Inference in Probabilistic Programming I

Xin Zhang
Peking University

Part of the content is from “An Introduction to Probabilistic Programming” by Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood
Recap of Last Lecture

• Regarding inference, before talking about **How**, we need to define **What**

• Program semantics: formally define what a program computes
 • Modular
 • Can be used to answer various questions in a mechanic way
Recap of Last Lecture

• Operational semantics

• Denotational semantics
General Approximate Inference Techniques

- Variational inference
- Transformation method
- Rejection sampling
- Importance sampling
- Markov chain Monte Carlo
This Class and Next Class

• We are going to talk about instantiating general inference techniques in probabilistic programming
Question

• Which construct of a language might cause trouble for inference?
Outline of the Lecture

• Graph-based inference (this lecture)
 • More on MCMC

• Evaluation-based inference (next lecture)
Graph-Based Inference: Introduction

• Key idea: convert a program into a graphical model
 • We know to do inference on graphical models

• Limitation: a static method
 • Have trouble to deal with cases where conditional dependences are dynamic
 • Moreover, cannot deal with loops that can iterate for arbitrarily many times
Graph-Based Inference: Example 1

\[
x = \text{bernoulli}(0.2)
\]

\[
\text{if}(x) \{
\quad y = \text{uniform}(0, 2)
\}
\]

\[
\text{else}
\quad y = \text{gaussian}(0, 5)
\]

\[
z = \text{gaussian}(y, 1)
\]

\[
\text{condition}(z > 10)
\]
Graph-Based Inference: Example 2

\[x = \text{guassian}(0, 1) \]
\[y = \text{uniform}(0, x) \]
\[\text{if } (x>10) \{ \]
\[\quad \text{condition}(y > 1.5) \]
\[\} \]
\[\text{else} \{ \]
\[\quad \text{condition}(y < 0.5) \]
\[\} \]
Formal Definition of Transformation

• What information does a graph should contain?
Formal Definition: Graph (Bayesian Network)

\[G = (V, A, P, Y) \]

- V is a set of vertices
- A is a set of arcs
- P is a map that defines the density functions or mass functions of each variable
- Y is a set that tracks the conditioned variables
Formal Definition: Our Language (SSA)

- $t ::= a$ ($a \in R, constant$) $| v$ (v is a variable) $| t \ op t$ ($\ op \in \{+, -, \times, \div\}$) $| \phi(b, v_1, v_2)$ $| uniform(t, t) | gaussian(t, t) | bernoulli(t)$

- $b ::= true | false | t > t | t < t | t == t | b && b | b | | b$

- $e ::= skip | e; e | if b then e else e | condition(b) | v = t$
Translation

\[\rho, \phi, G, e \downarrow \rho', \phi', G' \]

- \(\rho \): environment, which maps a variable to a constant or a node variable
- \(\phi \): path condition
- \(e \): program
Translation Rules: Terms

\[\rho, \phi, G, t \downarrow G', E \]

\[\rho, \phi, G, a \downarrow G, a \quad \rho, \phi, G, v \downarrow G, \rho[v] \]

\[\rho, \phi, G, b \downarrow G', E' \]

\[\rho, \phi, G, \phi(b, v_1, v_2) \downarrow G', \text{if } E' \text{ then } \rho(v_1) \text{ else } \rho(v_2) \]

\[\rho, \phi, G, t_1 \downarrow G_1, E_1 \quad \rho, \phi, G, t_2 \downarrow G_2, E_2 \]

\[\rho, \phi, G, t_1 \ op \ t_2 \downarrow G_1 + G_2, E_1 \ op \ E_2 \]

E is a deterministic expression
Translation Rules: Terms

\[\rho, \phi, G, t \Downarrow G', E \]

\[\rho, \phi, G, t_1 \Downarrow G_1, E_1 \quad \rho, \phi, G, t_2 \Downarrow G_2, E_2 \]

\(\hat{v} \) is a fresh variable, \(V \) are free variables in \(E_1 \) and \(E_2 \)

\[F = \text{score}(\text{uniform}(E_1, E_2)) \]

\[\rho, \phi, G, \text{uniform}(t_1, t_2) \Downarrow \]

\[G_1 + G_2 + (\{\hat{v}\}, \{(v, \hat{v}) \mid v \in V\}, \{\hat{v} \mapsto F\}, \{\})], \quad \hat{v} \]
Translation Rules: Tests

\[
\rho, \phi, G, t \downarrow G', E
\]

\[
\rho, \phi, G, true \downarrow G, true \quad \rho, \phi, G, false \downarrow G, false
\]

\[
\rho, \phi, G, t_1 \downarrow G_1, E_1 \quad \rho, \phi, G, t_2 \downarrow G_2, E_2
\]

\[
\rho, \phi, G, t_1 \ op \ t_2 \downarrow G_1 + G_2, E_1 \ op \ E_2
\]
Translation Rules: Program

\[\rho, \phi, G, \mathit{skip} \downarrow \rho, \phi, G \]

\[\rho, \phi, G, t \downarrow G', E \]
\[\rho, \phi, G, x \mathrel{:=} t \downarrow \rho[x \mapsto E], \phi, G' \]

\[\rho, \phi, G, e_1 \downarrow \rho_1, \phi_1, G_1 \]
\[\rho_1, \phi_1, G_1, e_2 \downarrow \rho_2, \phi_2, G_2 \]
\[\rho, \phi, G, e_1; e_2 \downarrow \rho_2, \phi_2, G_2 \]
Translation Rules: Program

\[
\begin{align*}
\rho, \phi, G, b & \Downarrow G', E \\
\rho, \phi \land E, G', e_1 & \Downarrow \rho_1, \phi_1, G_1 \\
\rho, \phi \land -E, G', e_2 & \Downarrow \rho_2, \phi_2, G_2 \\
\rho, \phi, G, if \ b \ then \ e_1 \ else \ e_2 & \Downarrow \rho_1 + \rho_2, \phi, G_1 + G_2
\end{align*}
\]

\[
\begin{align*}
\rho, \phi, G, b & \Downarrow (V, A, P, Y), E \\
\hat{v} \ is \ a \ fresh \ variable \quad F = if \ \phi \ score(E, \hat{v}) \ else \ 1 \\
V \ are \ free \ variables \ in \ F/\{\hat{v}\}
\end{align*}
\]

\[
\begin{align*}
\rho, \phi, G, condition(b) & \Downarrow \rho, \phi, (V \cup \{\hat{v}\}, A \cup \{(v, \hat{v}) | v \in V\}, P \cup \{\hat{v} \mapsto F\}, Y \cup \{\hat{v}\})
\end{align*}
\]
x = bernoulli(0.2)
if(x) {
 y_1 = uniform(0, 2)
}
else
 y_2 = gaussian(0, 5)

y_3 = phi(x, y_1, y_2)
z = gaussian(y_3, 1)

condition(z>10)
Translation: Questions

• Are the translated graphs always trees?

• How do we deal with function calls?

• How to evaluate the density/mass function?
Translation: Questions

• What about factor?

\[\rho, \phi, G, b \downarrow (V, A, P, Y), E \]
\[\hat{v} \text{ is a fresh variable} \quad F = \text{if } \phi \text{ exp(score(E, } \hat{v})) \text{ else 1} \]
\[V \text{ are free varaibles in } E \]
\[\rho, \phi, G, \text{factor}(b) \downarrow \rho, (V \cup \{\hat{v}\}, A \cup \{(v, \hat{v}) | v \in V\}, P \cup \{\hat{v} \mapsto F\}, Y) \]
Translation: Questions

• Can we simplify the graph before inference?

Partial evaluation: function calls and if statements
Inference on the Translated Graph

• If we want to compute marginal probabilities or most likely assignment, we can use (loopy) belief propagation

• But we often want to draw samples, so methods like sampling methods are used more often
Sampling Method

• Rejection sampling
 • Straightforward, but often inefficient

• MCMC
 • Used most widely
 • Need to evaluate $Z*p$, where Z can be any positive number
MCMC Variant: Gibbs Sampling

• Often we want to change one assignment at a time

• Proposal distribution
 • Change one assignment at a time
 • $p(x \mid Y, X \backslash \{x\})$, where Y are observed variables

• Proof of correctness
 • Stationary: change x doesn’t affect $P(V \backslash \{x\})$, therefore $P(V') = P(V \backslash \{x\}) \times P(x \mid V \backslash \{x\}) = P(V)$
 • Ergodic: depends on the distribution. A sufficient condition: none of the conditional distribution is anywhere zero
More on Gibbs Sampling

• Very useful when we can analytically compute \(p(x \mid V/\{x\}) \)

• When not possible, we turn to Metropolis-within-Gibbs algorithms
 • Use a proposal distribution \(q(x \mid V/\{x\}) \)
 • Still use the acceptance probability in Metropolis-Hasting
Why Metropolis-within-Gibbs?

• When computing

\[A_k(z^*, z^{(\tau)}) = \min \left(1, \frac{\tilde{p}(z^*) q_k(z^{(\tau)}|z^*)}{\tilde{p}(z^{(\tau)}) q_k(z^*|z^{(\tau)})} \right). \]

• Many terms in the two \(p(z) \) will cancel out

 - \(\frac{p(v)}{p(v')} = \frac{p(x|v) * p(v)}{p(x'|v) * p(v)} = \frac{p(x|v)}{p(x'|v)} \)

 - We can further decompose \(p(x|v) \) into products of conditional probability, we only need to evaluate the part that involves \(x \)
Full Description of Metropolis-within-Gibbs

• Page 78 of “An Introduction to Probabilistic Programming”
Optimization: Block Sampling

- Sample highly correlated variables together
- Example:

 \[x = \text{gaussian}(0, 1) \]
 \[y = \text{gaussian}(0, 1) \]
 \[z = \text{gaussian}(x+y, 0.01) \]
 \[\text{condition}(z == 2) \]

- Need to analyze the model to do appropriately
Hamiltonian Monte Carlo (HMC)

• In many optimization techniques, gradients are good guidance

• Hamiltonian Monte Carlo is an MCMC technique that utilizes gradients
 • Works for continuous variables
 • Scales better for high dimensional distributions
 • Make large changes while keeping the rejection probability small
 • Analogy to dynamical systems in physics
 • Compared to MH: the proposal distribution uses information from the target distribution
Dynamical Systems

• Key idea of HMC is to cast probabilistic simulation in the form of a Hamiltonian system
 • Exploiting the framework of Hamiltonian dynamics

• Classical dynamics: Newton’s second law of motion
 • $a = v' = S'' = F / M$
Dynamical Systems

- The dynamics we consider: the evolution of $\mathbf{z} = \{z_i\}$ under continuous time τ

- Intermediate momentum variable $r_i = \frac{dz_i}{d\tau}$, $\mathbf{r} = \{r_i\}$

- We view \mathbf{z} as position variables

- The joint space of position and momentum is called phase space
Intuition of HMC

- We can imagine a ball in a bowl without friction
 - Define $p = f(E)$, where E is the potential energy of the ball
 - The higher the probability is, the lower the potential energy is
 - We use ball’s position to sample p
 - Sometimes we need to give the ball a random kick

- Visualization:
 https://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html
Probability Distributions to Dynamical Systems

• We can write \(p(\mathbf{z}) \) as

\[
p(\mathbf{z}) = \frac{1}{Z_p} \exp(-E(\mathbf{z}))
\]

• \(E(\mathbf{z}) \) is the potential energy of the system in state \(\mathbf{z} \)

• The system acceleration is

\[
\frac{d r_i}{d \tau} = - \frac{\partial E(\mathbf{z})}{\partial z_i}.
\]
Probability Distributions to Dynamical Systems

• Kinetic energy:

\[K(r) = \frac{1}{2} \|r\|^2 = \frac{1}{2} \sum_i r_i^2 \]

• The total energy of the dynamical system is given by the Hamiltonian function:

\[H(z, r) = E(z) + K(r) \]
Probability Distributions to Dynamical Systems

• The dynamics of the systems can be expressed using Hamiltonian equations:

\[
\begin{align*}
\frac{d z_i}{d \tau} &= \frac{\partial H}{\partial r_i} \\
\frac{d r_i}{d \tau} &= -\frac{\partial H}{\partial z_i}.
\end{align*}
\]
Properties of Hamiltonian Dynamical Systems

- During the evolution of the system, the Hamiltonian is constant

\[
\frac{dH}{d\tau} = \sum_i \left\{ \frac{\partial H}{\partial z_i} \frac{dz_i}{d\tau} + \frac{\partial H}{\partial r_i} \frac{dr_i}{d\tau} \right\} = \sum_i \left\{ \frac{\partial H}{\partial z_i} \frac{\partial H}{\partial r_i} - \frac{\partial H}{\partial r_i} \frac{\partial H}{\partial z_i} \right\} = 0
\]
Properties of Hamiltonian Dynamical Systems

• Liouville’s theorem: they preserve volume in phase space \((z, r)\)

• To see why it holds, we define the flow field

\[
\mathbf{v} = \left(\frac{dz}{d\tau}, \frac{dr}{d\tau} \right)
\]

• The divergence of this field vanishes
Probability Distributions to Dynamical Systems

• We now define joint distribution

\[p(z, r) = \frac{1}{Z_H} \exp(-H(z, r)). \]

• Using the two properties of Hamiltonian Dynamical Systems, we can show that the Hamiltonian dynamics will leave \(p(z, r) \) invariant

\[
\begin{align*}
\frac{dz_i}{d\tau} &= \frac{\partial H}{\partial r_i} \\
\frac{dr_i}{d\tau} &= -\frac{\partial H}{\partial z_i}.
\end{align*}
\]
Probability Distributions to Dynamical Systems

• Using the two properties of Hamiltonian Dynamical Systems, we can show that the Hamiltonian dynamics will leave $p(z,r)$ invariant

• We can integrate over a finite time duration to make large changes to z in a systematic way
• However, sampling using the Hamiltonian dynamics will not form an ergodic Markov chain because H is constant.

• To fix it, we can replace the value r with $p(r | z)$, which can be a gaussian because z and r are independent.
Put Things Together: HMC

• Augment distribution $p(z)$ with $p(z, r)$

• Proposal distribution:
 • Update z, r using Hamiltonian dynamics (in practice, a discretized approximation called leapfrog integration)
 • Update r stochastically

• Acceptance probability (After applying Hamiltonian dynamics):

$$\min (1, \exp\{H(z, r) - H(z^*, r^*)\})$$

Account for approximation
The Leapfrog Approximation

\[
\hat{r}_i(\tau + \epsilon/2) = \hat{r}_i(\tau) - \frac{\epsilon}{2} \frac{\partial E}{\partial z_i}(\hat{z}(\tau))
\]

\[
\hat{z}_i(\tau + \epsilon) = \hat{z}_i(\tau) + \epsilon \hat{r}_i(\tau + \epsilon/2)
\]

\[
\hat{r}_i(\tau + \epsilon) = \hat{r}_i(\tau + \epsilon/2) - \frac{\epsilon}{2} \frac{\partial E}{\partial z_i}(\hat{z}(\tau + \epsilon)).
\]

To remove biases introduced by numerical errors, the steps are sampled from \(\epsilon\) and \(-\epsilon\)
Why HMC is usually better than MH?

• MH has difficulties exploring low-density points

• HMC uses information of the target distribution
 • This will always go to the high-density points

• Momentum helps!
HMC in Probabilistic Programming

• Have trouble with branching statements

• The density function has to be differentiable everywhere
 • What about 0 gradients?
Next Lecture

• Evaluation-based inference