
Learning Probabilistic Programs

Xin Zhang
Peking University

Recap of Last Lecture

• Evaluation-based inference
• Dynamic
• Can deal with programs with unbounded loops

Xin Zhang@PKU

2

Likelihood Weighting
• A form of importance sampling where the proposal is the prior

Xin Zhang@PKU

3

Y are observed/conditioned variables

If we use 𝑝(𝑋!) as the
proposal distribution

Likelihood Weighting: Variants

• Naïve Metropolis Hasting (draw random traces)

• Single-site proposal (try to only chance one variable at a time)

Xin Zhang@PKU

4

Sequential Monte Carlo
• In probabilistic programming, sample a high-dimensional distribution by

sampling a sequence of lower dimensional distributions

• Also called particle filters

• Used in signal processing and probabilistic inference

Xin Zhang@PKU

5

SMC: Problem Statement
Xin Zhang@PKU

6

x0 x1

y1

x2

y2

…

Given
𝑝(𝑥!) and
𝑝(𝑥"|𝑥"#$) and
𝑝 𝑦" 𝑥" and
Observations 𝑦$:"

Estimate
𝑝(𝑥!:"|𝑦$:") or
𝑝 𝑥" 𝑦$:" or
𝐼 𝑓" = 𝐸&((!:#|*$:#) 𝑓" 𝑥!:" = ∫𝑓" 𝑥!:" 𝑝 𝑥!:" 𝑦$:" 𝑑𝑥!:"

SMC: Main Ideas
• Sample on the Markov chain:

• Reweight the samples using importance sampling

• Throw away the samples (particles) with low probabilities

Xin Zhang@PKU

7

Bootstrap Filter: Example
Xin Zhang@PKU

8

From “An Introduction to Sequential
Monte Carlo Methods” by Arnaud
Doucet, Nando De Freitas, and Neil
Gordon

SMC: Bootstrap Filter
Assume the proposal distribution is 𝑝(𝑥-:/)
1. Initialization. T = 0
• For i = 1,…,N, sample 𝑥"

($)~𝑝(𝑥") and set 𝑡 = 1
2. Importance sampling step.
• For sample *𝑥&

($)~𝑝(𝑥&| *𝑥&'(
($)) and set (*𝑥":&'(

($) , *𝑥&
($)).

• For i = 1,…,N, evaluate the importance weights.
• Normalize the importance weights

3. Selection step
• Resample with replacement N particles from the current particles according to

importance weights
• Set 𝑡 → 𝑡 + 1

Xin Zhang@PKU

9

Question 1

• In evaluation-based method, if the sampled trace doesn’t
terminate, what would you do in practice?

Xin Zhang@PKU

10

Question 2

•Consider the program x = unform(0, 1); y = gaussian(x,
1). Suppose the current trace is x = 0.5, y = 1. Now we
want to change y, what is p(y) that we‘re sampling from?

•What if we want to change x?

Xin Zhang@PKU

11

Question 3
• Consider the program
x = 0;
while(bernoulli(0.5));

x+=1

condition(x > 2)

• Describe an algorithm to sample traces from it.

Xin Zhang@PKU

12

Question 4

• Sequential Monte Carlo can be see as a variant of
importance sampling. Is the statement right?

Xin Zhang@PKU

13

Question 5
• What would happen if we don’t throw away particles in sequential Monte

Carlo?

Xin Zhang@PKU

14

This Lecture
• Learning in probabilistic programming
• Still an active research area
• Not a solved problem

Xin Zhang@PKU

15

Question
• Can you define inference and learning?

Xin Zhang@PKU

16

Inference vs. Learning
• Inference: given 𝑓|𝜃, run 𝑓|𝜃 to output data

• Learning: given 𝑓|𝜃, and data 𝐷, figure out 𝜃

Xin Zhang@PKU

17

Inference vs. Learning
• Inference is often a part of learning
• Example: perform inference with different parameters

Xin Zhang@PKU

18

Inference vs. Learning
• Inference is often a part of learning

Xin Zhang@PKU

19

p = bernoulli()
D = [….]
if p == 1:

m = model1
else:

m = model2

for (x,y) in D;
condition(m(x)+N(0,0.1) == y)

output m

Learning in Probabilistic Programming
• Parameter learning

Xin Zhang@PKU

20

x = uniform(p1, p2)
y = gaussian(x, p3)
if(bernoulli(p4))

z = x
else

z = y
condition(z > 100)

What are p1, p2, p3, p4?

Learning in Probabilistic Programming
• Structure learning

Xin Zhang@PKU

21

x = uniform(p1, p2)
y = gaussian(x, p3)
if(bernoulli(p4))

z = x
else

z = y
condition(z > 100)

More on Structure Learning
• How to synthesize (deterministic) programs is an active field

• Program synthesis
• Started early
• Still under development
• Works well in specific settings

Xin Zhang@PKU

22

Program Synthesis
• Given a specification, generates a program that satisfies the specification

• Main challenge: intractable search space

• Various approach to cut the search space
• Sketch
• SyGuS (Syntax-Guided Synthesis)

Xin Zhang@PKU

23

Program Synthesis: Sketch
if (x > ??)

y = 100
else

y = ??
output x*x+y*y

x = 1, o = 100
x = 10, o = 1000

Xin Zhang@PKU

24

Program Synthesis SyGuS
Syntax Constraints:

𝑒 ≔ 𝑖𝑛𝑝𝑢𝑡 𝑒 + 𝑒 𝑒 ∗ 𝑒|𝑒 − 𝑒|𝑒/𝑒
Semantic Constraints:

𝑒 2 = 100
𝑒 5 = 700

…

Xin Zhang@PKU

25

The semantics constraints can be more high-level than input-out examples. For
example, the output of a sorting algorithm is sorted.

More on Program Synthesis
• https://people.csail.mit.edu/asolar/SynthesisCourse/TOC.htm

• https://xiongyingfei.github.io/SA/2020/main.htm

Xin Zhang@PKU

26

https://people.csail.mit.edu/asolar/SynthesisCourse/TOC.htm
https://xiongyingfei.github.io/SA/2020/main.htm
https://people.csail.mit.edu/asolar/SynthesisCourse/TOC.htm
https://xiongyingfei.github.io/SA/2020/main.htm

A Possible Pipeline to Synthesize Probabilistic Programs

Xin Zhang@PKU

27

Structure Learning Parameter Learningspecification Program

Two Typical Approaches
• Non-Bayesian method (Maximum Likelihood)
• Kevin Ellis, Armando Solar-Lezama, Joshua B. Tenenbaum: Unsupervised

Learning by Program Synthesis. NIPS 2015.

• Bayesian method
• Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard,

Vikash K. Mansinghka: Bayesian Synthesis of Probabilistic Programs for
Automatic Data Modeling. POPL 19.

Xin Zhang@PKU

28

Ellis et al., 2015: Motivations
• Goal: unsupervised learning
• Induce good latent representations of a data set

• Programs are a natural knowledge representation for many domains
• Compression: find smallest representation
• Infer both programs and inputs

• General solution is hard
• Encode domain-specific parts using a DSL

Xin Zhang@PKU

29

Key Ideas
• Using PCFG to limit the program space

• Symbolic search: SMT

Xin Zhang@PKU

30

Problem Formalization
Minimize

Xin Zhang@PKU

31

𝑓 is drawn from a prior
determined by the sketch

𝐼 is drawn from a domain-dependent description length prior 𝑃,,
which leads to 𝑧- = 𝑓(𝐼-).
𝑃(|.(∗ |𝑧-) estimates the error between predictions and observations.

Program is largely deterministic, but inputs are random. Also, going
from 𝑧 to 𝑥 is a random process (manually specified)

Defining a Program Space
• Probabilistic context-free grammar (PCFG)
• Place probabilities on production rules

• Define denotations for each rule using SMT

• We can use SMT expression to denote the synthesis problem

Xin Zhang@PKU

32

Solution
• Construct an SMT that
• Defines the space of programs
• Computes the description length
• Computes the output given an input and a program

• Use SMT to perform linear search on the loss function

Xin Zhang@PKU

33

More on SMT
• Satisfiability modulo theories
• Generalizes SAT such that each clause can contain real numbers, integers, strings,

quantifiers …

• Highly expressive, but its solvers only scale under well-defined scenarios

• Representative solver: z3 from Microsoft

Xin Zhang@PKU

34

Example: Visual Concept Learning
• Space of programs: simple graphic programs that control a turtle
• Rotations
• Forward movement
• Rescaling of shapes
…

• Program outputs: image parses
• A list of shapes <id, scale, x, y>
• A list of containment relationships (i, j)
• A list of reflexive borders relations borders (i, j)

Xin Zhang@PKU

35

Example: Visual Concept Learning
• Program inputs:
• Shapes
• Positions
• Movement lengths and angles
• Scales

• A noise model 𝑃3|4(∗ | ∗) that specifies how an output z produces a
parse x
• Positions (add uniform random noise)
• Optional borders and contains relations are erased with half chance
• The indices/orders of shapes are randomly permuted

Xin Zhang@PKU

36

Example: Visual Concept Learning
Xin Zhang@PKU

37

Example Program

Conclusion on Ellis et al., 2015
• Manually separated the deterministic part from the probabilistic part

• Convert the problem into an optimization problem by maximizing
likelihood and minimizing encoding lengths

Xin Zhang@PKU

38

Overview: Saad et al., 2019
• Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C.

Rinard, Vikash K. Mansinghka: Bayesian Synthesis of Probabilistic
Programs for Automatic Data Modeling. POPL 19.

• Usage: generate probabilistic programs as generative models of data

• A prior over distribution of programs; conditioning on the observed data,
to infer the posterior distribution of the program

Xin Zhang@PKU

39

Overview of the Framework
Xin Zhang@PKU

40

From the Original Paper

Details of the Approach
• https://www.youtube.com/watch?v=T5fdUmYJsjM

Xin Zhang@PKU

41

More on Gaussian Process
• A distribution over functions (from x to y)

• Non-parametric model
• With infinite many parameters

• The function can be seen as vector which is drawn from a big correlated
Gaussian distribution
• Specified by covariance functions

Xin Zhang@PKU

42

How to Sample Programs?
• MCMC (Metropolis-Hasting)

• Prior distribution: specified by the PCFG

• Accepting probability: correlates to likelihood

Xin Zhang@PKU

43

Conclusion on Saad et al., 2019
• A general Bayesian framework to handle different types of synthesis

problems
• Parameterized by the DSL

• Synthesize full programs in Bayesian manner
• Scalability might be a problem
• Choosing DSLs and priors are the key

Xin Zhang@PKU

44

Next Lecture
• Probabilistic Logic Programming

Xin Zhang@PKU

45

