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Recap of Last Lecture

• Evaluation-based inference
• Dynamic
• Can deal with programs with unbounded loops
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Likelihood Weighting
• A form of  importance sampling where the proposal is the prior
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Y are observed/conditioned variables

If  we use 𝑝(𝑋!) as the 
proposal distribution



Likelihood Weighting: Variants

• Naïve Metropolis Hasting (draw random traces)

• Single-site proposal (try to only chance one variable at a time)

Xin Zhang@PKU

4



Sequential Monte Carlo
• In probabilistic programming, sample a high-dimensional distribution by 

sampling a sequence of  lower dimensional distributions

• Also called particle filters

• Used in signal processing and probabilistic inference
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SMC: Problem Statement 
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x0 x1

y1

x2

y2

…

Given
𝑝(𝑥!) and
𝑝(𝑥"|𝑥"#$) and
𝑝 𝑦" 𝑥" and
Observations 𝑦$:"

Estimate
𝑝(𝑥!:"|𝑦$:") or
𝑝 𝑥" 𝑦$:" or
𝐼 𝑓" = 𝐸&((!:#|*$:#) 𝑓" 𝑥!:" = ∫𝑓" 𝑥!:" 𝑝 𝑥!:" 𝑦$:" 𝑑𝑥!:"



SMC: Main Ideas
• Sample on the Markov chain:

• Reweight the samples using importance sampling

• Throw away the samples (particles) with low probabilities
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Bootstrap Filter: Example
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From “An Introduction to Sequential 
Monte Carlo Methods” by Arnaud 
Doucet, Nando De Freitas, and Neil 
Gordon



SMC: Bootstrap Filter 
Assume the proposal distribution is 𝑝(𝑥-:/)
1. Initialization. T = 0
• For i = 1,…,N, sample 𝑥"

($)~𝑝(𝑥") and set 𝑡 = 1
2. Importance sampling step.
• For  sample *𝑥&

($)~𝑝(𝑥&| *𝑥&'(
($) ) and set ( *𝑥":&'(

($) , *𝑥&
($)).

• For i = 1,…,N, evaluate the importance weights.
• Normalize the importance weights

3. Selection step
• Resample with replacement N particles from the current particles according to 

importance weights
• Set 𝑡 → 𝑡 + 1
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Question 1

• In evaluation-based method, if  the sampled trace doesn’t 
terminate, what would you do in practice?
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Question 2

•Consider the program x = unform(0, 1); y = gaussian(x, 
1). Suppose the current trace is x = 0.5, y = 1. Now we 
want to change y, what is p(y) that we‘re sampling from?

•What if  we want to change x?
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Question 3
• Consider the program 
x = 0;
while(bernoulli(0.5)); 

x+=1

condition(x > 2)

• Describe an algorithm to sample traces from it.
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Question 4

• Sequential Monte Carlo can be see as a variant of  
importance sampling. Is the statement right? 
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Question 5
• What would happen if  we don’t throw away particles in sequential Monte 

Carlo?
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This Lecture
• Learning in probabilistic programming
• Still an active research area
• Not a solved problem
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Question
• Can you define inference and learning?
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Inference vs. Learning
• Inference: given 𝑓|𝜃, run 𝑓|𝜃 to output data

• Learning: given 𝑓|𝜃, and data 𝐷, figure out 𝜃
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Inference vs. Learning
• Inference is often a part of  learning
• Example: perform inference with different parameters 
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Inference vs. Learning
• Inference is often a part of  learning
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p = bernoulli()
D = [….]
if  p == 1:

m = model1
else:

m = model2

for (x,y) in D;
condition(m(x)+N(0,0.1) == y)

output m



Learning in Probabilistic Programming
• Parameter learning
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x = uniform(p1, p2)
y = gaussian(x, p3)
if(bernoulli(p4))

z = x
else

z = y
condition(z > 100)

What are p1, p2, p3, p4?



Learning in Probabilistic Programming
• Structure learning
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x = uniform(p1, p2)
y = gaussian(x, p3)
if(bernoulli(p4))

z = x
else

z = y
condition(z > 100)



More on Structure Learning
• How to synthesize (deterministic) programs is an active field

• Program synthesis
• Started early
• Still under development
• Works well in specific settings
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Program Synthesis
• Given a specification, generates a program that satisfies the specification

• Main challenge: intractable search space

• Various approach to cut the search space
• Sketch
• SyGuS (Syntax-Guided Synthesis)
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Program Synthesis: Sketch
if  (x > ??)

y = 100
else

y = ??
output x*x+y*y

x = 1, o = 100
x = 10, o = 1000
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Program Synthesis SyGuS
Syntax Constraints:

𝑒 ≔ 𝑖𝑛𝑝𝑢𝑡 𝑒 + 𝑒 𝑒 ∗ 𝑒|𝑒 − 𝑒|𝑒/𝑒
Semantic Constraints:

𝑒 2 = 100
𝑒 5 = 700

…
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The semantics constraints can be more high-level than input-out examples. For 
example, the output of  a sorting algorithm is sorted.



More on Program Synthesis
• https://people.csail.mit.edu/asolar/SynthesisCourse/TOC.htm

• https://xiongyingfei.github.io/SA/2020/main.htm
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A Possible Pipeline to Synthesize Probabilistic Programs
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Structure Learning Parameter Learningspecification Program



Two Typical Approaches
• Non-Bayesian method (Maximum Likelihood)
• Kevin Ellis, Armando Solar-Lezama, Joshua B. Tenenbaum: Unsupervised 

Learning by Program Synthesis. NIPS 2015.

• Bayesian method
• Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, 

Vikash K. Mansinghka: Bayesian Synthesis of  Probabilistic Programs for 
Automatic Data Modeling. POPL 19.
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Ellis et al., 2015: Motivations 
• Goal: unsupervised learning
• Induce good latent representations of  a data set

• Programs are a natural knowledge representation for many domains
• Compression: find smallest representation
• Infer both programs and inputs

• General solution is hard
• Encode domain-specific parts using a DSL
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Key Ideas 
• Using PCFG to limit the program space

• Symbolic search: SMT
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Problem Formalization
Minimize
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𝑓 is drawn from a prior 
determined by the sketch

𝐼 is drawn from a domain-dependent description length prior 𝑃,, 
which leads to 𝑧- = 𝑓(𝐼-).
𝑃(|.(∗ |𝑧-) estimates the error between predictions and observations.

Program is largely deterministic, but inputs are random. Also, going 
from 𝑧 to 𝑥 is a random process (manually specified)



Defining a Program Space
• Probabilistic context-free grammar (PCFG)
• Place probabilities on production rules

• Define denotations for each rule using SMT

• We can use SMT expression to denote the synthesis problem
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Solution
• Construct an SMT that
• Defines the space of  programs
• Computes the description length
• Computes the output given an input and a program

• Use SMT to perform linear search on the loss function
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More on SMT
• Satisfiability modulo theories
• Generalizes SAT such that each clause can contain real numbers, integers, strings, 

quantifiers …

• Highly expressive, but its solvers only scale under well-defined scenarios

• Representative solver: z3 from Microsoft
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Example: Visual Concept Learning
• Space of  programs: simple graphic programs that control a turtle
• Rotations
• Forward movement
• Rescaling of  shapes 
…

• Program outputs: image parses
• A list of  shapes <id, scale, x, y>
• A list of  containment relationships (i, j)
• A list of  reflexive borders relations borders (i, j)
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Example: Visual Concept Learning
• Program inputs:
• Shapes
• Positions
• Movement lengths and angles
• Scales 

• A noise model 𝑃3|4(∗ | ∗) that specifies how an output z produces a 
parse x
• Positions (add uniform random noise)
• Optional borders and contains relations are erased with half  chance
• The indices/orders of  shapes are randomly permuted
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Example: Visual Concept Learning
Xin Zhang@PKU
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Example Program



Conclusion on Ellis et al., 2015
• Manually separated the deterministic part from the probabilistic part

• Convert the problem into an optimization problem by maximizing 
likelihood and minimizing encoding lengths
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Overview: Saad et al., 2019
• Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. 

Rinard, Vikash K. Mansinghka: Bayesian Synthesis of  Probabilistic 
Programs for Automatic Data Modeling. POPL 19.

• Usage: generate probabilistic programs as generative models of  data

• A prior over distribution of  programs; conditioning on the observed data, 
to infer the posterior distribution of  the program
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Overview of the Framework 
Xin Zhang@PKU
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From the Original Paper



Details of the Approach
• https://www.youtube.com/watch?v=T5fdUmYJsjM
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More on Gaussian Process
• A distribution over functions (from x to y)

• Non-parametric model
• With infinite many parameters

• The function can be seen as vector which is drawn from a big correlated 
Gaussian distribution
• Specified by covariance functions
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How to Sample Programs?
• MCMC (Metropolis-Hasting)

• Prior distribution: specified by the PCFG

• Accepting probability: correlates to likelihood
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Conclusion on Saad et al., 2019
• A general Bayesian framework to handle different types of  synthesis 

problems
• Parameterized by the DSL

• Synthesize full programs in Bayesian manner
• Scalability might be a problem
• Choosing DSLs and priors are the key
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Next Lecture
• Probabilistic Logic Programming
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