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Final Information

• When: 18:40-20:40, June 17

• Where: 117

• Content: From Lecture 6 onwards (including Lecture 6, semantics)

• Form: Allowed to bring two sheets of  A4-size/letter-size papers (4 pages)

• No keys to past exams

• Shouldn’t be print-out of  all slides
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Topics after Midterm
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Probabilistic Programming Broader AI

• Semantics

• Inference

• Logic programming

• Deep probabilistic 
programming

• Causal inference

• Explainable AI

• Constrained LLMs



Semantics of Probabilistic Programming

• Formal tools to reason about properties of  a program

• What is the probability that the postcondition is satisfied?

• What is the probability that this program halts on all inputs?

• What is the probability that it halts in polynomial time?

Xin Zhang@PKU
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Semantics of Probabilistic Programming

• Operational semantics

• Model the step-by-step executions of  a program on an abstract machine

• Denotational semantics

• Link program concepts with math concepts: measure theory

Xin Zhang@PKU
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Operational Semantics: Example

Xin Zhang@PKU
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x :=0
while x == 0 do

x:=coin()

What is the probability that the program halts?

ℎ𝑑 𝑚1𝑚2… = 𝑚1

t𝑙 𝑚1𝑚2… = 𝑚2…

The loop continues until it reaches 𝑚 inf  the form of  1𝑚′



Measurable Spaces and Measures

• (S, B) is a measurable space

• S is a set

• B is a 𝜎-algebra on S, which is a collection of  subsets of  S

• It contains ∅

• Closed under complementation in S

• Closed under countable union

• The elements of  B are called measurable sets

• If  F is a collection of  subsets of  S, 𝜎(𝑭) is the smallest 𝜎-algebra 
containing F, or                                                                     . We say (S, 
𝜎(𝑭)) is generated by F.

Xin Zhang@PKU
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Denotational Semantics: Example

• (𝑺, 𝑩𝑺): x = uniform(0.1, 1.1)  𝜇 𝑎, 𝑏 = length( a, b ∩ [0.1,1.1])

• 𝑻,𝑩𝑻 : y = uniform(0,x)

• Markov kernel 𝑃(𝑥, 𝑖=1ڂ
𝑖=𝑀 𝑎𝑖 , 𝑏𝑖 ) = σ𝑖=1

𝑖=𝑀 𝑙𝑒𝑛𝑔𝑡ℎ( 𝑎𝑖 , 𝑏𝑖 ∩ [0, 𝑥])/𝑥

• 𝜇’s pushforward under P is

𝑃∗ 𝜇 𝐵𝑇 = න
𝑥∈[0.1,1.1]

𝐵𝑇 ∩ [0, 𝑥] ∗ 𝜇(𝑑𝑥)

Xin Zhang@PKU
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Example Question

• What is right about denotational semantics (DS) and operational 
semantics (OS)?

A. DS can reason about nonterminating programs but OS cannot

B. DS reason about all executions of  the program together while OS 
reason about one execution at a time

C. DS links program concepts with integers

D. OS uses real random numbers

Xin Zhang@PKU
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Inference in Probabilistic Programming

• Graph-based inference
• Compilation-based

• Can work only with bounded programs

• Evaluation-based inference
• Evaluation-based

• Can work with any program

• Important general inference algorithms
• Hamiltonian Monte-Carlo

• Sequential Monte-Carlo

Xin Zhang@PKU
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Graph-Based Inference: Translation

Xin Zhang@PKU

𝜌, 𝜙, 𝐺, 𝑒 ⇓ 𝜌′, 𝜙′, 𝐺′

• 𝜌: environment, which maps a variable to a 

constant or a node variable

• 𝜙: path condition

• 𝑒: program



Graph-Based Inference: Example

Xin Zhang@PKU
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x = guassian(0, 1)

y = uniform(0, x)

if  (x>10){

condition(y >1.5)

}

else{

condition(y<0.5)

}



Example Question

• What kind of  programs can graph-based inference handle?

A. A sorting program that can work with any array of  integers

B. A reactive program that continuously monitors the room temperature

C. A program that schedules courses of  the university

D. A program that computes Pi with any given precision

Xin Zhang@PKU
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Metropolis-Hasting: Single-Site Proposals

• Map 𝜎(𝑋), such that 𝑋(𝑥) refers to the value of  𝑥 (only variables in the 
current execution)

• Map 𝜎(𝑙𝑜𝑔𝑃), where 𝑙𝑜𝑔𝑃(𝑣) evaluates the density for each variable

• When sampling from a distribution 𝑑, we have

𝜎 𝑙𝑜𝑔𝑃 𝑥 = 𝐿𝑂𝐺 − 𝑃𝑅𝑂𝐵(𝑑, 𝑋 𝑥 )

• When encounter 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑏), we have

𝜎 𝑙𝑜𝑔𝑃 𝑦 = 𝐿𝑂𝐺 − 𝑃𝑅𝑂𝐵(𝑏, 𝑡𝑟𝑢𝑒)

Xin Zhang@PKU
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Metropolis-Hasting: Single-Site Proposals

• Pick a variable 𝑥0 ∈ 𝑑𝑜𝑚(𝑋) at a random from the current sample

• Construct a proposal 𝑋′, 𝑃′ by re-running the program

• For an expression 𝑑 that sample from a variable 𝑥
• If  𝑥 == 𝑥0, or 𝑥 ∉ 𝑑𝑜𝑚(𝑋), then samples from the expression. Otherwise, 

reuse the value 𝑋′ 𝑥 ← 𝑋 𝑥
• Calculate the probability 𝑃′ 𝑥 ← 𝑃𝑅𝑂𝐵(𝑑, 𝑋′ 𝑥 )

• For expression 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑏) with variable 𝑦:
• Calculate the probability 𝑃′ 𝑦 ← 𝑃𝑅𝑂𝐵 𝑏, 𝑦 = 1[𝑏==𝑦]

• For expression 𝑜𝑏𝑠𝑒𝑟𝑣𝑒(𝑒, 𝑣) with variable 𝑦:
• Calculate the probability 𝑃′ 𝑦 ← 𝑃𝑅𝑂𝐵(𝑒, 𝑣)

Xin Zhang@PKU
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Metropolis-Hasting: Single-Site Proposals

Xin Zhang@PKU
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Example Question

• In each iteration of  single-site proposals, only the value of  the chosen 
variable need to be sampled, while the values of  all the other variables 
are reused from the last iteration. Is the statement correct?

Xin Zhang@PKU
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Hamiltonian Monte Carlo (HMC)

Xin Zhang@PKU
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• Augment distribution 𝑝(𝒛) with 𝑝(𝒛, 𝒓)

• Proposal distribution:
• Update 𝒛, 𝒓 using Hamiltonian dynamics (in practice, a discretized approximation 

called leapfrog integration)

• Update 𝒓 stochastically

• Acceptance probability (After applying Hamiltonian dynamics):

Account for 

approximation



Example Question

• During HMC, ignoring numerical issues and precision issues, the total 
energy of  the system doesn’t change. Is the statement right?

Xin Zhang@PKU
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Sequential Monte Carlo

Xin Zhang@PKU
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x0 x1

y1

x2

y2

…

Given

𝑝(𝑥0) and

𝑝(𝑥𝑡|𝑥𝑡−1) and

𝑝 𝑦𝑡 𝑥𝑡 and

Observations 𝑦1:𝑡

Estimate

𝑝(𝑥0:𝑡|𝑦1:𝑡) or

𝑝 𝑥𝑡 𝑦1:𝑡 or

𝐼 𝑓𝑡 = 𝐸𝑝(𝑥0:𝑡|𝑦1:𝑡) 𝑓𝑡 𝑥0:𝑡 = 𝑓𝑡 𝑥0:𝑡 𝑝 𝑥0:𝑡 𝑦1:𝑡 𝑑𝑥0:𝑡



SMC: Bootstrap Filter 

Assume the proposal distribution is 𝑝(𝑥1:𝑡)

1. Initialization. t = 0

• For i = 1,…,N, sample 𝑥0
(𝑖)
~𝑝(𝑥0) and set 𝑡 = 1

2. Importance sampling step.

• For  sample 𝑥𝑡
(𝑖)
~𝑝(𝑥𝑡| 𝑥𝑡−1

(𝑖)
) and set ( 𝑥0:𝑡−1

(𝑖)
, 𝑥𝑡

(𝑖)
).

• For i = 1,…,N, evaluate the importance weights.

• Normalize the importance weights

3. Selection step
• Resample with replacement N particles from the current particles according to 

importance weights

• Set 𝑡 → 𝑡 + 1

Xin Zhang@PKU
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Bootstrap Filter: Example

Xin Zhang@PKU
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𝑥1~𝑁 0,10 , 𝑣𝑘~𝑁 0,10 ,𝑤𝑘~𝑁 0,1

From “An Introduction to Sequential Monte Carlo Methods” by Arnaud Doucet, 

Nando De Freitas, and Neil Gordon



Bootstrap Filter: Example

Xin Zhang@PKU
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From “An Introduction to Sequential 

Monte Carlo Methods” by Arnaud 

Doucet, Nando De Freitas, and Neil 

Gordon



Example Question

• Is SMC a variant of  importance sampling?

Xin Zhang@PKU
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Probabilistic Logic Programming: 
Unifying Logic and Probability
• Logic: the ability to describe complex domains concisely in terms of  

objects and relations

• Probability: the ability to handle uncertainty

• Logic + probability = Probabilistic Logic Programming

Xin Zhang@PKU
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Problog: Syntax

Xin Zhang@PKU
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From the documentation of  Problog

Queries: Evidence:



Semantics of Problog

• From a Problog program, we can sample a Datalog program by sampling 
the facts 

Xin Zhang@PKU
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0.5 :: stayUp.

0.7 :: drinkCoffee :- stayUp.

0.3 :: fallSleep :- drinkCoffee, stayUp.

0.5 :: stayUp.

0.7 :: r1.

0.3 :: r2.

drinkCoffee :- stayUp, r1.

fallSleep :- drinkCoffee, stayUp, r2.

= sample

stayUp.

r1.

r2.

drinkCoffee :- stayUp, r1.

fallSleep :- drinkCoffee, stayUp, r2.

Probability: 0.5*0.7*0.3



Semantics of Problog

• What about queries?

Xin Zhang@PKU
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0.5 :: stayUp.
0.7 :: r1.
0.3 :: r2.
drinkCoffee :- stayUp, r1.
fallSleep :- drinkCoffee, stayUp, r2.

query(fallSleep)

A query calculates a marginal probability of a fact. Informally,

𝑝 𝑓 =
σ𝑝 𝑎𝑛𝑦 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑡ℎ𝑎𝑡 𝑑𝑒𝑟𝑖𝑣𝑒𝑠 𝑓

σ𝑝(𝑎𝑛𝑦 𝑝𝑟𝑜𝑔𝑟𝑎𝑚)



Semantics of Problog

• What about evidence?

Xin Zhang@PKU
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0.5 :: stayUp.
0.7 :: r1.
0.3 :: r2.
drinkCoffee :- stayUp, r1.
fallSleep :- drinkCoffee, stayUp, r2.

evidence(\+ fallSleep)
query(stayUp)

Evidence filters out certain programs. Informally,

𝑝 𝑓 =
σ𝑝 𝑎𝑛𝑦 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑡ℎ𝑎𝑡 𝑑𝑒𝑟𝑖𝑣𝑒𝑠 𝑓|𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

σ𝑝(𝑎𝑛𝑦 𝑝𝑟𝑜𝑔𝑟𝑎𝑚|𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒)



Semantics of Problog

• What about relations and quantified variables?

Xin Zhang@PKU
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0.9 :: edge(0,1).

0.8 :: edge(1,2).

0.7 :: edge(2,3).

0.8 :: edge(2,4).

path(A,B) :- edge(A,B).

0.8 :: path(A,C) :- path(A,B), edge(B,C).

evidence(\+ path(0,3)).

query(path(0,4)).



Semantics of Problog

• Move probabilities to facts

Xin Zhang@PKU
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0.9 :: edge(0,1).

0.8 :: edge(1,2).

0.7 :: edge(2,3).

0.8 :: edge(2,4).

0.8 :: r(A,B,C).

path(A,B) :- edge(A,B). 

path(A,C) :- path(A,B), edge(B,C), r(A,B,C).

evidence(\+ path(0,3)).

query(path(0,4)).



Semantics of Problog

• Ground

Xin Zhang@PKU
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Constants: 0, 1, 2, 3 4

path(A,C) :- path(A,B), edge(B,C), r(A,B,C).

Generates

path(0,0) :- path(0,0), edge(0,0), r(0,0,0). A=0, B=0, C=0

path(0,1) :- path(0,0), edge(0,1), r(0,0,1). A=0, B=0, C=1

 path(0,1) :- path(0,0), edge(0,1), r(0,0,1). A=0, B=0, C=1

…



Semantics of Problog

• After grounding, each ground term can be seen as a Boolean variable, 
then the whole program can be solved using the semantics of  the 
Boolean case

Xin Zhang@PKU
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path(0,0) -> t1, edge(0,0) -> t2, r(0,0,0) -> t3

path(0,0) :- path(0,0), edge(0,0), r(0,0,0).

t1 :- t1,t2,t3



Example using MaxSAT for Inference

0.6 :: rain.

0.5 :: sprinkle.

0.9 :: grass_wet :- rain, sprinkle.

Xin Zhang@PKU
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ln0.6 rain

ln0.4 !rain

ln0.5 sprinkle

ln0.5 !sprinkle

ln0.9 r

ln0.1 !r

grass_wet or !rain or !sprinkle or !r

!grass_wet or rain

!grass_wet or sprinle

!grass_wet or r

grass_wet :- rain, sprinkle is translated into 

𝑔𝑟𝑎𝑠𝑠𝑤𝑒𝑡 𝑟𝑎𝑖𝑛 ∧ 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒 ∧ 𝑟



Example using WMC for Inference

Xin Zhang@PKU
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0.6 rain

0.4 !rain

0.5 sprinkle

0.5 !sprinkle

0.9 r

0.1 !r

grass_wet or !rain or !sprinkle

!grass_wet or rain

!grass_wet or sprinle

w(rain =true) = 0.6

w(rain =false) = 0.4

w(sprinkle = true) = 0.5

w(sprinkle = false) = 0.5

w(r = true) = 0.9

w(r = false) = 0.1

P(grass_wet = true) = WMC(M∧grass_wet=true)

What if  we want to evaluate 

P(rain | grass_wet = true)?



Using WMC for Marginal Inference

• Let the constructed weighted formula be M, queries be Q, evidence be E, 
then

𝑃 𝑄 =
𝑊𝑀𝐶 𝑀 ∧ 𝑄 ∧ 𝐸

𝑊𝑀𝐶(𝑀 ∧ 𝐸)

• For more, refer to

Sang, T., Beame, P. and Kautz, H., 2005. Solving Bayesian networks by 
weighted model counting. In Proceedings of  the Twentieth National 
Conference on Artificial Intelligence (AAAI-05) (Vol. 1, pp. 475-482). 
AAAI Press.

Xin Zhang@PKU
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Example Question

• Is the inference problem of  Problog a NP hard problem? Is it decidable?

Xin Zhang@PKU
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How about combing PP with DL?

• Making neural networks Bayesian

• Bayesian neural networks

• Using neural networks to compute probabilistic programs

• Edwards

• Treat neural networks as input to probabilistic programs

• Neural-symbolic programming

Xin Zhang@PKU
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Xin Zhang@PKU
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Example Task: MNIST Addition

Xin Zhang@PKU
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What if we only labeled sums, not single digits?



DeepProbLog Program for MNIST Addition

nn(m_digit,[X],Y,[0,1,2,3,4,5,6,7,8,9]) :: digit(X,Y).

addition(X,Y,Z) :- digit(X,X2), digit(Y,Y2),digit(Z,Z2), Z2 is X2+Y2.

Xin Zhang@PKU
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Neural Annotated Disjunctions

Xin Zhang@PKU
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Keyword
Neural 

Network
Input 

Variables
Output 
Variable

Output 
Domain

Neural Annotated Disjunction

Grounded
Neural Annotated Disjunction

Grounded
Annotated Disjunction



DeepProbLog Program for MNIST Addition

nn(m_digit,[X],Y,[0,1,2,3,4,5,6,7,8,9]) :: digit(X,Y).

addition(X,Y,Z) :- digit(X,X2), digit(Y,Y2),digit(Z,Z2), Z2 is X2+Y2.

Xin Zhang@PKU
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Neural Facts

Xin Zhang@PKU
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Learning of DeepProblog: Problem

Xin Zhang@PKU
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Assuming desired probability 𝑝 = 1, the problem reduces to



Gradient Descent in Problog

Xin Zhang@PKU
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Algebraic Prolog

Xin Zhang@PKU

47

Algebraic Circuit
(Support Efficient Inference based on BDD) 



Gradient Descent in DeepProbLog

Xin Zhang@PKU
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A Motivating Example for Scallop

Xin Zhang@PKU
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Semantics and Provance Framework

• The formal semantics of  SCLRAM is parameterized by a provenance 
structure inspired by the theory of  Provenance Semirings [PODS’07]

• A Provenance Structure is an algebraic structure that specifies:

• Tag Space: the space of  additional information associated with each tuple

• Operations: how tags propagate during execution

Xin Zhang@PKU
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Semantics and Provance Framework

Xin Zhang@PKU
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Semantics and Provance Framework

Xin Zhang@PKU
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Semantics and Provance Framework

Xin Zhang@PKU
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Built-in Library of Provenance Structures

Xin Zhang@PKU
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Example Question

• In terms of  training, which one of  DeepProblog and Scallop is more 
efficient?

Xin Zhang@PKU
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Pearl’s Causal Hierarchy

• L1: Predictions: What if  I observe … ? 

• L2: Interventions: What if  I change … ?

• L3: Counterfactuals: What if  we did … given … ?

Xin Zhang@PKU
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What models can 

be used to answer 

these questions?



Causal Bayesian Network: Handling Interventions

Xin Zhang@PKU
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Example Question

• Can any Bayesian network used for causal inference?

Xin Zhang@PKU
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Structural Equation (Functional) Model

• Functional causal model
• Can answer all three questions

• Expressed using deterministic functional equations
• Probabilities are introduced by assuming certain variables are unobserved

• Follows Laplace’s conception of  natural phenomena

• Advantages over stochastic representations
• More general

• More in tune with human intuition

• Counterfactuals

Xin Zhang@PKU
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Structural Equations

• A functional causal model consists a set of  equations:

Xin Zhang@PKU
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parents Errors due to 

omitted factors.

Random.



Counterfactuals in Functional Models

• Causal Bayesian networks have trouble dealing with counterfactuals

• The simplest example:

• Consider two independent boolean variables x and y, we have P(x|y) = 0.5, given y = 1, what 
is P(y = 1 | do(x)= 0, y =1)?

• A more complex example:

Xin Zhang@PKU
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do(x3=ON) , X5=True



Three Steps for Computing 

For computing P(Y= y | do(X = x), e):

1. (abduction): Update the probability P(u) to obtain P(u|e)

2. (action): Perform intervention do(X) = x

3. (prediction) Use the modified model to compute P(Y=y)

Xin Zhang@PKU
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The Twin Network Approach

• Consider the following example

• 𝑋 = 𝑢1, 𝑌 = 𝑋 + 𝑢2, 𝑍 = 𝑌 + 𝑢3

• How to compute P(Z|do(X) = x, Z=z)?

Xin Zhang@PKU
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u1

u2

u3

X

Y

Z



The Twin Network Approach

• P(Z|do(X) = x, Z=z) becomes P(Z’|do(X’) 
= x, Z=z)

Xin Zhang@PKU
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u1

u2

u3

X

Y

Z

X’

Y’

Z’



The Twin Network Approach

• P(Z|do(X) = x, Z=z) becomes P(Z’|X’ = x, 
Z=z)

Xin Zhang@PKU
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u1

u2

u3

X

Y

Z

X’= x

Y’

Z’



Pearl and Halpern’s Definition of Actual 
Causality
• Ԧ𝑋 = Ԧ𝑥 is an actual cause of  𝜙 in situation (𝑀, 𝑢) if

• AC1. 𝑀, 𝑢 ⊨ Ԧ𝑋 =  Ԧ𝑥 ∧ 𝜙
• Both 𝑋 =  Ԧ𝑥 and 𝜙 are true in the actual world

• AC2. Complicated. Captures counterfactuals

• AC3. Ԧ𝑋 is minimal; no subset of  Ԧ𝑋 satisfies AC1 and AC2.
• No irrelevant conjuncts

Xin Zhang@PKU
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Pearl and Halpern’s Definition

• AC2. There is a set of 𝑊 of  variables in 𝑉 and a setting Ԧ𝑥′ of  the 

variables in Ԧ𝑋 such that if  𝑀, 𝑢 ⊨ 𝑊 = 𝑤 , then

𝑀, 𝑢 ⊨ Ԧ𝑋 ← 𝑥′,𝑊 → 𝑤 ∧ ¬𝜙

In words: keeping the variables in 𝑊 fixed at their actual values, changing 
Ԧ𝑋 can change the outcome 𝜙

Xin Zhang@PKU
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Example

• JimmyThrows = u1, SuzyThrows = u2, 

SuzyShatters = SuzyThrows, 

JimmyShatters = JimmyThrows & !SuzyShatters,

BottleShatters = SuzyShatters | JimmyShatters

Let Ԧ𝑋 = 𝑆𝑢𝑧𝑦𝑇ℎ𝑟𝑜𝑤𝑠 ,𝑊 = JimmyShatters , 𝜙 = 𝐵𝑜𝑡𝑡𝑙𝑒𝑆ℎ𝑎𝑡𝑡𝑒𝑟𝑠, 

then 𝑀, 𝑢 ⊨ Ԧ𝑋 ← Ԧ𝑥,𝑊 → 𝑤 ∧ ¬𝜙

Xin Zhang@PKU
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Example Question

• What predicate is the actual cause depending on how you model the 
problem. Is the statement right? 

Xin Zhang@PKU
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AI Explainability: Motivation

Xin Zhang@PKU
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Overview of Explainability Techniques

• Explainable models

• Post hoc explanations

• Global vs. local

Xin Zhang@PKU
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Approaches for Post hoc Explanations

Xin Zhang@PKU
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LIME Example

Xin Zhang@PKU
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Anchors Example

Xin Zhang@PKU
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Saliency Maps

Xin Zhang@PKU
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Prototype Approaches

Xin Zhang@PKU
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Counterfactual Explanations

Xin Zhang@PKU
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Example Question

• Which technique below is an attribution-based explanation technique?

A. Anchors

B. Shapley Value

C. Counterfactual explanations

D. Influence function

Xin Zhang@PKU
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LLM with Language Control

• Reduce ambiguity

• Enforce additional constraints
• Correctness

• Key ideas
• Use programming languages to interact with LLMs

• Force LLMs to output structured sentences

Xin Zhang@PKU
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Showcases
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Follow Semantics: Look Ahead

Xin Zhang@PKU
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From Luca Beurer-Kellner’s slides.



Follow and Final Semantics
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From Luca Beurer-Kellner’s slides.



Grammar-Constrained Decoding
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The GCD Framework in EMNLP 2023
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Example Question

• Which approach employs an incremental parser?

A. LMQL

B. Grammar-Constrained Decoding
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