'') = [t_2](s, m', p') \text{ in } (a_1 \text{ op } a_2, m'', p'') \]

\[\text{opn } \in \{+, 0, *, \div\} \text{ hd}(m_1m_2, ...) = m_1 \]
Semantics of Tests

\[
\llbracket b \rrbracket : \quad R^n \times N^\omega \times R^\omega \rightarrow \{true, false\}
\]

\[
\llbracket t_1 == t_2 \rrbracket : (s, m, p) \mapsto \begin{cases}
true & \text{if } \llbracket t_1 \rrbracket(s, m, p) = \llbracket t_2 \rrbracket(s, m, p) \\
false & \text{otherwise}
\end{cases}
\]

\[
\llbracket t_1 < t_2 \rrbracket : (s, m, p) \mapsto \begin{cases}
true & \text{if } \llbracket t_1 \rrbracket(s, m, p) < \llbracket t_2 \rrbracket(s, m, p) \\
false & \text{otherwise}
\end{cases}
\]

\[
\llbracket t_1 > t_2 \rrbracket : (s, m, p) \mapsto \begin{cases}
true & \text{if } \llbracket t_1 \rrbracket(s, m, p) > \llbracket t_2 \rrbracket(s, m, p) \\
false & \text{otherwise}
\end{cases}
\]

\[
\llbracket b_1 \& b_2 \rrbracket : (s, m, p) \mapsto \llbracket b_1 \rrbracket(s, m, p) \land \llbracket b_2 \rrbracket(s, m, p)
\]

\[
\llbracket b_1 \lor b_2 \rrbracket : (s, m, p) \mapsto \llbracket b_1 \rrbracket(s, m, p) \lor \llbracket b_2 \rrbracket(s, m, p)
\]

\[
\llbracket \neg b \rrbracket : (s, m, p) \mapsto \neg \llbracket b \rrbracket(s, m, p)
\]
Operational Semantics: Reduction

Assignment:

\[
[[t]](s, m, p) = (a, m', p')
\]

\[
(x_i := t, s, m, p) \rightarrow (\text{skip}, s[i \leftarrow a], m', p')
\]

Sequential composition:

\[
(e_1, s, m, p) \rightarrow (e'_1, s', m', p')
\]

\[
(e_1 ; e_2, s, m, p) \rightarrow (e'_1 ; e_2, s', m', p')
\]

\[
(\text{skip} ; e, s, m, p) \rightarrow (e, s, m, p)
\]
Operational Semantics: Reduction

Conditional:

\[
[b](s, m, p) = \text{true} \\
(\text{if } b \text{ then } e_1 \text{ else } e_2, s, m, p) \longrightarrow (e_1, s, m, p)
\]

\[
[b](s, m, p) = \text{false} \\
(\text{if } b \text{ then } e_1 \text{ else } e_2, s, m, p) \longrightarrow (e_2, s, m, p)
\]

while loops:

\[
(\text{while } b \text{ do } e, s, m, p) \longrightarrow (\text{if } b \text{ then } (e \text{ ; while } b \text{ do } e) \text{ else skip}, s, m, p)
\]
Operational Semantics: Reduction

Reflexive-transitive closure:

\[(e, s, m, p) \rightarrow^* (e, s, m, p)\]
\[(e_1, s_1, m_1, p_1) \rightarrow (e_2, s_2, m_2, p_2)\]
\[(e_1, s_1, m_1, p_1) \rightarrow^* (e_2, s_2, m_2, p_2)\]

\[(e_1, s_1, m_1, p_1) \rightarrow (e_2, s_2, m_2, p_2)\]
\[(e_2, s_2, m_2, p_2) \rightarrow^* (e_3, s_3, m_3, p_3)\]

\[(e_1, s_1, m_1, p_1) \rightarrow (e_3, s_3, m_3, p_3)\]
Operational Semantics: Termination

- A program e terminates from (s, m, p) if
 $$(e, s, m, p) \xrightarrow{*} (\text{skip}, s', m', p').$$

- We say e diverges from (s, m, p) if it does not terminate.
Operational Semantics: Examples

\[x := 0 \]
\[\text{while } x == 0 \text{ do} \]
\[x := \text{coin()} \]

What is the probability that the program halts?

\[
\begin{align*}
(x := 0, s, m, p) &\rightarrow (\text{skip}, s[x \mapsto 0], m, p) \\
(x := 0; e, s, m, p) &\rightarrow (\text{skip}; e, s[x \mapsto 0], m, p) \\
(x := 0; e, s, m, p) &\rightarrow^* (\text{skip}; e, s[x \mapsto 0], m, p) \\
(skip; e, s[x \mapsto 0], m, p) &\rightarrow (e, s[x \mapsto 0], m, p) \\
(skip; e, s[x \mapsto 0], m, p) &\rightarrow^* (e, s[x \mapsto 0], m, p) \\
(x := 0; e, s, m, p) &\rightarrow^* (e, s[x \mapsto 0], m, p)
\end{align*}
\]
Operational Semantics: Examples

\[
x := 0 \\
\text{while } x == 0 \text{ do} \\
x := \text{coin()}
\]

What is the probability that the program halts?

\[(x := 0; e, s, m, p) \xrightarrow{\ast} (e, s[x \mapsto 0], m, p)\]

\[(e, s[x \mapsto 0], m, p) \xrightarrow{\ast} (x := \text{coin()}; e, s[x \mapsto 0], m, p)\]

\[
(\text{while } b \text{ do } e, s, m, p) \rightarrow (\text{if } b \text{ then } (e; \text{while } b \text{ do } e) \text{ else skip}, s, m, p)
\]

\[
[b](s, m, p) = \text{true} \quad \Rightarrow \quad (\text{if } b \text{ then } e_1 \text{ else } e_2, s, m, p) \rightarrow (e_1, s, m, p)
\]
Operational Semantics: Examples

\[
x := 0 \\
\textbf{while} \ x == 0 \ \textbf{do} \\
x := \text{coin()}
\]

What is the probability that the program halts?

\[
(x := 0 \ ; \ e, s, m, p) \xrightarrow{*} (e, s[x \mapsto 0], m, p) \\
(e, s[x \mapsto 0], m, p) \xrightarrow{*} (x := \text{coin()} \ ; \ e, s[x \mapsto 0], m, p)
\]

\[
(x := \text{coin()} \ ; \ e, s[x \mapsto 0], m, p) \xrightarrow{*} (e, [s \mapsto \text{hd} \ m], \text{tl} \ m, p).
\]

The loop continues until it reaches \(m\) in the form of \(1m'\)

\[
(e, s[x \mapsto 1], m', p) \xrightarrow{*} (\text{skip}, s[x \mapsto 1], m', p)
\]

\[
(x := 0 \ ; \ e, s, m, p) \xrightarrow{*} (\text{skip}, s[x \mapsto 1], m', p)
\]
Operational Semantics: Examples

\[\mathbb{P} \left[\exists m' \ (x := 0 \ ; \ e, s, m, p) \xrightarrow{*} (\text{skip}, s[x \mapsto 1], m', p) \right] \]

\[= \mathbb{P} \left[\exists k \geq 0 \ \exists m' \ m = 0^k 1m' \right] \]

\[= \sum_{k=1}^{\infty} 2^{-k} = 1 \]
Operational Semantics: Examples

What is the probability that the program halts?

```
main{
  u:=0;
  v:=0;
  step(u,v);
  while u!=0 || v!=0 do
    step(u,v)
}
```

```
step(u,v){
  x:=coin();
  y:=coin();
  u:=u+(x-y);
  v:=v+(x+y-1)
}
```
main{
 u:=0;
 v:=0;
 step(u,v);
 while u!=0 || v!=0 do
 step(u,v)
}

step(u,v){
 x:=coin();
 y:=coin();
 u:=u+(x-y);
 v:=v+(x+y-1)
}

What is the probability that the program halts?

We define i.i.d variables $X_1, X_2 \ldots$ on \mathbb{Z}^2 such that $X_i \in \{(0,1), (0,-1), (1,0), (-1,0)\}$

$$S_n = \sum_{i=1}^{n} X_i$$
Operational Semantics: Examples

What is the probability that the program halts?

The program halts if $\exists n. S_{2n} = (0,0)$

$(\text{main}, s, m, p) \xrightarrow{*} (\text{skip}, s[(u, v) \mapsto (0, 0)], \text{tl}^{4n}(m), p)$.

$$\mathbb{P} \left[\exists n \ (\text{main}, s, m, p) \xrightarrow{*} (\text{skip}, s[(u, v) \mapsto (0, 0)], \text{tl}^{4n}(m), p) \right]$$

$$= \mathbb{P} \left[\bigvee_{n=0}^{\infty} S_{2n} = (0, 0) \right]$$
main{
 u:=0;
 v:=0;
 step(u,v);
 while u!=0 || v!=0 do
 step(u,v)
}

step(u,v){
 x:=coin();
 y:=coin();
 u:=u+(x-y);
 v:=v+(x+y-1)
}
Operational Semantics: Examples

\[
i := 0; \\
n := 0; \\
\text{while } i < 1e9 \text{ do} \\
\quad x := \text{rand}(); \\
\quad y := \text{rand}(); \\
\quad \text{if } (x \times x + y \times y) < 1 \\
\qquad \text{then } n := n + 1; \\
\quad i := i + 1 \\
i := 4 \times n / 1e9;
\]

Given $\epsilon > 0$, what is $P(|i - \pi| \leq \epsilon)$?

\[
\text{(prog, s, m, p)} \xrightarrow{*} (\text{skip, s}[i \mapsto 4n/N, n \mapsto n, \ldots], m, \text{tl}^{2N}(p))
\]

n/N is the expectation of

\[
Z = \begin{cases}
1 & \text{if } X^2 + Y^2 < 1 \\
0 & \text{else}
\end{cases}
\]
Given $\epsilon > 0$, what is $P(|i - \pi| \leq \epsilon)$?

n/N is the expectation of

$$Z = \begin{cases} 1 & \text{if } X^2 + Y^2 < 1 \\ 0 & \text{else} \end{cases}$$

$$\mathbb{P} \left[X^2 \leq t \right] = \mathbb{P} \left[X \leq \sqrt{t} \right] = \int_0^\sqrt{t} \mathbb{1}_{[0,1]}(x) \, dx = \sqrt{t}$$

$$f(t) = \frac{\partial \mathbb{P} \left[X^2 \leq t \right]}{\partial t} = \frac{1}{2\sqrt{t}} \mathbb{1}_{[0,1]}(t)$$
Operational Semantics: Examples

\begin{align*}
i &:= 0; \\
n &:= 0; \\
\text{while } i < 1e9 \text{ do} \\
& \quad \begin{align*}
x &:= \text{rand}(); \\
y &:= \text{rand}(); \\
\text{if } (x^2 + y^2) < 1 & \quad \text{then } n := n + 1; \\
\end{align*} \\
i &:= i + 1 \\
i &:= 4*n/1e9;
\end{align*}

Given $\epsilon > 0$, what is $P(|i - \pi| \leq \epsilon)$?

\[n/N \text{ is the expectation of } Z = \begin{cases}
1 & \text{if } X^2 + Y^2 < 1 \\
0 & \text{else}
\end{cases} \]

The density of $X^2 + Y^2$ is

\[
(f * f)(t) = \int_{-\infty}^{\infty} \frac{1}{2\sqrt{x}} \mathbb{1}_{[0,1]}(x) \frac{1}{2\sqrt{t-x}} \mathbb{1}_{[0,1]}(t-x) \, dx
\]

\[
= \begin{cases}
\int_{0}^{t} \frac{1}{4\sqrt{x}\sqrt{t-x}} \, dx & \text{if } 0 \leq t \leq 1 \\
\int_{0}^{1} \frac{1}{4\sqrt{x}\sqrt{t-x}} \, dx & \text{if } 1 < t \leq 2
\end{cases}
\]
Operational Semantics: Examples

\[i := 0; \]
\[n := 0; \]
\[\text{while } i < 1e9 \text{ do} \]
\[x := \text{rand}(); \]
\[y := \text{rand}(); \]
\[\text{if } (x^2 + y^2) < 1 \]
\[\text{then } n := n + 1; \]
\[i := i + 1 \]
\[i := 4n / 1e9; \]

Given \(\epsilon > 0 \), what is \(P(|i - \pi| \leq \epsilon) \)?

\[
n/N \text{ is the expectation of } Z = \begin{cases}
1 & \text{if } X^2 + Y^2 < 1 \\
0 & \text{else}
\end{cases}
\]

The density of \(X^2 + Y^2 \) is

\[
(f * f)(t) = \int_{-\infty}^{\infty} \frac{1}{2\sqrt{x}} \mathbb{1}_{[0,1]}(x) \frac{1}{2\sqrt{t-x}} \mathbb{1}_{[0,1]}(t-x) \, dx
\]

\[
= \begin{cases}
\int_0^t \frac{1}{4\sqrt{x}\sqrt{t-x}} \, dx & \text{if } 0 \leq t \leq 1 \\
\int_0^1 \frac{1}{4\sqrt{x}\sqrt{t-x}} \, dx & \text{if } 1 < t \leq 2
\end{cases}
\]
i:=0;
n:=0;
while i<1e9 do
 x:=rand();
 y:=rand();
 if (x*x+y*y) < 1
 then n:=n+1;
 i:=i+1
i:=4*n/1e9;

Given $\epsilon > 0$, what is $P(|i - \pi| \leq \epsilon)$?

n/N is the expectation of

$$Z = \begin{cases}
1 & \text{if } X^2 + Y^2 < 1 \\
0 & \text{else}
\end{cases}$$

exp(Z) is

$$\int_0^t \frac{1}{4\sqrt{x^2 + x}} \, dx = \int_0^1 \frac{1}{2\sqrt{1 - u^2}} \, du = \frac{1}{2}(\sin^{-1}(1) - \sin^{-1}(0)) = \frac{\pi}{4}.$$

$$P[X^2 + Y^2 \leq 1] = \int_0^1 (f * f)(t) \, dt = \int_0^1 \frac{\pi}{4} \, dt = \frac{\pi}{4}.$$
Operational Semantics: Examples

\begin{align*}
i &:= 0; \\
n &:= 0; \\
\text{while } i < 1e9 \text{ do} & \\
& \quad \text{\hspace{1cm} } x := \text{rand}(); \\
& \quad \text{\hspace{1cm} } y := \text{rand}(); \\
& \quad \text{\hspace{1cm} } \text{if } (x^2 + y^2) < 1 \\
& \quad \text{\hspace{1.5cm} } \text{then } n := n + 1; \\
& \quad \text{\hspace{1cm} } i := i + 1 \\
i &:= 4n / 1e9;
\end{align*}

Given $\epsilon > 0$, what is $P(|i - \pi| \leq \epsilon)$?

n/N is the expectation of $Z = \begin{cases} 1 & \text{if } X^2 + Y^2 < 1 \\ 0 & \text{else} \end{cases}$

\[
P \left[X^2 + Y^2 \leq 1 \right] = \int_0^1 (f * f)(t) \, dt = \int_0^1 \frac{\pi}{4} \, dt = \frac{\pi}{4}.
\]

\[
P \left[\left| \frac{n}{N} - \frac{\pi}{4} \right| > \epsilon \right] \leq \frac{\sigma^2}{N\epsilon^2}. \quad \text{Where } \sigma^2 = \frac{\pi}{4} - \left(\frac{\pi}{4}\right)^2
\]

Chebyshev’s inequality
This Class

• Syntax of a simple imperative probabilistic language

• Operational semantics

• Measure theory & denotational semantics (brief)
Denotational vs. Operational Semantics

• Consider \(x := \text{coin}() \), in operational semantics:

\[
(x := \text{coin}(), s, m, p) \longrightarrow (\text{skip}, s[x \mapsto 0], \text{tl} m, p)
\]
\[
(x := \text{coin}(), s, m, p) \longrightarrow (\text{skip}, s[x \mapsto 1], \text{tl} m, p)
\]

• Denotational semantics:
 • Model all possible executions together
 • States: probability distribution over memory states
 • \(\frac{1}{2} s[x \mapsto 0] + \frac{1}{2} s[x \mapsto 1] \)
Denotational Semantics: Introduction

• State s can be identified with the Dirac measure σ_s, then the semantics of $x := \text{coin()}$ can be viewed as $\sigma_s \rightarrow \frac{1}{2} s[x \mapsto 0] + \frac{1}{2} s[x \mapsto 1]$

• In general, a program is interpreted as an operator mapping probability distributions to (sub)probability distributions
Denotational Semantics: Definition

• Assume there are n real variables, then a state is a distribution on R^n

• A program $e: MR^n \rightarrow MR^n$
 • An operator called a state transformer
Measure Theory

• Measures: generalization of concepts like length, area, or volume
Measure Example: Length

• What subsets of \mathbb{R} can meaningfully be assigned a length?

• What properties should the length function l satisfy?
Measure Example: Length

\[\ell([a_1, b_1] \cup [a_2, b_2]) = \ell([a_1, b_1]) + \ell([a_2, b_2]) = (b_1 - a_1) + (b_2 - a_2). \]

\[b_1 < a_2 \]

\[\ell \left(\bigcup_{i=1}^{n} A_i \right) = \sum_{i=1}^{n} \ell(A_i). \quad A_i \text{ and } A_j \text{ are disjoined } \]

\[\ell \left(\bigcup_{i=0}^{\infty} A_i \right) = \sum_{i=0}^{\infty} \ell(A_i). \quad A_i \text{ and } A_j \text{ are disjoined } \]

\[\text{The set is countable. } \ell \text{ is called countably additive or } \sigma - \text{additive} \]

\[\ell(R) = \infty, \text{ but we are only going to talk about finite measures} \]

\[\ell(B \setminus A) = \ell(B) - \ell(A) \quad \text{Domain should be closed under complementation} \]
Measure Example: Length

• Can we extend the domain of length l to all subsets of \mathbb{R}?

• No. Counterexample: Vitali sets
 • $V \subseteq [0,1]$, such that for each real number r, there exists exactly one number $v \in V$ such that $v - r$ is rational
 • Let q_1, q_2, \ldots be the rational numbers in $[-1,1]$, construct sets $V_k = V + q_k$
 • $[0,1] \subseteq \bigcup V_k \subseteq [-1,2]$
 • $l(V_k) = l(V)$, and there are infinitely many V_k

• l is called the Lebesgue measure on real numbers
Measurable Spaces and Measures

• \((S, \mathcal{B})\) is a measurable space
 • \(S\) is a set
 • \(\mathcal{B}\) is a \(\sigma\)-algebra on \(S\), which is a collection of subsets of \(S\)
 • It contains \(\emptyset\)
 • Closed under complementation in \(S\)
 • Closed under countable union
 • The elements of \(\mathcal{B}\) are called measurable sets

• If \(F\) is a collection of subsets of \(S\), \(\sigma(F)\) is the smallest \(\sigma\)-algebra containing \(F\), or \(\sigma(F) \triangleq \bigcap \{\mathcal{A} \mid F \subseteq \mathcal{A} \text{ and } \mathcal{A} \text{ is a } \sigma\text{-algebra}\}\). We say \((S, \sigma(F))\) is generated by \(F\).
Measurable Functions

• (S, \mathcal{B}_S) and (T, \mathcal{B}_T) are measurable spaces. A function $f: S \to T$ is measurable if $f^{-1}(B) = \{x \in S | f(x) \in B\}$ for every $B \in \mathcal{B}_T$ is a measurable subset of S.

Example:

$$\chi_B(s) = \begin{cases} 1, & s \in B, \\ 0, & s \notin B. \end{cases}$$
Measures: Definitions

• A signed (finite) measure on \((S, B)\) is a countably additive map \(\mu: B \rightarrow \mathbb{R}\) such that \(\mu(\emptyset) = 0\)

• Positive signed measure: \(\mu(A) \geq 0\) for all \(A \in B\)

• A positive measure is a probability measure if \(\mu(S) = 1\)

• …is a subprobability measure if \(\mu(S) \leq 1\)
Measures: Definitions

• If $\mu(B) = 0$, then B is a μ-nullset

• A property is said to hold μ-almost surely (everywhere) if the sets of points on which it does not hold is contained in nullset

• In probability theory, measures are sometimes called distributions
Measures: Discrete Measures

• For \(s \in S \), the Dirac measure, or Dirac delta, or point mass on \(s \):

\[
\delta_s(B) = \begin{cases}
1, & s \in B, \\
0, & s \notin B.
\end{cases}
\]

• A measure is discrete if it is a countable weighted sum of Dirac measures
 • If the weights add up to one, then it is a discrete probability measure

• Continuous measure: \(\mu(\{s\}) = 0 \) for all singleton sets \(\{s\} \) in \(B \) of \((S, B) \)
Measures: Pushforward Measure and Lebesgue Integration

• Given $f: (S, B_S) \rightarrow (T, B_T)$ measurable, an a measure μ on B_S, the
 pushfoward measure $\mu(f^{-1}(B))$ on B_T is defined as

$$f_*(\mu)(B) = \mu(f^{-1}(B)), \quad B \in B_T.$$

• Lebesgue integration: given $(S, B), \mu: B \rightarrow \mathbb{R}, f: S \rightarrow \mathbb{R}$, where $m < f < M$

$$\int f \, d\mu = \lim_{n \rightarrow \infty} \sum_{i=0}^{n} f(s_i)\mu(B_i)$$

where B_0, \ldots, B_n is a measurable partition of S, and the value of f does
not vary more than $(M - m)/n$ in any B_i and $s_i \in B_i$
Markov Kernels

• Given \((S, B_S)\) and \((T, B_T)\), \(P: S \times B_T \to \mathbb{R}\) is called a Markov kernel if
 • For fixed \(A \in B_T\), the map \(\lambda s. P(s, A) \to \mathbb{R}\) is a measurable function on \((S, B_S)\)
 • For fixed \(s \in S\), the map \(\lambda A. P(s, A) \to \mathbb{R}\) is a probability measure on \((T, B_T)\)

• Composition of two Markov kernels
 • Given \(P: S \to T\), \(Q: T \to U\) \((P ; Q)(s, A) = \int_{t \in T} P(s, dt) \cdot Q(t, A)\).

• Given \(\mu\) on \(B_S\), its push forward under the Markov Kernel \(P\) is

\[
P_\ast(\mu)(B) = \int_{s \in S} P(s, B) \mu(ds).
\]
More on Markov Kernels

• \((S, B_S)\): \(x = \ldots \) (\(x > 0\))

• \((T, B_T)\): \(y = \text{uniform}(0, x)\)

• Markov kernel \(P(x, \bigcup_{i=1}^{M} [a_i, b_i]) = \sum_{i=1}^{M} \text{length}([a_i, b_i] \cap [0, x])/x\)
More on Markov Kernels

• \((S, B_S)\): \(x = \ldots (x > 0)\)

• \((T, B_T)\): \(y = \text{uniform}(0, x)\)

• \((T, B_T)\): \(z = \text{uniform}(0, y)\)

• Composition: \((P; Q)(x, [0, z]) = \int_{y \in [0, \infty]} P(x, dy) \ast Q(y, [0, z])\)

 \[
 z < x
 \]

 \[
 = \int_{y \in [0, x]} \frac{dy}{x} \ast \frac{y}{\text{length}([0, z] \cap [0, y])}
 \]

 \[
 = \int_{y \in [0, z]} \frac{dy}{x} \ast \frac{y}{y} + \int_{y \in [z, x]} \frac{dy}{x} \ast \frac{z}{y} = \frac{z}{x} + \frac{z}{x} (\ln x - \ln z)
 \]
More on Markov Kernels

\(\mathbf{S}, \mathcal{B}_\mathbf{S}\): \(x = \text{uniform}(0.1, 1.1)\) \(\mu([a, b]) = \text{length}([a, b] \cap [0.1, 1.1])\)

\(\mathbf{T}, \mathcal{B}_\mathbf{T}\): \(y = \text{uniform}(0, x)\)

Markov kernel \(P(x, \bigcup_{i=1}^{M} [a_i, b_i]) = \sum_{i=1}^{M} \text{length}([a_i, b_i] \cap [0, x])/x\)

\(\mu\)'s pushforward under \(P\) is

\[P_*(\mu)(B_T) = \int_{x \in [0.1, 1.1]} B_T \cap [0, x] * \mu(dx)\]
More on Markov Kernels

• We can use Markov kernels to define the meanings of statements.

• A term can be seen as a Markov kernel that links the input variables (can be a distribution) with the output distribution.
Summary

• To reason about properties and correctness of probabilistic programs, we need semantics

• To define semantics, we can
 • Decompose it into semantics of program structures
 • Link it with mathematical concepts