Learning Probabilistic Programs

Xin Zhang Peking University

Recap of Last Lecture

- Evaluation-based inference
 - Dynamic
 - Can deal with programs with unbounded loops

Likelihood Weighting

• A form of importance sampling where the proposal is the prior

$$\mathbb{E}_{q(X)}\left[\frac{p(X|Y)}{q(X)}r(X)\right] = \frac{1}{p(Y)}\mathbb{E}_{q(X)}\left[\frac{p(Y,X)}{q(X)}r(X)\right]$$
$$\simeq \frac{1}{p(Y)}\frac{1}{L}\sum_{l=1}^{L}W^{l}r(X^{l}),$$

$$W^{l} = \frac{p(Y, X^{l})}{q(X^{l})} = \frac{p(Y|X^{l})p(X^{l})}{p(X^{l})} = p(Y|X^{l})$$
 If we use $p(X^{l})$ as the proposal distribution

Y are observed/conditioned variables

Likelihood Weighting: Variants

• Naïve Metropolis Hasting (draw random traces)

• Single-site proposal (try to only chance one variable at a time)

Sequential Monte Carlo

- In probabilistic programming, sample a high-dimensional distribution by sampling a sequence of lower dimensional distributions
- Also called particle filters
- Used in signal processing and probabilistic inference

SMC: Problem Statement

Given

Estimate

 $p(x_0)$ and $p(x_t|x_{t-1})$ and $p(y_t|x_t)$ and Observations $y_{1:t}$ $p(x_{0:t}|y_{1:t}) \text{ or }$ $p(x_t|y_{1:t}) \text{ or }$ $I(f_t) = E_{p(x_{0:t}|y_{1:t})}[f_t(x_{0:t})] = \int f_t(x_{0:t})p(x_{0:t}|y_{1:t})dx_{0:t}$

SMC: Main Ideas

• Sample on the Markov chain:

$$\pi \left(\mathbf{x}_{0:t} | \mathbf{y}_{1:t} \right) = \pi \left(\mathbf{x}_{0:t-1} | \mathbf{y}_{1:t-1} \right) \pi \left(\mathbf{x}_{t} | \mathbf{x}_{0:t-1}, \mathbf{y}_{1:t} \right).$$

- Reweight the samples using importance sampling
- Throw away the samples (particles) with low probabilities

i=1,...,N=10 particles

From "An Introduction to Sequential Monte Carlo Methods" by Arnaud Doucet, Nando De Freitas, and Neil Gordon

SMC: Bootstrap Filter

Assume the proposal distribution is $p(x_{1,t})$

- 1. Initialization. T = 0
 - For i = 1,...,N, sample $x_0^{(i)} \sim p(x_0)$ and set t = 1
- 2. Importance sampling step. For sample $\tilde{x}_t^{(i)} \sim p(x_t | \tilde{x}_{t-1}^{(i)})$ and set $(\tilde{x}_{0:t-1}^{(i)}, \tilde{x}_t^{(i)})$.
 - For i = 1, ..., N, evaluate the importance weights.
 - Normalize the importance weights
- 3. Selection step
 - Resample with replacement N particles from the current particles according to importance weights
 - Set $t \rightarrow t + 1$

• In evaluation-based method, if the sampled trace doesn't terminate, what would you do in practice?

Consider the program x = unform(0, 1); y = gaussian(x, 1). Suppose the current trace is x = 0.5, y = 1. Now we want to change y, what is p(y) that we're sampling from?

• What if we want to change x?

• Consider the program

 $\mathbf{x}=0;$

while(bernoulli(0.5)); x+=1condition(x > 2)

• Describe an algorithm to sample traces from it.

• Sequential Monte Carlo can be see as a variant of importance sampling. Is the statement right?

• What would happen if we don't throw away particles in sequential Monte Carlo?

This Lecture

- Learning in probabilistic programming
 - Still an active research area
 - Not a solved problem

• Can you define inference and learning?

Inference vs. Learning

• Inference: given $f|\theta$, run $f|\theta$ to output data

• Learning: given $f | \theta$, and data D, figure out θ

Inference vs. Learning

- Inference is often a part of learning
 - Example: perform inference with different parameters

Inference vs. Learning

• Inference is often a part of learning

$$p = bernoulli()$$

$$D = [....]$$

if $p == 1$:

$$m = model1$$

else:

$$m = model2$$

for (x,y) in D; condition(m(x)+N(0,0.1) == y)

output m

Learning in Probabilistic Programming

• Parameter learning

x = uniform(p1, p2) y = gaussian(x, p3)if(bernoulli(p4)) z = xelse z = ycondition(z > 100)

What are p1, p2, p3, p4?

Learning in Probabilistic Programming

• Structure learning

x = uniform(p1, p2) y = gaussian(x, p3)if(bernoulli(p4)) z = xelse z = ycondition(z > 100)

More on Structure Learning

• How to synthesize (deterministic) programs is an active field

- Program synthesis
 - Started early
 - Still under development
 - Works well in specific settings

Program Synthesis

- Given a specification, generates a program that satisfies the specification
- Main challenge: intractable search space

- Various approach to cut the search space
 - Sketch
 - SyGuS (Syntax-Guided Synthesis)

Program Synthesis: Sketch

if (x > ??) y = 100 else y = ?? output x*x+y*y

x = 1, o = 100x = 10, o = 1000

Program Synthesis SyGuS

Syntax Constraints:

$$e \coloneqq input | e + e | e * e | e - e | e / e$$

Semantic Constraints:

$$e(2) = 100$$

 $e(5) = 700$

. . .

The semantics constraints can be more high-level than input-out examples. For example, the output of a sorting algorithm is sorted.

More on Program Synthesis

• <u>https://people.csail.mit.edu/asolar/SynthesisCourse/TOC.htm</u>

• <u>https://xiongyingfei.github.io/SA/2020/main.htm</u>

A Possible Pipeline to Synthesize Probabilistic Programs

Two Typical Approaches

- Non-Bayesian method (Maximum Likelihood)
 - Kevin Ellis, Armando Solar-Lezama, Joshua B. Tenenbaum: Unsupervised Learning by Program Synthesis. NIPS 2015.
- Bayesian method
 - Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, Vikash K. Mansinghka: Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling. POPL 19.

Ellis et al., 2015: Motivations

- Goal: unsupervised learning
 - Induce good latent representations of a data set
- Programs are a natural knowledge representation for many domains
 - Compression: find smallest representation
 - Infer both programs and inputs
- General solution is hard
 - Encode domain-specific parts using a DSL

Key Ideas

• Using PCFG to limit the program space

• Symbolic search: SMT

Problem Formalization

Minimize

$$\underbrace{-\log P_f(f)}_{\text{program length}} + \sum_{i=1}^{N} \left(\underbrace{-\log P_{x|z}(x_i|f(I_i))}_{\text{data reconstruction error}} - \underbrace{\log P_I(I_i)}_{\text{data encoding length}} \right)$$

f is drawn from a prior determined by the sketch

I is drawn from a domain-dependent description length prior P_I , which leads to $z_i = f(I_i)$. $P_{x|z}(*|z_i)$ estimates the error between predictions and observations.

Program is largely deterministic, but inputs are random. Also, going from z to x is a random process (manually specified)

Defining a Program Space

- Probabilistic context-free grammar (PCFG)
 - Place probabilities on production rules

$$\mathcal{E} \to \mathcal{E} + \mathcal{E} \mid \mathbb{R} \mid x$$

• Define denotations for each rule using SMT

 $[\![\mathcal{E}_1 + \mathcal{E}_2]\!](I) = [\![\mathcal{E}_1]\!](I) + [\![\mathcal{E}_2]\!](I) \qquad [\![r \in \mathbb{R}]\!](I) = r \qquad [\![x]\!](I) = I$

• We can use SMT expression to denote the synthesis problem

Solution

- Construct an SMT that
 - Defines the space of programs
 - Computes the description length
 - Computes the output given an input and a program

• Use SMT to perform linear search on the loss function

More on SMT

- Satisfiability modulo theories
 - Generalizes SAT such that each clause can contain real numbers, integers, strings, quantifiers ...
- Highly expressive, but its solvers only scale under well-defined scenarios

• Representative solver: z3 from Microsoft

Example: Visual Concept Learning

- Space of programs: simple graphic programs that control a turtle
 - Rotations

. . .

- Forward movement
- Rescaling of shapes

- Program outputs: image parses
 - A list of shapes <id, scale, x, y>
 - A list of containment relationships (i, j)
 - A list of reflexive borders relations borders (i, j)

Example: Visual Concept Learning

- Program inputs:
 - Shapes
 - Positions
 - Movement lengths and angles
 - Scales
- A noise model $P_{x|z}(*|*)$ that specifies how an output z produces a parse x
 - Positions (add uniform random noise)
 - Optional borders and contains relations are erased with half chance
 - The indices/orders of shapes are randomly permuted

Example: Visual Concept Learning

Example Program

Conclusion on Ellis et al., 2015

• Manually separated the deterministic part from the probabilistic part

• Convert the problem into an optimization problem by maximizing likelihood and minimizing encoding lengths

Overview: Saad et al., 2019

- Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, Vikash K. Mansinghka: Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling. POPL 19.
- Usage: generate probabilistic programs as generative models of data
- A prior over distribution of programs; conditioning on the observed data, to infer the posterior distribution of the program

Overview of the Framework

From the Original Paper

Details of the Approach

• https://www.youtube.com/watch?v=T5fdUmYJsjM

More on Gaussian Process

- A distribution over functions (from x to y)
- Non-parametric model
 - With infinite many parameters
- The function can be seen as vector which is drawn from a big correlated Gaussian distribution
 - Specified by covariance functions

How to Sample Programs?

• MCMC (Metropolis-Hasting)

• Prior distribution: specified by the PCFG

• Accepting probability: correlates to likelihood

Conclusion on Saad et al., 2019

- A general Bayesian framework to handle different types of synthesis problems
 - Parameterized by the DSL

- Synthesize full programs in Bayesian manner
 - Scalability might be a problem
 - Choosing DSLs and priors are the key

Next Lecture

• Probabilistic Logic Programming