Semantics of Probabilistic Programming I

Xin Zhang
Peking University

Most of the content is from “Semantics of Probabilistic Programming: A Gentle Introduction” by Fredrik Dahlqvist, Alexandra Silva, and Dexter Kozen
Recap: Problem and Motivation

• Evaluate $P(Z|X)$ and related expectations

• Problem with exact methods
 • Curse of dimensionality

• $P(Z|X)$ has a complex form making expectations analytically intractable
Recap: Variational Inference

• Functional: a function that maps a function to a value

\[H[p] = \int p(x) \ln p(x) \, dx \]

• Variational method: find a input function that maximizes the functional

• Variational inference: find a distribution \(q(z) \) to approximate \(p(Z \mid X) \) so a functional is maximized
Recap: Variational Inference

\[\ln p(X) = \mathcal{L}(q) + KL(q||p) \]

\[\mathcal{L}(q) = \int q(Z) \ln \left\{ \frac{p(X, Z)}{q(Z)} \right\} dZ \]

\[KL(q||p) = -\int q(Z) \ln \left\{ \frac{p(Z|X)}{q(Z)} \right\} dZ \]

If \(q \) can be any distribution, then variational inference is precise. But in practice, it cannot.
Is the following statement right?

• Probability $p(Z,X)$ is usually easier to evaluate compared to $P(Z|X)$.
Recap: Sampling Methods

• Stochastic methods

• Also called Monte Carlo methods

\[\mathbb{E}[f] = \int f(z)p(z) \, dz \quad \Rightarrow \quad \hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(z^{(l)}) \quad z_1, \ldots, z_l \text{ are samples from } p \]
Recap: Sampling Methods

• Transformation method: $CDF^{-1}(\text{uniform}(0,1))$

• Rejection sampling
 • A proposal distribution $q(z)$
 • Choose k, such that $k \cdot q(z) \geq p(z)$, for any x
 • Sampling process:
 • Sample z_0 from $q(z)$
 • Sample h from uniform$(0, k \cdot q(z_0))$
 • If $h > p(z_0)$, discard it; otherwise, keep it
Is the following statement correct?

• All primitive distributions can be constructed using the transformation method.
Is the following statement right?

• In rejection sampling, the probability whether a sample is accepted does not depend on the proposal distribution
Is the following statement correct?

• The efficiency of importance sampling depends on the choice of the proposal distribution
Recap: Sampling Methods

• Importance sampling
 • Used to evaluate $f(z)$ where z is from $p(z)$

\[
E(f) = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \approx \frac{1}{L} \sum_{l=1}^{L} \frac{p(z^l)}{q(z^l)} f(z^l)
\]

• How to get real samples: create a new discrete distribution using the above samples and set their probabilities using the importance weights
Recap: Sampling Methods

• Markov Chain Monte Carlo
 • A sampling method that works with a large family of distributions and high dimensions

• Workflow
 • Start with some sample z_0
 • Suppose the current sample is z^τ. Draw next sample z^* from $q(z | z^\tau)$
 • Decide whether to accept z^* as the next state based some criteria. If accepted, $z^{\tau+1} = z^*$. Otherwise, $z^{\tau+1} = z^\tau$
 • Samples form a Markov chain
Recap: Sampling Methods

<table>
<thead>
<tr>
<th>Constraints on the proposal distribution</th>
<th>Metropolis</th>
<th>Metropolis-Hasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric</td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

| Accepting probability | $\min(1, \frac{p(z')}{p(z)})$ | $\min(1, \frac{p(z')q(z'|z)}{p(z)q(z'|z')})$ |
Recap: Why MCMC works?

• Markov chain: \[p(z^{(m+1)}|z^{(1)}, \ldots, z^{(m)}) = p(z^{(m+1)}|z^{(m)}) \].

• Stationary distribution of a Markov chain: each step in the chain does not change the distribution.

• Detailed balance: \[p^*(z)T(z, z') = p^*(z')T(z', z) \]
 - \(p^*(z) \) is a stationary distribution

• A ergodic Markov chain converges to the same distribution regardless the initial distribution
 - The system does not return to the same state at fixed intervals
 - The expected number of steps for returning to the same state is finite
Is the following statement right?

• The samples drawn using MCMC are independent
Is the following statement right?

• A Markov chain can have more than one stationary distribution
Use MCMC to solve the problem below

- Super optimization
 - There is a straight-line program
 - A set of test cases are given
 - The program can be modified by deleting a statement, inserting a statement from the initial program at a given place
 - Optimize the program by using the above operations
This Class

• The lecture is heavy in math. It is OK if you only get a sense of it. We won’t focus on it in exams

• Semantics of probabilistic programming

• Measure theory
Motivations

• In order to reason about properties of a program, we need formal tools

• Example questions
 • Is the postcondition satisfied?
 • Does this program halt on all inputs?
 • Does it always halt in polynomial time?
Motivations

• In order to reason about properties of a program, we need formal tools

• Example questions
 • What is the probability that the postcondition is satisfied?
 • What is the probability that this program halts on all inputs?
 • What is the probability that it halts in polynomial time?
Motivations

• When designing a language, rigorous semantics is needed to guarantee its correctness

• Example that didn’t have rigorous semantics: Javascript
 • https://javascriptwtf.com
Examples

\[x := 0 \]

\textbf{while} \ x == 0 \ \textbf{do}

\[x := \text{coin()} \]

- What is the probability that it runs through \(n \) iterations?
- What is the expected number of iterations?
- What is the probability that the program halts?

We can decompose the semantics of a program into semantics of statements.
Examples

What is the probability that the program halts?

The program is a two-dimensional random walk. According to probability theory, the probability that it returns to the origin is 1.

By relating to concepts in probabilities, we can simplify the reasoning.
Examples

\begin{verbatim}
 i:=0;
 n:=0;
 while i<1e9 do
 x:=rand();
 y:=rand();
 if (x*x+y*y) < 1 then n:=n+1;
 i:=i+1
 i:=4*n/1e9;
\end{verbatim}

What does this program compute?

How to reason about it?

Measure Theory
The mathematical foundation of probabilities and integration

Uniform(0,1) is called Lebesgue measure
Measure Theory

• Measures: generalization of concepts like length, area, or volume

• We will talk about
 • What is a measurable space
 • Measures on measurable spaces
 • Rich structures of spaces of measures
Measure Example: Length

• What subsets of \mathbb{R} can meaningfully be assigned a length?

• What properties should be the length function l satisfy?
Measure Example: Length

\[\ell([a_1, b_1] \cup [a_2, b_2]) = \ell([a_1, b_1]) + \ell([a_2, b_2]) = (b_1 - a_1) + (b_2 - a_2). \quad b_1 < a_2 \]

\[\ell \left(\bigcup_{i=1}^{n} A_i \right) = \sum_{i=1}^{n} \ell(A_i). \text{ } A_i \text{ and } A_j \text{ are disjoined. } l \text{ is called additive} \]

\[\ell \left(\bigcup_{i=0}^{\infty} A_i \right) = \sum_{i=0}^{\infty} \ell(A_i). \text{ } A_i \text{ and } A_j \text{ are disjoined. } \text{The set is countable. } l \text{ is called countably additive or } \sigma - \text{additive} \]

\(l(R) = \infty \), but we are only going to talk about finite measures

\[\ell(B \setminus A) = \ell(B) - \ell(A) \quad \text{Domain should be closed under complementation} \]
Measure Example: Length

• Can we extend the domain of length l to all subsets of \mathbb{R}?

• No. Counterexample: Vitali sets
 • $V \subseteq [0,1]$, such that for each real number r, there exists exactly one number $v \in V$ such that $v - r$ is rational
 • Let q_1, q_2, \ldots be the rational numbers in $[-1,1]$, construct sets $V_k = V + q_k$
 • $[0,1] \subseteq \bigcup_k V_k \subseteq [-1,2]$
 • $l(V_k) = l(V)$, and there finitely many V_k

• l is called the Lebesgue measure on real numbers
Measurable Spaces and Measures

• \((S, B)\) is a measurable space
 • \(S\) is a set
 • \(B\) is a \(\sigma\)-algebra on \(S\), which is a collection of subsets of \(S\)
 • It contains \(\emptyset\)
 • Closed under complementation in \(S\)
 • Closed under countable union
 • The elements of \(B\) are called measurable sets

• If \(F\) is a collection of subsets of \(S\), \(\sigma(F)\) is the smallest \(\sigma\)-algebra containing \(F\), or \(\sigma(F) \triangleq \bigcap\{A \mid F \subseteq A \text{ and } A \text{ is a } \sigma\text{-algebra}\}\). We say \((S, \sigma(F))\) is generated by \(F\).
Measurable Functions

• \((S, B_S)\) and \((T, B_T)\) are measurable spaces. A function \(f : S \rightarrow T\) is measurable if \(f^{-1}(B) = \{x \in S | f(x) \in B\}\) for every \(B \in B_T\) is a measurable subset of \(S\).

Example: \(\chi_B(s) = \begin{cases} 1, & s \in B, \\ 0, & s \not\in B. \end{cases}\)
Measures: Definitions

• A signed (finite) measure on \((S, B)\) is a countably additive map \(\mu: B \to R\) such that \(\mu(\emptyset) = 0\)

• Positive signed measure: \(\mu(A) \geq 0\) for all \(A \in B\)

• A positive measure is a probability measure if \(\mu(S) = 1\)

• …is a subprobability measure if \(\mu(S) \leq 1\)
Measures: Definitions

• If $\mu(B) = 0$, then B is a μ-nullset

• A property is said to hold μ-almost surely (everywhere) if the sets of points on which it does not hold is contained in nullset

• In probability theory, measures are sometimes called distributions
Measures: Discrete Measures

• For $s \in S$, the Dirac measure, or Dirac delta, or point mass on s:

$$\delta_s(B) = \begin{cases}
1, & s \in B, \\
0, & s \notin B.
\end{cases}$$

• A measure is discrete if it is a countable weighted sum of Dirac measures
 • If the weights add up to one, then it is a discrete probability measure

• Continues measure: $\mu(\{s\}) = 0$ for all singleton sets $\{s\}$ in B of (S, B)
Measures: Pushforward Measure and Lebesgue Integration

• Given \(f: (S, B_S) \rightarrow (T, B_T) \) measurable an a measure \(\mu \) on \(B_S \), the pushfoward measure \(\mu(f^{-1}(B)) \) on \(B_T \) is defined as

\[
 f_*(\mu)(B) = \mu(f^{-1}(B)), \quad B \in B_T.
\]

• Lebesgue integration: given \((S, B), \mu: B \rightarrow R, f: S \rightarrow R\), where \(m < f < M \)

\[
 \int f \, d\mu = \lim_{n \rightarrow \max} \sum_{i=0}^{n} f(s_i)\mu(B_i)
\]

where \(B_0, \ldots, B_n \) is a measurable partition of \(S \), and the value of \(f \) does not vary more than \((M - m)/n\) in any \(B_i \) and \(s_i \in B_i \)
Measures: Absolute Continuity

- Given two measures μ and ν, we say μ is absolute continuous with respect to ν for all measurable sets B iff $\nu(B) = 0 \Rightarrow \mu(B) = 0$
 - $\mu \ll \nu$

Theorem 1.1 (Radon–Nikodym) Let μ, ν be two finite measures on a measurable space (S, \mathcal{B}) and assume that μ is absolutely continuous with respect to ν. Then there exists a measurable function $f : S \rightarrow \mathbb{R}$ defined uniquely up to a μ-nullset such that

$$\mu(B) = \int_B f \, d\nu.$$

The function f is called the Radon–Nikodym derivative of μ with respect to ν.

Xin Zhang@PKU 35
Measures: More on Radon-Nikodym

• Not related to semantics, but one pillar of the probability theory

• f is called the Radon-Nikodym derivative. One example is density function

• Extends probability masses and probability measures to measures over arbitrary set

• Example: μ: gaussian, v: Lebesgue measure on \mathbb{R}
Products of Measurable Spaces

• Given \((S_1, B_1)\) and \((S_2, B_2)\), their product is \((S_1 \times S_2, B_1 \otimes B_2)\) where
\[
B_1 \otimes B_2 = \sigma(\{B_1 \times B_2 \mid B_1 \in B_1, B_2 \in B_2\})
\]

• A measure on \((S_1 \times S_2, B_1 \otimes B_2)\) is sometimes called a joint distribution

• A special case \((\mu_1 \otimes \mu_2)(B_1 \times B_2) \triangleq \mu_1(B_1)\mu_2(B_2)\).

\[\mu_1\text{ and }\mu_2\text{ are independent}\]
Markov Kernels

• Given \((S, B_S)\) and \((T, B_T)\), \(P: S \times B_T \to R\) is called a Markov kernel if
 • For fixed \(A \in B_T\), the map \(\lambda s. P(s, A) \to R\) is a measurable function on \((S, B_S)\)
 • For fixed \(s \in S\), the map \(\lambda A. P(s, A) \to R\) is a probability measure on \((T, B_T)\)

• Composition of two Markov kernels
 • Given \(P: S \to T\), \(Q: T \to U\) \((P; Q)(s, A) = \int_{t \in T} P(s, dt) \cdot Q(t, A)\).

• Given \(\mu\) on \(B_S\), its push forward under the Markov Kernel \(P\) is

\[
P_*(\mu)(B) = \int_{s \in S} P(s, B) \mu(ds).
\]
More on Markov Kernels

• \((S, B_S)\): \(x = \ldots \) (\(x > 0\))

• \((T, B_T)\): \(y = \text{uniform}(0, x)\)

• Markov kernel \(P(x, \bigcup_{i=1}^{M} [a_i, b_i]) = \sum_{i=1}^{M} \text{length}([a_i, b_i] \cap [0, x]) / x\)
More on Markov Kernels

• \((S, B_S)\): \(x = \ldots \ (x > 0)\)

• \((T, B_T)\): \(y = \text{uniform}(0, x)\)

• \((T, B_T)\): \(z = \text{uniform}(0, y)\)

• Composition:
 \[(P; Q)(x, [0, z]) = \int_{y \in [0, \infty]} P(x, dy) \ast Q(y, [0, z])\]

 \[
 = \int_{y \in [0, x]} \frac{dy}{x} \ast \frac{y}{\text{length}([0, z] \cap [0, y])} \\
 = \int_{y \in [0, z]} \frac{dy}{x} \ast \frac{y}{y} + \int_{y \in [z, x]} \frac{dy}{x} \ast \frac{z}{y} = \frac{z}{x} + \frac{z}{x} (\ln x - \ln z)
 \]
More on Markov Kernels

- (S, B_S): $x = \text{uniform}(0.1, 1.1)$, $\mu([a, b]) = \text{length}([a, b] \cap [0.1, 1.1])$

- (T, B_T): $y = \text{uniform}(0, x)$

- Markov kernel $P(x, \bigcup_{i=1}^M [a_i, b_i]) = \sum_{i=1}^M \text{length}([a_i, b_i] \cap [0, x])/x$

- μ's pushforward under P is
 $$P_\mu(B_T) = \int_{x \in [0.1, 1.1]} B_T \cap [0, x] \ast \mu(dx)$$
More on Markov Kernels

• We can use Markov kernels to define the meanings of statements

• A program can be seen as a Markov kernel that links the input variable (can be a distribution) with the output distribution
Spaces of Measures

- We now talk about the structures of the spaces of measures
 - This will allow us to talk about general properties of measures

- $M(S, B)$ or MS is the set of all finite, signed measures on a measurable set (S, B)
Vector Space Structure

• \mathbf{MS} is always a real vector space

\[(\mu + \nu)(B) \triangleq \mu(B) + \nu(B)\]

\[(a\mu)(B) \triangleq a\mu(B)\]
Normed Space Structure

• Every measure has a norm

\[||\mu|| \triangleq \sup \left\{ \sum_{i=1}^{n} |\mu(B_i)| : \{B_1, \ldots, B_n\} \text{ is a finite measurable partition of } S \right\}. \]

• For positive measures, \[||\mu|| = \mu(S) \]

• A complete normed vector space is a Banach space
Order Structure

• Measures have a natural pointwise order: $\mu \leq \nu$ if $\mu(B) \leq \nu(B), \forall B$

• Are two distinct probability measures comparable?

• The partial order is compatible with the vector space structure:

 • if $\mu \leq \nu$, then $\mu + \rho \leq \nu + \rho$; and

 • if $0 \leq a \in \mathbb{R}$ and $\mu \leq \nu$, then $a\mu \leq a\nu$.

• Additions and multiplications by a positive scalar are monotone
Order Structure

• The partial order defines a lattice

\[(\mu \lor \nu)(B) \triangleq \sup \{\mu(A \cap B) + \nu(A^c \cap B) \mid A \in \mathcal{B}\}\]

\[(\mu \land \nu)(B) \triangleq \inf \{\mu(A \cap B) + \nu(A^c \cap B) \mid A \in \mathcal{B}\}\,.

• Why do we care? It will be used to deal with loops

• \(\mu^+ = \mu \lor 0, \quad \mu^- = -\mu \lor 0, \quad \mu = \mu^+ - \mu^-,\) modulus \(|\mu| = \mu^+ + \mu^-

• The order is compatible with the norm: \(|\mu| \leq |\nu| \Rightarrow ||\mu|| \leq ||\nu||\)
Order Structure

• \mathcal{MS} is a Banach lattice:
 • A Banach space with a lattice structure that is compatible with both the linear and normed structures

• A Banach lattice is σ-order-complete if every countable order-bounded set of measures in \mathcal{MS} has a supremum in \mathcal{MS}

• Every measure space is σ-order-complete
Order Structure

• For any measure set \mathcal{MS}, every countable order-bounded set of measures in \mathcal{MS} has a supremum in \mathcal{MS}

• This will help us deal with loops
 • Every iteration can be seeing as joining measures
 • The measures are bounded
 • They will converge to the supremum
Operators

• Since spaces of measures are vector spaces, we can do linear algebra

• Linear operator $T: T(x) + T(y) = T(x + y), T(ax) = aT(x)$

• We are mostly interested in operators that send probability measures to subprobability measures (conditional probabilities)
Summary

• To reason about properties and correctness of probabilistic programs, we need semantics

• To define semantics, we can
 • Decompose it into semantics of program structures
 • Link it with mathematical concepts
Summary

• Measure theory is the theory about measures (generalization of length, area, volume…)
 • Foundation of probabilities and integration

• Measurable space
• Measures: distribution, state of a program
• Markov kernels: allows us to model statements
• The space of measures on a given measure space is a \(\sigma \)-order-complete Banach lattice
Next Class

• Semantics of probabilistic programs
 • Operational semantics
 • Denotational semantics