Course Review

Xin Zhang
Peking University



Final Information

* When: 18:40-20:40, June 17
* Where: 117
* Content: From Lecture 6 onwards (including Lecture 6, semantics)

* Form: Allowed to bring two sheets of A4-size/letter-size papers (4 pages)

* No keys to past exams
* Shouldn’t be print-out of all slides



Topics after Midterm

Probabilistic Programming

Semantics
Inference
Logic programming

Deep probabillistic
programming

Broader Al

 Causal inference
* Explainable Al

 Constrained LLMs
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Semantics of Probabilistic Programming

* Formal tools to reason about properties of a program
* What is the probability that the postcondition 1s satisfied?
* What is the probability that this program halts on all inputs?
* What 1s the probability that it halts in polynomial time?



Semantics of Probabilistic Programming

* Operational semantics

* Model the step-by-step executions of a program on an abstract machine

e Denotational semantics

* Link program concepts with math concepts: measure theory



Operational Semantics: Example

X :=0 What iIs the probability that the program halts?
while x == 0 do

. (x :=0; e,s,m, p) — (e, s[x — 0], m, p)
x:=coin()

(e, s[x > 0],m,p) —> (x := coin() ; e,s[x ~ 0],m, p)

(x :=coin() ; e¢,s[x — 0],m,p) =, (e,[s — hdm],tim,p). hd(mm,..) =my
tl(m1m2 ) = m, ...

The loop continues until it reaches m inf the form of 1m’

(e,s[x — 1],m’,p) N (skip, s[x — 1],m’, p)

(x :=0; e,s,m,p) N (skip, s[x — 1],m’, p)



Measurable Spaces and Measures

* (S, B) is a measurable space

e Sisaset

* B 1s a g-algebra on S, which 1s a collection of subsets of S
* It contains @
* Closed under complementation in S

* (Closed under countable union

* The elements of B are called measurable sets

* If Fis a collection of subsets of S, 0(F) is the smallest g-algebra
containing F, or o(F) £ N{A | F € A and A is a c-algebra} . We say (S,
o(F)) is generated by F.



Denotational Semantics: Example

* (S, Bg): x = uniform(0.1, 1.1) u([a, b]) = length([a, b] N [0.1,1.1])

* (T, By): y = uniform(0,x)

e Markov kernel P(x, U=[a;, b;]) = =¥ length([a;, b;] N [0, x])/x
e ws pushforward under P is

P.(1)(By) = f By 0 [0, x] * u(dx)

x€[0.1,1.1]



Example Question

* What is right about denotational semantics (DS) and operational
semantics (OS)?

A. DS can reason about nonterminating programs but OS cannot

B. DS reason about all executions of the program together while OS
reason about one execution at a time

C. DS links program concepts with integers

D. OS uses real random numbers



Inference in Probabilistic Programming

* Graph-based inference
* Compilation-based
* Can work only with bounded programs

e Evaluation-based inference

* Evaluation-based
* Can work with any program

* Important general inference algorithms
e Hamiltonian Monte-Carlo
* Sequential Monte-Catlo



Graph-Based Inference: Translation

p,d,G, el p,¢p,G

* p: environment, which maps a variable to a
constant or a node variable
* ¢: path condition

* e: program



Graph-Based Inference: Example

x = guassian(0, 1)
y = uniform(0, x)
if (x>10){
condition(y >1.5)
)
else{
condition(y<0.5)

b



Example Question

* What kind of programs can graph-based inference handle?

A sorting program that can work with any array of integers

A reactive program that continuously monitors the room temperature
A program that schedules courses of the university

OO %z

A program that computes Pi with any given precision



Metropolis-Hasting: Single-Site Proposals

* Map a(X), such that X(x) refers to the value of Xx (only variables in the
current execution)

* Map o(logP), where logP (v) evaluates the density for each variable

* When sampling from a distribution d, we have

o(logP(x)) = LOG — PROB(d, X(x))

* When encounter condition(b), we have
o(logP(y)) = LOG — PROB(b, true)



Metropolis-Hasting: Single-Site Proposals
* Pick a variable xy5 € dom(X) at a random from the current sample

e Construct a proposal X', P’ by re-running the program

* For an expression d that sample from a variable x

* If x == xg, or x € dom(X), then samples from the expression. Otherwise,
reuse the value X' (x) « X(x)

* Calculate the probability P'(x) < PROB(d, X'(x))
* For expression condition(b) with variable y:

e Calculate the probability P'(y) < PROB(b,y) = 1[b==y]
* For expression observe(e, v) with variable y:

e Calculate the probability P'(y) < PROB(e, v)



Metropolis-Hasting: Single-Site Proposals

_ 'dom (X)) Hyey P'(y) | [.e xreused P'(x)
[dom(X')| I,ey P(y) [1zexreusea P(z)

8}



Example Question

* In each iteration of single-site proposals, only the value of the chosen
variable need to be sampled, while the values of all the other variables
are reused from the last iteration. Is the statement correct?
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Hamiltonian Monte Carlo (HMC)
* Augment distribution p(z) with p(z, r)

* Proposal distribution:
* Update z, 1 using Hamiltonian dynamics (in practice, a discretized approximation
called leapfrog integration)
* Update r stochastically

* Acceptance probability (After applying Hamiltonian dynamics):

Account for
min (1,exp{H (z,r) — H(z",r*)}) TmEen

18



Example Question

* During HMC, ignoring numerical issues and precision issues, the total
energy of the system doesn’t change. Is the statement right?



Sequential Monte Carlo

o

Given Estimate
p(xo) and P (Xo:t|Y1.¢) or
p(x¢|xt—1) and p(xelyy.e) or
p(Yelx:) and I(fy) = Ep(xo:t|y1:t)[ft(x0:t)] = fft(xo:t)P(xo:t|3’1:t)dxo:t

Observations yq.¢



SMC: Bootstrap Filter

Assume the proposal distribution is p(X4.¢)

1. Initialization. t = 0
* Fori=1,....N, sample xél) ~p(xg) and set t =1

2. Importance sampling step.
. ~ (1) =~ (1) =) =)
For sample X, ~p(x¢|X;2;) and set (X5.;_1, X, ).
* Fori=1,...,N, evaluate the importance weights.

* Normalize the importance weights

3. Selection step

* Resample with replacement N particles from the current particles according to
importance weights

e Sett ->t+1



Bootstrap Filter: Example

Lt—1
=  —_ 29 8cos (1.2t
I ZSCt 1—|— ]_—|—£13‘%_1 + ( )—|—?Jt
= ﬁ + w
Y — 20 ty

x,~N(0,10), v, ~N(0,10), w; ~N(0,1)

From “An Introduction to Sequential Monte Carlo Methods” by Arnaud Doucet,
Nando De Freitas, and Neil Gordon
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i=1,...,N=10 particles

1
o O O O @) O O 0O O O rE)1,

From “An Introduction to Sequential

A | Y Y Monte Carlo Methods” by Arnaud
® ? I {f)z?)l ,W W Doucet, Nando De Freitas, and Neil
i Gordon
O O O i) pp-1
: N

23



Example Question

* Is SMC a variant of importance sampling?



Probabilistic Logic Programming:

Unifying Logic and Probability

* Logic: the ability to describe complex domains concisely in terms of
objects and relations

* Probability: the ability to handle uncertainty

* Logic + probability = Probabilistic Logic Programming
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Problog: Syntax

Queries: Ewvidence:

0.5::heads(C).
two_heads :- heads(cl), heads(c2).
query(two_heads).

0.5::heads(C).

two_heads :- heads(cl), heads(c2).
0.5::heads(C) :- between(1, 4, C). evidence(\+ two_heads).
query(heads(C)). query(heads(c1)).

From the documentation of Problog
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Semantics of Problog

* From a Problog program, we can sample a Datalog program by sampling

the facts
0.5 :: stayUp. stayUp.
0.5 :: stayUp. 0.7 : r1. rl.
0.7 :: drinkCoffee :- stayUp. = 0.3: 2 m 2.
0.3 :: fallSleep :- drinkCoffee, stayUp. drinkCoffee :- stayUp, r1. drinkCofftee :- stayUp, r1.
tallSleep :- drinkCoffee, stayUp, r2. tallSleep :- drinkCoffee, stayUp, r2.

Probability: 0.5*0.7*0.3

27



Semantics of Problog

* What about queries?

0.5 :: stayUp.

0.7 ::rl.

0.3:r2.

drinkCoffee :- stayUp, rl.

fallSleep :- drinkCoffee, stayUp, r2.

query(fallSleep)

A query calculates a marginal probability of a fact. Informally,

(f) = Yp(any program that derives f)
pif) = Yp(any program)



Semantics of Problog

e What about evidence?

0.5 :: stayUp.

0.7 ::rl.

0.3:r2.

drinkCoffee :- stayUp, rl.

fallSleep :- drinkCoffee, stayUp, r2.

evidence(\+ fallSleep)
query(stayUp)

Evidence filters out certain programs. Informally,
G Yp(any program that derives f|evidence)
p =

Yp(any program|evidence)



Semantics of Problog

* What about relations and quantified variables?
0.9 :: edge(0,1).
0.8 :: edge(1,2).
0.7 :: edge(2,3).
0.8 : edge(2,4).

path(A,B) :- edge(A,B).
0.8 :: path(A,C) :- path(A,B), edge(B,C).

evidence(\+ path(0,3)).

query(path(0,4)).



Semantics of Problog

* Move probabilities to facts
0.9 :: edge(0,1).
0.8 :: edge(1,2).
0.7 :: edge(2,3).
0.8 :: edge(2,4).
0.8 =: 1(A,B,C).

path(A,B) :- edge(A,B).
path(A,C) :- path(A,B), edge(B,C), r(A,B,C).

evidence(\+ path(0,3)).

query(path(0,4)).



Semantics of Problog

e Ground
Constants: 0, 1. 2.3 4

b/ b/ b/

path(A,C) :- path(A,B), edge(B,C), r(A,B,C).

Generates

path(0,0) :- path(0,0), edge(0,0), £(0,0,0).
path(0,1) :- path(0,0), edge(0,1), £(0,0,1).
path(0,1) :- path(0,0), edge(0,1), £(0,0,1).

A=0, B=0, C=0
A=0, B=0, C=1
A=0, B=0, C=1



Semantics of Problog

* After grounding, each ground term can be seen as a Boolean variable,
then the whole program can be solved using the semantics of the
Boolean case

path(0,0) > t1, edge(0,0) -> t2, £(0,0,0) -> t3

path(0,0) :- path(0,0), edge(0,0), £(0,0,0).
¥

tl :- t1,t2,t3



Example using MaxSAT for Inference

0.6 ralr.1. — 1n0.6 rain
0.5 :: sprinkle. 100.4 lrain
0.9 :: grass_wet :- rain, sprinkle. In0.5 sprinkle
1n0.5 Isprinkle
1n0.9 r
In0.1 !r
grass_wet :- rain, sprinkle is translated into grass_wet or lrain or Isprinkle or lr

grassyer <> rain A sprinkle Ar &!gmss_wet or rain

lorass_wet or sprinle

lorass_wet or r



Example using WMC for Inference

0.6 rain w(rain =true) = 0.6
. w(rain =false) = 0.4
0.4 lrain w(sprinkle = true) = 0.5

w(sprinkle = false) = 0.5
w(r = true) = 0.9

0.5 sprinkle

0.5 !sprinkle w(r = false) = 0.1
0.9 r
0.1 !r P(grass_wet = true) = WMC(MAgrass_wet=true)

grass_wet or lrain or !sprinkle

| : What if we want to evaluate
lorass_wet ot rain

P(rain | grass_wet = true)?
lorass_wet or sprinle



Using WMC for Marginal Inference

* Let the constructed weighted formula be M, queries be Q, evidence be E,

then
WMC(MAQ AE)

P = e n b

* For more, refer to

Sang, T., Beame, P. and Kautz, H., 2005. Solving Bayesian networks by
weighted model counting. In Proceedings of the Twentieth National
Conference on Artificial Intelligence (AAAI-05) (Vol. 1, pp. 475-482).
AAAIT Press.



Example Question

* Is the inference problem of Problog a NP hard problem? Is it decidable?



How about combing PP with DL?

* Making neural networks Bayesian

* Bayesian neural networks

* Using neural networks to compute probabilistic programs
* Edwards

* Treat neural networks as input to probabilistic programs

* Neural-symbolic programming



-

Neurosymbolic Programs

~

_/

Slide by Chaudhuri, Sun,
Solar-Lezama



Example Task: MNIST Addition

EIMECIA-REKN-="

What if we only labeled sums, not single digits?



DeepProblLog Program for MNIST Addition
nn(m_digit,[X],Y,[0,1,2,3,4,5,6,7,8,9]) :: digit(X,Y).

addition(X,Y,Z) :- digit(X,X2), digit(Y,Y?2),digit(Z,22), Z2 is X2+Y2.



Neural Annotated Disjunctions

Neural Input  Output Output
Keyword Network  Variables Variable Domain

N |

1‘11'1(111_digit:| [X], Y, [0.‘| e 9]) > digit()(:| Y)_ Neural Annotated Disjunction
< -
nn(m digit, [EJ],0)::digit(E},0); ... ; nn(m digit, [EJ},9)::digit([E} 9).

< b
Grounded

po::digit(E]0); ... ;po::digit(El9). Annotated Disjunction

Grounded
Neural Annotated Disjunction
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DeepProblLog Program for MNIST Addition
nn(m_digit,[X],Y,[0,1,2,3,4,5,6,7,8,9]) :: digit(X,Y).

addition(X,Y,Z) +- digit(X,X2), digit(Y,Y?2),digit(Z,22), Z2 is X2+Y2.

query(addition(E} g X)).

additionnj.. 7):0.14
addition(.. 8) : 0.62
addition(.. 9):0.24

43
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Neural Facts

nn(m, [X,Y|)::similar(X,Y).

< b
nn(m, [E], ) :: similar(E], Y.

8-

p::similar(E] ).

44



Learning of DeepProblog: Problem

Definition 5

Learning from entailment Given a DeepProbLog program with parameters O,
a set Q of pairs (q,p) with ¢ a query and p its desired success probability, and
a loss function £, compute:

argmm— Z L(P(q|©),p)
<l (g,p)€Q

Assuming desired probability p = 1, the problem reduces to

1
arg min — o] Z — log Po(q)

(g,p)€Q



Xin Zhang@PKU

Gradient Descent in Problog

e

OR [ 0.14, [0.45,0.4
: :earthquake. | ]

0.2

0.1} :burglary. 0.04 [-0.05.0.4] | AND

0.5::hears_alarm(mary) .

0.4::hears_alarm(john).

alarm :- earthqualle 6.8, [-0.1,0.8] AN’D/\‘/AND T 108
¢ * ‘/\

alarm :- burglary. [—uearthquakeJ[ burglary ][ hears_alarm(mary) [earthquake]
calls(X):-alarm,hears_alarm(X). 0.8, [-1,0] 0.1, [0,1] 0.5, [0,6] 0.2, [1,0]
1
arg min @ Z — 108,‘ Pg (q)
© (g,p)€Q

46
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Algebraic Prolog

An algebraic Prolog (aProbLog) program consists of

e a commutative semiring (A, ®, R, e?, 6®)1

e a finite set of ground algebraic facts F = {f1,..., fu} —

e a finite set BK of background knowledge clauses OR | 0.14, [0.45,0.4]

e alabeling function o : L(F) — A /\
0.04, [-0.05,0.4] | AND
o oo AN’D/\‘/AND 0.1, [0.5,0]
——— \

(ah a,_é) a (bla b ) — (a,l + b1, a,_é + b2) [ —earthquake J[ burglary ][ hears_alarm(mary) [ earthquake ]
(al,a_é) 2 (bl,b_') _ (albl,bla_é +a1b;) 0.8, [-1,0] 0.1, [0,1] 0.5, [0,0] 0.2, [1,0]
& S Algebraic Circuit
e” = (0,0) (Support Efficient Inference based on BDD)
e® = (1,0)

47



Gradient Descent in DeepProbLog

dz

dz

dz dy

dy‘d:c

Query
addition(a,b,1)

DeepProbLog Program

t(9.2) :: noisy.

grounding:>

nn(classifier, [X], ..

addition(X,Y,Z):- ..

f

Ground
DeepProblog Program
t(0.2) :: noisy.
nn(classifier,[a],0);
nn(classifier, [b],0);

;ddition(a,b,1):— -

dL

d@k

8}’ )sz
) j{: 00y,

i
digit(a,N1)
digit(b,N2)

y

0.8 ::
0.1

rewrite /
compilation

P, Vp

digit(a,®);
1: digit(a,1);

Loss
L, VL

Xin Zhang@PKU
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A Motivating Example for Scallop

(ype Action = UP | RIGHT | DOWN | LEFT

type actor(x: 132, y: i32), goal(x: i32, y: i32), enemy(x: i32, y: i32)
PathPlanner | Actiona

rel safe_cell(x, y) = grid_cell(x, y) and not enemy(x, Yy) Pa- - ’
rel edge(x, y, x, y + 1, UP) = safe_cell(x, y) and safe_cell(x, y + 1)
// Rules for RIGHT, DOWN, and LEFT edges are omitted for brevity...
rel next_pos(p, q, a) = actor(x, y) and edge(x, y, p, q, a)
rel path(x, y, X, y) = next_pos(x, y, _)
rel path(x1, y1, x3, y3) = path(x1, y1, x2, y2) and edge(x2, y2, x3, y3, _)

Environment <

\\\:i% next_action(a) = next_pos(p, q, a) and path(p, q, r, s) and goal(r, S)AJ///

49
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Semantics and Provance Framework

* The formal semantics of SCLRAM 1s parameterized by a provenance
structure inspired by the theory of Provenance Semirings [PODS’07]

* A Provenance Structure is an algebraic structure that specifies:

* Tag Space: the space of additional information associated with each tuple

* Operations: how tags propagate during execution

(Tag Space)
(False)

(True)
(Disjunction)
(Conjunction)
(Negation)
(Saturation)

Abstract Provenance = max-min-prob(mmp)

t € T [0, 1]
0 € T 0

1 € T 1

& : TXT->T max
® : TXT->T min
© : T-T Ap.(1—-p)
S T x T — Bool ==

o0
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Semantics and Provance Framework

Scallop program rel safe_cell(x, y) = grid_cell(x, y) and not enemy(x, Yy)
SCLRAM program safe_cell — grid_cell - enemy
(ls 2) tl o5 (1, 2)
(2,3) (2,3) £ 32 (2.3) t3 :: (2,3)
[grid_cel1](F) [enemy] (F) [grid_ce11] (Fr) [enemy] (Fr)
N VS. ~.
[grid_cell — enemy] (F) [erid_cell — enemy] (Fr)
(1,2) t1 :(1,2)

—» L,R(Ot3):(2,3) -

Semantics Semantics

ol
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Semantics and Provance Framework

Scallop program rel safe_cell(x, y) = grid_cell(x, y) and not enemy(x, y)
SCLRAM program safe_cell — grid_cell - enemy
(1,2) o1 = (1, 2)
(2,3) (2,3) vy 12 (2,3) 03 (2 3)
[grid_cell] (F) [enemy] (F) [grid_cell]| (Fixp) [enemy] (Ftkp)
\ / VS. \ /
[grid_cell — enemy](F) [grid_ce1l — enemy] (Fikp)
(1,2) 01 = (1,2)

—» v A-03:(2,3) <=

Semantics Semantics with top-k-proofs

o2
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Semantics and Provance Framework

Scallop program rel safe_cell(x, y) = grid_cell(x, y) and not enemy(x, Yy)

ScLRAM program safe_cell — grid_cell - enemy

0.9 wv;:(1,2)
Recover Probability from Bool Formula 0.9 vy:(23) 0.2  p3:(2,3)

Using Weighted Model Counting (WMC) lgrid_cell] (Fikp) [enemy] (Fikp)

Pr(v) = 0.9, Pr(v ) = 0.9, Pr(v 3) = 0.2 \ /

Pr(v2 AN U3) - PI‘(U2) (11— [grid_cell — enemy] (Fikp)
Pr(v,%))

U1 % (1, 2)

= 0.9 . (1 - 0.2) _> U9 A —03 (2, 3) 4_

= 0.72
Semantics with top-k-proofs

o3
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Built-in Library of Provenance Structures

Kind Provenance T 0 1 ® ® S) =) T p
unit 00} () 0 Aty, t2.() Aty, t2.() Aa.FAIL == Ai.() At.()
Discrete bool {T 1} | L T v A = == id id
natural N 0 1 + X An.1[n > 0] == id id
max-min-prob [0,1] 0 1 max min At.l -t == id id
add-mult-prob [0,1] 0 1 Aty, ty.clamp(ty + t3) Aty ty. (8 - ) At.1 -t At. T id id
I nand-min-prob [0,1] 0 1 At . — (1 —=t)(1 = t3) min At.l -t At.T id id
Etobeliilistic nand-mult-prob 4] | 0 | & |2mt.~O=230-8) | 60t 6 At1-t | AtT id id
t°p_k'pr00fs N 0 {0} vtop-k Atop-k “top-k —— Ap, { {POS( i) } } AQD-WMC(‘P» F)
sample-k-proofs o ? {?} Vsample-k Asample-k “'sample-k == Api{{pos(i)}} | Ap.WMC(g,T)
diff-max-min-prob D 0 1 max min At.1 -t == id id
diff-add-mult-prob 0 1 Aty ty.clamp(#; + £5) Ay, oty - by Atl=¢ AT id id
. , diff-nand-min-prob | [0,1] 0 1 | Ak~ (1-H)(1-5) min Atl-¢ At.T id id
Ditorentible || cnermannemnenres | 0.0 | 0 | 1 |28h —d—t3d—19 | stla% Ai-F | AT id id
diff-top-k-proofs P 0 | {0} Viop-k Atop-k “top-k == Api{{pos(i)}} | Ap.WMC(e¢, I:“)
diff—sample_k'prOOfs o 0 {0} Vsample-k Asample-k “'sample-k e Aﬁl { {POS( i) } } A‘PWMC((Pa I)

o4



Example Question

* In terms of training, which one of DeepProblog and Scallop 1s more
efficient?



Pearl’'s Causal Hierarchy

e [.1: Predictions;: What if I observe ... ?

What models can
be used to answer

* [.2: Interventions: What 1f I change ... ?
these questions?

* L.3: Counterfactuals: What if we did ... given ... ?



Causal Bayesian Network: Handling Interventions

@ SEASON
.
SPRII:I)II%LER @ RAIN
B N X
-
@ SLIPPERY

Px.=0n (X1, X9, X4, X5) = P(x1) P(x5 | x1) P(x4| Xy, X3 = On)P(x5 | xy4),



Example Question

* Can any Bayesian network used for causal inference?



Structural Equation (Functional) Model

* Functional causal model
* Can answer all three questions

* Expressed using deterministic functional equations
* Probabilities are introduced by assuming certain variables are unobserved
* Tollows Laplace’s conception of natural phenomena

* Advantages over stochastic representations
* More general
* More in tune with human intuition
* Counterfactuals



Structural Equations

* A functional causal model consists a set of equations:

x; = f;(pa;,u), 1=1,...,n,

/0

parents Errors due to
omitted factors.
Random.



Counterfactuals in Functional Models

* Causal Bayesian networks have trouble dealing with counterfactuals

* The simplest example:

* Consider two independent boolean variables x and y, we have P(x|y) = 0.5, given y = 1, what
isPy=1 ] dox)=0,y=1)?

* A more complex example: SEASON

N
RAIN
do(x;=ON) , X;=True SPRINKLER /@

N
WET
|
SLIPPERY



Three Steps for Computing

For computing P(Y=y | do(X = x), e):
1. (abduction): Update the probability P(u) to obtain P(u|e)

2. (action): Perform intervention do(X) = x

3. (prediction) Use the modified model to compute P(Y=y)



The Twin Network Approach
* Constder the following example X / ",

X =u,Y=X+u,,Z=Y +u,
Y/
u

* How to compute P(Z |do(X) = x, Z=2)?




The Twin Network Approach

Uq

* P(Z|do(X) = x, Z=z) becomes P(Z’|do(X) X/uz X
=X, /=2)
Y ‘ Y

U3
Z/.\ ‘




The Twin Network Approach

* P(Z |do(X) = x, Z=2) becomes P(Z’| X’ = x, X/uz X'= X
/.=7)




Pearl and Halpern’s Definition of Actual
Causality

« X = X is an actual cause of ¢ in situation (M, u) if

s ACL(M, ) = (X = ) A ¢

* Both ()? = 9_6)) and @ are true in the actual world

* AC2. Complicated. Captures counterfactuals

e AC3. X is minimal; no subset of X satisfies AC1 and AC2.

* No irrelevant conjuncts



Pearl and Halpern’s Definition

e AC2. There is a set of W of variables in V' and a setting x' of the
variables in X such that if (M, u) E (W = W), then

(M,u) = ()?<— ?,W_)W)/\_I¢

In words: keeping the variables in W fixed at their actual values, changing
X can change the outcome ¢



Example

* JimmyThrows = ul, SuzyThrows = u2,
SuzyShatters = SuzyThrows,
JimmyShatters = JimmyThrows & ISuzyShatters,
BottleShatters = SuzyShatters | JimmyShatters

Let X = {SuzyThrows}, W = {JimmyShatters}, ¢ = BottleShatters,
then (M, %) E (X « X, W > W) A ¢



Example Question

* What predicate 1s the actual cause depending on how you model the
problem. Is the statement right?



Al Explainability: Motivation

Utility

a

Debugging

Bias Detection

Recourse

If and when to trust model predictions

Vet models to assess suitability for
deployment

Stakeholders

e

End users (e.g., loan applicants)
Decision makers (e.g., doctors, judges)

Regulatory agencies (e.g., FDA, European
commission)

Researchers and engineers

/




Overview of Explainability Techniques

* Explainable models

* Post hoc explanations
e GGlobal vs. local



Approaches for Post hoc Explanations

Local Explanations Global Explanations
- Feature Importances - Collection of Local Explanations
- Rule Based - Model Distillation
- Saliency Maps .- Summaries of Counterfactuals
. Prototypes/Example Based . Representation Based

. Counterfactuals



Xin Zhang@PKU

LIME Example

Query
x '

Perturbed P(Labrador) J
Instances °
d?

" 0.92 v
: Locally weighted
regression

. |
¢

Original Image

P(labrador) =0.21

LIME is quite customizable:

e How to perturb? 0.34

e Distance/similarity? g

e How local you want it to be? Explanation
e How to express explanation Maybe to a fault?
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Anchors Example

Feature Value
Age 37 < Age < 48
Workclass Private
Education < High School
Marital Status Married
Occupation Craft-repair
Relationship Husband
Race Black
Sex Male
Capital Gain 0
Capital Loss 0
Hours per week < 40
Country United States
Salary
>S50K
<S50K

LIME <=50K >50K

Capital Gain =0
023

Marital Status = Married

Anchors
IF Education < High School

Then Predict Salary < 50K

Xin Zhang@PKU
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Saliency Maps

Input

LIME SHAP Gradient

e “

&

¢ J *
4’ 2“ "1‘ .T",‘!“ -

Deep Integrated
Taylor Grad-Input Gradients
ik -
- Q 4 u *}: "—\ ,3
.' ) ~ Y RS
N = Wil

* Junco Bird
Guided Pattern
SmoothGrad DeConvNet BackProp PatternNet Attribution
..?§ “ _/‘%
o
vt . Q f‘. - ’ ,A
& : s ‘:m.-.u_h \" .‘:
LRP-Z LRP-EPS LRP-PA LRP-PB
"( . r‘:‘ - -
i {7 - PR
;r ir“ - ' ‘.. - '/, : :- o /,

Xin Zhang@PKU

Model Predictions

[ —
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Prototype Approaches

Explain a model with synthetic or natural input ‘examples’.
Insights

 What kind of input is the model most likely to
misclassify?

 Which training samples are mislabelled?

 Which input maximally activates an intermediate
neuron?



Counterfactual Explanations

Predictive

Model Applicant
ode
Loan Application ‘ ‘
A I
Deny Loan =3 fl
~
S //
N~
<
-~
/
-~

Counterfactual Generation
Algorithm

Recourse: Increase your salary by 50K & pay your credit card bills on time for next 3 months

Xin Zhang@PKU
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Example Question

* Which technique below is an attribution-based explanation technique?
A. Anchors

B. Shapley Value

C. Countertfactual explanations

D. Influence function



LLM with Language Control

* Reduce ambiguity

e Enforce additional constraints

e Correctness

* Key ideas
* Use programming languages to interact with LLMs

* Force LLMs to output structured sentences



Xin Zhang@PKU

Showcases

A list of good dad jokes. A indicates the punchline
Q: How does a penguin build 1its house?

A: Igloos it together.

Q: Which knight invented King Arthur's Round Table?
A: Sir Cumference.

"Q: [JOKE]\n" where 1en(TOKENS(JOKE)) < 120 and STOPS_AT(JOKE, "?")
"A: [PUNCHLINE]" where STOPS_AT(PUNCHLINE, "\n") and len(TOKENS(PUNCHLINE)) > q
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Follow Semantics: Look Ahead

True, if vt satisfies <expr>
Follow [<expr>](v, t) =

False, if vt violates <expr>

Current Value Next
Vocabulary
Token

Problem: What if a constraint is only momentarily violated? e.g., LRSIl @40\ [ez]8 ] = B>

From Luca Beurer-Kellner’s slides.
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Follow and Final Semantics

fin(True), if vt™ satisfies <expr>

fin(False), if vt* violates <expr>

Follow [<expr>](v, t) =
P s var(True), if vt satisfies <expr>
\
Current Value 1 var(False), if vt satisfies <expr>
Next

Vocabulary
Token

From Luca Beurer-Kellner’s slides.
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Grammar-Constrained Decoding

Grammar for closed information extraction (clE):

S—(l|[s]alr]lplo]lal)
a = (Entity-1 | ... | Entity-N), B = (Relation-1 | ... | Relation-M)

x = “Burundi l

moved its capital LEGEND: S: root non-terminal

from Bujumbura to x: input e: empty string (3: allowed tokens
Gitega” «: entities from KB {_: forbidden tokens

Grammar-constrained c.,\ $: end of sequence p: relations from KB —: decoding path
decoding (GCD)

f

t=0 i

(




Xin Zhang@PKU

The GCD Framework in EMNLP 2023

Assume parsing works

Parsing let us know if a sentence is valid according to a grammar.
It provides a IsSentenceValid function: str — > bool.

How GCD works
The high-level algorithm of GCD is:

® Given an existing sentence(not necessarily complete) s

® Get a probability distribution over the next token P(w;|s)

© For each candidate token w; in the distribution:

®  Check if the sentence s+ w; is valid according to the parser
(5 If valid, add w; to the whitelist

® sample from the whitelist

@ Repeat until the sentence is complete
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Example Question

* Which approach employs an incremental parser?

A. LMQL

B. Grammar-Constrained Decoding
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